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Abstract serious differences between the two problems that need to
be addressed. For instance capitalization, which will cer-
In this paper we examine the problem of domain adap- tainly be a useful feature in the encyclopedia problem, may
tation for protein name extraction. First we define the gen- prove less informative in the instant messenger data since
eral problem of transfer learning and the particular sub- the rules of capitalization are followed less strictly irath
problem of domain adaptation. We then describe some cur-domain. Thus there seems to be some need for altering the
rent state of the art supervised and transductive approache classifier learned on the first problem (called soerce do-
involving support vector machines and maximum entropy main) to fit the specifics of the second problem (called the
models. Using these as inspiration, we turn to the unsuper-target domaif. This is the problem oflomain adaptation
vised version of the problem and introduce a novel maxi- and is considered a type ansfer learning
mum entropy based technique, pseudo-label based rescal- The intuitive solution seems to be to simply train on the
ing (PLR), that achieves comparable performance with no target domain data. Since this training data would be drawn
labeled target data. We present the results of experimentalfrom the same distribution as the data you will ultimately
comparisons between all the methods described and contest over, this approach avoids the transfer issue entirely
clude with a discussion of trends observed and promising The problem with this idea is that often large amounts of
routes for future work. labeled data are not available in the target domain. It has
been shown that even small amounts of labeled target data
can greatly improve transfer results [6, 7]. There has been

1 Introduction relatively little work, however, on the case when there is
no labeled target data available, that is, totally unsupeds
1.1 Problem formulation domain adaptation. This is the main problem we address in
this paper.
Consider the task ohamed entity extractiofNER). One idea for approaching this unsupervised case is the

Specifically, you are given a corpus of encyclopedia arti- use of maximum entropy classifiers. The maximum en-
cles in which all the personal name mentions have been latropy model [15, 3] has proven very successful on many
beled. The standard supervised machine learning problemNER tasks. One of its strengths is its ability to take advan-
is to learn a classifier over this training data that will suc- tage of arbitrary, not necessarily independent features. D
cessfully label unseen test data drawn from the same distri-ing training, maximum entropy allocates certain weights to
bution as the training data, where “same distribution” doul these features. Normally, in the non-transfer case, these
mean anything from having the train and test articles writ- weights are set so as to produce a model that maximizes
ten by the same author to having them written in the samethe likelihood of the training data. Then, when the trained
language. Having successfully trained a named entity clas-classifier is applied to unseen data (but data drawn from
sifier on this encyclopedia data, now consider the problemthe same distribution as the training data) it will also give
of learning to classify tokens as names in instant messengereasonable predictions. In the transfer setting, however,
data. Clearly the problems of identifying names in ency- the distribution of the data is different between the train
clopedia articles and instant messages are closely relatedsource) and test (target) data. This is true for both the
and learning to do well on one should help your perfor- marginal distribution of the features, and more problemat-
mance on the other. At the same time, however, there arecally, the conditional distribution of the class labelseai



the features. This means the weights assigned during trainof truly identically distributed training examples. Inatg
ing may not generalize well to test data drawn from the researchers are often faced with heterogeneous sources of
target domain. Our solution, presented in this paper, is todata, both for training and testing, thus violating one &f th
modify the way weights are assigned by maximum entropy. key assumptions of most standard machine learning algo-
Instead of blindly maximizing the likelihood of the train- rithms.
ing data, we want to add some regularization that takes into
account the distribution of the target domain. More specif- 1.3 Previous work
ically, we would like to use target domain data to down-
weight features that might excel on the source data, but  Our present work draws on a long line of closely related
won't transfer to the target data. This will force maximum research. One of the first formulations of the transfer learn
entropy to allocate that weight somewhere else, where iting problem was presented over 10 years ago by Thrun [20].
might not classify the training data as well, but will tra@isf  More recently there has been a focus on using source data to
better to the target data. learn various types of priors for the target data [16]. Other
Since the target data is unlabeled, however, this poses aechniques have tried to quantify the generalizabilityerf ¢
problem. We can estimate the marginal distribution of the tain features across domains [10, 11], or tried to expl@it th
target features, but not the conditional. Empirically weéha common structure of related problems [2, 4].
seen that incorporating just the marginal information is no Transfer learning is also closely related &emi-
enough to improve performance. Thus we propose an EM-supervised learning9, 23], in which one has access to
like algorithm for estimating a kind of pseudo-conditional both labeled and unlabeled data from the same domain at
distribution for the target data. This works by training a train time, andtransductive learnind21, 12, 14, 18], in
classifier on the source data, then using this classifiertto gewhich one has access to the unlabeled testing data at train-
predicted class-probabilities for the target data. Usegé  ing time (but still assumes the train and test distributiames
predicted pseudo-labels, we can generate a target pseudahe same).
conditional distribution. We then adjust the weights of the  Another related problem isulti-task learning[1, 19].
features in the source data to match this target conditional In this case, the distribution of the data does not change,
and then train again on the adjusted data. The trade-off bebut the task (and therefore the labels) do. For instance,
tween setting the feature weights to match the source dis-a researcher may have previously learned to classify pro-
tribution and matching the target distribution can be con- tein names, and now wants to learn to classify cell names.
trolled by a regularization parameter. This regularizat®  She might assume that there are many common features that
important because we believe the source data to be basediould be informative for both tasks, but would need a way
on correct labels, but not quite relevant data, while the tar to find out which ones generalize across tasks, and which
get data is based on faulty labels, but is at least drawn fromare task-dependent.
the correct distribution.

2 Transfer isnot transduction
1.2 Domain

We now turn toprotein name extractignan interesting Given an example and a class labe}, the standard sta-
problem domain in which to test these methods. In this set-tistical classification task is to assign a probabilitiy|z),
ting you are given text related to biological research (llgua to x of belonging to clasg. In the binary classification case
abstracts, captions, and full body text from biologicalrjou the labels ar& = {0, 1}. In the case we examine, the ex-
nal articles) which is known to contain mentions of protein amples are represented as binary vectors where each value
names. The goal is to identify which words are part of a in the vector represents the presence or absence of a feature
protein name mention, and which are not. Various machinein a certain tokeri. That is, given the set of feature func-
learning methods and approaches have been applied to thisonsF = f;...fr, whereF' is the number of features, and
particular problem [17, 22] with varying success. One ma- a tokent; drawn from the corpug = ¢;...t x5, whereN is
jor difficulty is that there is a large variance in how these the number of examples, we can construct the feature vector
proteins are mentioned and annotated between differentauz; = F(¢;) = (f1(t:), ..., fr(t;)). Eachf;(¢;) will be 1 if
thors, journals, and sub-disciplines of biology. There are that feature function is true on the token, and 0 otherwise.
even differences between protein hame usage in differenfWe can further group these individual feature vectors into
sections of the same article. For instance, the full name ofthe setX;,.q;, = x1...zx, Which we will call our training
a protein may be given in the introduction, but an abbre- set. In order to evaluate our performance, we usually create
viation may be used in a subsequent caption. Because ofinother sefX,.,;, formed in a similar way, upon which we
this variance it is often difficult to collect a large corpus want to use our trained classifier to make predictions.



Table 1. Summary of learning settings. Natural names are noted along with equivalences, where
applicable. For all settings we assume D;°“c¢ js used, and Y;.s; is unknown. Settings for which we

trawn

have run experiments (see table 3) are marked in bold, along with their experimental name.

. . . Auxiliary data Test data
Natural name for learning setting Experiment name s .

Domain | Yougitiary || DOMain | Xie
classic supervised learning SuprvNonTransfer| Dsoure¢ | seen Dseurce | unseen
classic transductive learning SuprvNonTransfef| Ds°ur<¢ | seen Dseurce | seen
classic transfer learning UnsuprvTransfer || Doure¢ | seen Diarget | unseen
transductive transfer learning UnsuprvTransfer || Dsoure¢ | seen Diarget | seen
classic semi-supervised learning Dseuree | yunseen Dseurce | unseen
transductive semi-supervised learning Dseuree | unseen Dseurce | seen
semi-supervised transfer learning Dseuree | yunseen Diarget | unseen
transductive semi-supervised transfer learning Dseuree | unseen Diarget | seen
reverse-transfer supervised learring Diarget | seen Dseurce | unseen
reverse-transfer transductive supervised leafning Dtarget | seen Dseurce | seen
supervised inductive transfer lear ning? SuprvTransfer Diarget | seen Diarget | unseen
supervised transductive transfer learrting Dtarget | seen Diarget | seen
reverse-transfer semi-supervised learfing Diarget | unseen Dseurce | unseen
reverse-transfer transductive semi-supervised leathing Dtarget | unseen Dseurce | seen
unsupervised inductive transfer learnming Diarget | unseen Diarget | unseen
unsupervised transductive transfer learning® UnsuprvTransfer || Dfer9¢t | unseen Diarget | seen

! These settings and names are unusual and not likely in peabiit are included for completeness.
2 Equivalent to its classic version if we exclude tg? < data.

awn

In the non-transfer learning probleX;.,; and X;,.q4in problems are nevertheless intimately related. More specifi
are both assumed to have been drawn from the same distrieally, when trying to solve a transfer problem between two
bution,D. In the transfer setting, however, we would like to domains, it seems intuitive that looking at the data of tie ta
apply our trained classifier to examples drawn from a dis- get domain during training will improve performance over
tribution different from the one upon which it was trained. ignoring this source of information. Similarly, even if one
We therefore assume there are two different distributions, believes he is not solving a transfer problem, it may still be
Dsource andDrer9et from which data may be drawn. Given beneficial to model one’s training and test data as if they
this notation we can then precisely state the transfer iearn were not identically distributed.
ing problem as trying to assign labélsto test dataX ;%77
drawn fromD!e"9¢t | given training dataX;°“r<¢ drawn
from DSOUTCE.

Finally, there is the issue of supervision. We can define a
third set of dataX uzitiary, thatis used, along Wit ;.44
to train the classifier. In the case of non-transfer learning

In supervised inductive machine learning;,.q;» IS Xauziliary 1S labeled, this is just standard supervised learn-
known and labeled (that i%},.;, is also known), while ing (sinceXy,qin and Xqygzitiary are drawn from the same
both X..s; andY;.s; are completely hidden. In the trans- distribution). If X,zi1iqry iS unlabeled, then this is semi-
ductive case, howevek,.; (but, importantly, not;.s;), is supervised learning. There is a similar distinction in the
also known at training time. That is, the learning algorithm transfer case, whet¥,,.iiiqry Can be either labeled or un-
knows exactly which examples it will be evaluated on after labeled, and drawn frors°ure¢ or Dt*79¢t Unfortunately,
training. This can be a great asset to the algorithm, allow- however, it does not seem possible to use labeled test data
ing it shape its decision function to match and exploit the in the transductive transfer case. The reason is obvious: in
properties seen iX;q;. transduction you can see your test data during training time
Itis important to point out that transduction is orthogonal Thus, 'f.).(tes.t were !abeled, there would pe no neec_zl _to train

a classifier in the first place. These various conditions for

to transfer. That is, one can have a transductive algorithm ) X . . .
: performing each kind of learning are summarized in table 2.
that does or does not make the transfer learning assump*

tion, and vice verse. Much of the work in this paper, how-  Given this analysis then, it seems that one can do super-
ever, was inspired by the belief that, although distinasth  vised inductive transfer learning, and unsupervised trans



ductive transfer learning, but not supervised transdactiv  This model has proven highly successful and is used ex-
transfer learning. In other words, in the transfer case; dur tensively in many domains including natural language and
ing training you have to choose whether you would rather information extraction. One of its benefits is that the set
know exactly what your unlabeled test data will look like of featuresF do not have to be independent of each other,
or remain ignorant of this but instead see some labeled datavhich is not the case in some comparable methods. This
drawn from the same distribution as your eventual test data. frees the user to choose an arbitrary set of features st feel
will best summarize the data without worrying about inde-
3 Methods considered pendence. One assumption the model does make is that the
conditional expectation of the features is the same in the
train and test data. This becomes a problem in the transfer

3.1 Maximum entropy models learning setting and is addressed in the following sections

Entropy maximization (MaxEnt) is a way of modeling

the joint distribution of examples and labels. Given a set of 3-1-1  Sourcetrained prior models

training examplesX;yain = {Ttrainy ;- - - » Terainy }» their One recently proposed method [6] for transfer learning
labelsYirain = {Ytrain, - - -, Yirainy }, @Nd the set of fea-  jn MaxEnt models involves modifyind’s regularization
tures? = {f1,..., [r}, MaxEntlearns a model consisting  term.  First a model of the source domainsouree,
of a set of weights\ = \;...Ap over the features so as s |earned by training on{ X ource ysourcel  Then a

to maximize the cc_)nditional likelihood of the training data model of the target domain is trained over a limited set
P(Virain| Xirain), given the modeby. In exponential para-  of labeled target datd X/“"", v;“"9°'}, but instead of

train ° < train

metric form, this conditional likelihood can be expressed reqularizing thisA®r9¢t to be near zero by minimizing
- 1 >2, A9, Ataroet s instead regularized towards the

pa(yilz:) = —Z(I_)e:cp(z fi(@i, yi)As) (1) pr'eviotuslyt learned source valu@g®“<¢ by minimizing
1 7 >, |9t — \seuree| - Thus the modified optimazation

whereZ is the normalization term: problemis:
target _ target _ A source
Z@)= 3 eap(3_Lileny)N) @ Emax 108 P (VPO SIATEEATEEL D)
y'€{0,1} j

It should be noted that this model requité&”?“" in order

ain

In order to avoid overfitting the training data, these are to learnAter9et and is therefore supervised transfer.

often further constrained to be near 0 by the use of a reg-
ularization term which tries to minimizgA|[, = 3, [A;].

Thus the entire expression being optimized is: 3.1.2 Feature space expansion

Another approach to the problem of supervised transfer
learning is explored by Daumé [7, 10]. Here the idea
is that there are certain features that are common be-
wheref is a parameter controlling the amount of regular- tween different domains, and others that are particular to
ization. Maximizing this likelihood is equivalent to con- one or the other. More specifically, we can redefine our
straining the conditional expectations of each featuréént feature setF as being composed of two distinct subsets
learned modelf [f;]y], to match those found in the train-  fspecific| J Foeneral \where the conditional distribution
ing data, which we denotey, qin[f;y]: of the features inFsrecific differ betweenXs°u<¢ and
Xtarget while the features igFoenerel are identically dis-
tributed in the source and target. Given this assumption,
there is an EM-like algorithm [10] for estimating the pa-
rameters of these distributions. There is also a simpler ap-
where: proach [7] of just making a duplicate copy of each fea-
ture in Xs°vree and X*"9¢t so whereas before you had

arg}\nax log pA(Y'|X) — Bl[Al]1 3)

N
1
Etrain [,fg |7J] = N Z fj (Itraini s Ytraing = y) (4)

oo .y _ )1 fjoccursinexample;, andy; =y g — (f)(z,)...fr(2;)), you now have
fi(@i,yi =y) = .
0 otherwise o o
(5) T, = < .fl (xi)speczjzc’ fl(xi)genma (8)
Finally, we definel/, as: [ (@) PeTie | fr(gy)9eneral

1 e .
Ep = — £ @train, , V)PAW|Tirain,)  (6) where spec;f.zc. is source or target respectively, and
N zz:zy: ! fi(x;)pecitic is just a copy off; (z;)9¢mr !, Note that here



EE T+ | S+ distribution of the positive (+) a_md. negative (-) classes pf
S-|T- the source (S) and target (T) d|str|bu_t|ons are plotted with
by respect to these features. The supervised, non-transter pr
hs lems are simple in this setting since the source and target
T+ data are each easily separable in this feature spackg by
N K andhr respectively. For transfer learning, however, if we
A . . . !
o T+ train on the source, we might learn the classifier which
5 S+ S— h depends onljeature 1 If we then attempt to classify the
B ¥ "|'T target data we will fail, sincéeature lis a poor discrimi-
a T- nator of the target data. What we would like to do is trans-
form the feature space so that the distribution of the pasiti
Feature 1 \ - and negative cIasse; in that.transformed f_eatl_Jre space is th
same for both domains. This transformation is represented
by G in the figure, a line upon which the data have been
Figure 1. lllustration of feature space trans- projected. Given this new transformatiol; can easily
formation in transfer learning problem. hg be learned over the source data and subsequently performs
and hr easily separate the source and target equally well when transfered to the target data. Phrased in
data respectively, using only a single feature terms of maximum entropy, we are trying to learn a transfor-
each. But a projection onto G is required be- mationG|() of the feature spacg such that the conditional
fore h can successfully separate both distri- distributions of the source and target data are aligned:

butions at once.
Etarget [f]|y] — [jsource [G(fJ)Iy] 7vfj cF (9)

The simple solution seems to be to igndté® ¢ [f;|y]
and instead train ouk based solely o&**"9¢ [f;|y]. The
problem with this, of course, is that in the unsupervised

we let f;(z;) (the marginal form of equation 5) be 1 when
f; occurs in example;;, and O otherwise. The idea is that
by expanding the feature space in this way MaxEnt will be 556 we do not havite s¢t and therefore cannot esti-
able to assign different weights to different versions @ th .o ptarget [f;ly]. The best we can do is to estimate
same feature. If a feature is common in both domains its 4,4 target marginal*ars<t [£,]. We should note, how-

general copy will get most of the weight, while its spe-  gyer, that training on the source data won't generally lead
cific copies (fsource and ftarget) will get less Welght, and to Fsource [f|U] _ Etarget [fly] since even the marginals
vice versa. Despite its simplicity, this method demonsesat ¢ the two dijsfributions mighjt be different.

an elegant interpretation of the transfer problem and works 5,6 way around the problem of missing conditionals is

quite well to assignpseudo labeld’**"9¢t to our target data. This
would then allow us to estimate pseudo conditional expec-
313 Conditional reweighting tations of the features in the target dat&"9° [f;|g]. The
guestion then becomes how best to assign these pseudo la-
The approach taken in this paper is slightly different. We bels. One obvious approach is to use our classifier trained
attempt to directly modify the empirical conditional dis- on the available, labeled source data to classify the unla-
tribution of the features that MaxEnt tries to learn. For beled target data. We can then use the predicted target class
ease of notation we will allowE*°“"*¢[f;|y] to mean labels to calculate the predicted target conditional expec
Eyepeource [f;(x)|y], and similarly fortarget. One prob-  tations. With these“**"9¢* [f,]ij]'s we can do two things.
lem with transfer in MaxEnt is that the conditional distri- Our first intuition might be to throw away our source data
bution of the features differs between the source and targetand proceed to directly train a new modgfr9¢. This is
domains. In other wordsE*°""* [f;|y] does not neces- attractive because, ultimately, we are only concerned with
sarily equalE**"9¢t [ f;]y]. This becomes an issue because testing on data drawn frof®**"9¢* and so it seems that the
MaxEnt learns a model to maximize the likelihood of the soonerwe can stop using the source data, the sooner we will
training data based on these expectations. If the expectastop being in a transfer problem, and so, hopefully, get bet-
tions in the train and test datasets are similar, thenithe ter results by not violating our learner’s assumptions. The
learned on the training data will also maximize the expec- downside to this, of course, is that thi$*"9¢t would only
tation of the test data. The more these distributions differ be as good as the pseudo labels it was based on, which in
however, the less well the trained model will perform. turn are only as good as the classifigf“ ec. But Asouree
Figure 1 illustrates this phenomenon. In this example, cannot be expected to perform very well ai¢"9¢* since
there are two features comprising the feature space. That was trained on onlyX*°“"¢¢, One idea for improving



ytarget (and thusA?er9¢?) is to use our pseudo target con- like to boost the contribution of these confident pseudo la-
ditional likelihoods, not to train our own target model, but bels to the pseudo conditional expectation, while minimiz-
instead to improve the source-trained model's performanceing the contribution of less certain labels. Since MaxEnt
on the target data. In this way, we will get betfgf"9¢t’s, outputs a conditional probability of each class label given
yielding betterftorget [f;19]’s, and so on. This is the idea an example, we already have a means for making this dis-
behind our pseudo-label based rescaling (PLR) technique: tinction. We have two options: we can ignore pseudo labels

Input: Esouree [£5]y], Frtarget £, 0 that have a predicted prob_ablllty less than some thres_hold
Output; Esouree [f’-ly] (maybed0%), or we can weight the conditional expectation
! Starget( s |o by this predicted class probability. We call the first method
Tily = 0% fi + (1= 0) * f; * fromreet g |
ilY J J ¥ Eeource[fily] thresholded hard labelingTHL), and the seconsloft label-
B [fily] = 5 3 fi@i g = v) ing (SL).

The effect is to rescalef;(z), putting more weight on
features that occur frequ_ent!y in the target but rarely in 314 B thresholding
the source, and downweighting features that are common

in the source but seldom seen in the target. Thus, afterone further problem that arises in the transfer settingas th
each iteration we get new, modified, source conditionals the marginal probability of a class label can differ signifi-
Eeovree [fily] that we can use to train a new model and cantly between the source and target domains. In the binary
get a newA"**"¢. The parameteff controls the degree to  cjassification problem MaxEnt tries to estimat@|x) for
which we use the target pseudo conditionals to alter the the,, — {0,1} (see equation 1). It then chooses thevith
source conditionals. 1§ = 1 we ignore the pseudo con- highest probability. The problem arises whefi“"< (y) is
ditionals, while settingy = 0 lets us reassign the source very different fromp?r9¢t (). In this case MaxEnt, having
conditionals to match the target pseudo conditionals. Wegeen, say, very few positive examples in the source training
can see this by first observing that during each iteration theqata may develop a strong prior against positive examples
original featuresf; are linearly transformed into modified \when classifying the target data. One way around this is
i to adjust the decision rule used to decide which class la-
Ftarget £l bel to predict. Naively, this threshold woy_ld be 50%, So
f=fx iy (10) that whichever class has the greater conditional protigbili
! Esource [f;]y] given the example and the model, would be predicted. If the
In effect this changes the originally binary-valued fea- model if over-predicting positive labels, however, we want
tures into real-valued ones. The effect of this transfoimmat ~ to bias this threshold towards the negative examples.

can be written as: More concretely, say we are training a classifier to pre-
dict whether it will rain tomorrow given today’s weather
Erevree [fily] = N Z fi(xi,yi) report. Our training source data are weather reports from a
i€source city in a humid climate where the marginal chance of rain on
Etarget [£;19] any given day is 50%. We would like to apply our learned
- m Z fitwi,5i)  classifierto a target domain where the chance of rain is, on
1650“““3 average, only 5%. In this case, we could expect a naively
B Etarget [£5]5] x Bsouree [ f5]y] trained model to over-predict the chance of rain in the arid
- Esource [ fily] climate. To overcome this, we can adjust our threshold for
_  frarget [;19] (11) predicting rain. Whereas previously we had predicted rain

whenever our model told us there was a greater than 50%
Thus, using the re-weighting of equation 10, we are able chance of rain, now we want to move this threshold up, so
to express the conditional target distribution in terms of a the model must be, say, 95% sure that it will rain, given
transformed version of the source conditional, just as we its humid model, before we actually predict rain in the arid
had hoped in equation 9. climate.

One final question is how, exactly, to calculate But how, exactly, do we set this threshold? One natural
Etarget [f;19]. If we trust our pseudo labels completely, idea is to set the threshold so that the percentage of unla-
we can just letpte9¢t(y|x) = 1iff y = ¢, and 0 other-  beled target examples predicted to be in the positive class
wise. The problem with this is that our classifier may be by the source-trained classifier is equal to some prior be-
more confident about its predicted labels for some exam-lief of the true proportion of positive examples in the tdarge
ples than others. Specifically, we would assume it to do domain. Although this technically violates the terms of to-
better on examples in the target domain that “looked like” tally unsupervised transfer learning, in practice estingat
examples in the source domain. Consequently, we wouldthis single parameter over the target domain does not re-



quire nearly as much labeled target data as learning all the3.2.2 Transductive SVM
parameters of a fully supervised model, and thus serves asl_ ducti ith SYM's. i babilisti q
a nice compromise between the two extremes. It should be'"aNS uction wit S, In contrast to probabilistic mod-

noted that this kind of thresholding is not necessary when e!s,dls (?c.unehlntumvle. Wh(ta)reas, in the mr?uftlt\,/e| cglse,_ we
ranking is the goal instead of classification. trie tg ita hyperp anfato est separate.t € labele t'@'n',n
data, in the transductive case, we add in unlabeled testing

data which we must also separate. Since we do not know
the labels of the testing data, however, we cannot perform
a straight forward maximization, as in the supervised case.
Instead, one can use an iterative algorithm [12] similar in

Support vector machines (SVM’S) [13] take a different flavor to the MaxEnt pseUdO'Iabel based rescaling (PLR)
approach to the binary classification problem. Instead of @lgorithm of section 3.1.3. Specifically, a hyperplane is
explicitly modeling the conditional distribution of the tda trained on the labeled source data and then used to classify
and using these estimates to predict labels, SVM's try to the unlabeled testing data. As in PLR, one can adjust how
model the data geometrically. Each example is represente@onfidentthe hyperplane must be in its prediction in order to
as anF-dimensional real-valued vector of features and is Use a pseudo-label during the next phase of training (since
then projected as a point ifi-dimensional space. The algo- there are no probabilities, large margin values are used as
rithm then fits a discriminative hyperplane between the pos-a measure of confidence). The pseudo-labeled testing data
itively and negatively labeled training examples so as &1 be is then, in turn, incorporated in the next round of training.
separate the two classes. This separation is called the marfhe ideais to iteratively adjust the hyperplane until itésy
gin, and thus SVM'’s belong to the margin based approach toconfident on most of the testing points, while still perform-
classification. This simplification has proven very suceess ing well on the labeled training points. In other words, we
ful as SVM's currently have some of the lowest error rates Want to choose a hyperplane to maximize the margin over
of any popu|ar |earning a|gorithm_ But this performance the training data and the pseUdO'labeled teSting data (thIS
does come at a cost. In the transfer domain, for instancejdea is closely related to the concept of entropy minimiza-
we are acutely aware of our need for confidences in ordertion outlined in [9]). To this end, the pseudo-labels of posi
to combine the source and target models. While SVM’s do tive and negative testing examples can be switched in order
not have an explicit notion of probability, they do rely on 0 improve this margin metric over the whole dataset. As
the related concept of clustering. Specifically, the cluste the algorithm proceeds the testing data’s pseudo labels get
assumption is that examples with common labels will lie more and more weight. One complication of this method
near each other in feature space. Deciding how near, and ifor transductive SVM, however, is the time it takes to try
what feature space, are often difficult tasks in and of them-the different possible labelings for the testing data. This

selves, but can often be addressed by the thoughtful use ofssue can be addressed by using a spectral graph approach
kernels. [14], thus allowing for faster convergence and a more gen-

eral framework.
Although it does not specifically address the case of hav-

ing different distributions for the labeled training and-un
3.21 Inductive SVM labeled testing data, using transductive SVM’s for transfe

problems does allow for the incorporation of some infor-
As far as we know, there has not been much work on us-mation from the target data’s different marginal distribaot
ing inductive support vector machines for transfer leagnin  and thus demonstrates improved performance over induc-
This may be due, in part, to the relative difficulty of inter- tive SVM applied to the same problem.
preting and modifying the distances used in margin based
models, as opposed to probgt_)ilistic ones. Sincg mosttranss 5 3 prior class probabilitiesand cost factors
fer approaches rely on exploiting some connection between
either the data or models trained in the source and targetAs with the maximum entropy approaches described in sec-
domains to exploit, the lack of an intuitive such connection tion 3.1.4, transductive SVM'’s used for transfer can also
in SVM’s remains an obstacle. There has recently been ansuffer from a disparity between the prior proportion of pos-
intriguing line of inquiry [18] into developing kernels and itive examples in the source and target domains. In this
reproducing kernel Hilbert spaces that allow for this kifid o case, a similar biasing technique can be employed to ad-
communication between SVM models. They looked specif- just the SVM's classification rule. Specifically, whereas th
ically at the non-transfer semi-supervised setting, begmgi  SVM usually just considers which side of the hyperplane
their framework, it seems that a related transfer approacha test example is on in determining its label (i.e., a thresh-
should be possible. old of 0), this threshold can be moved so that some points

3.2 Support vector machines



of supervision, transduction and transfer (see table 1). Be

Table 2. Summary of data used in experi- cause of the relatively small proportion of positive exaespl
ments in both the UT and Yapex datasets, we were more interested
_ in achieving both high precision and recall instead of simpl
| Corpus namq Abstracts| Tokens | % P03|t|ve| maximizing classification accuracy. Since we were dealing

ut 748 | 216,795 6.6% with binary, and not sequential classification, the defniti
Yapex 200 60,530 | 15.0% of these measures was straightforward: a token was cor-

rectly classified if its predicted label (POS or NEG) matched

] ] ] its true label, and vice verse. We summarize the combined
that lie nearest on the negative side of the hyperplane and,ecision and recall of the various methods with the com-
would normally be given a negative label, would instead re- o F1 measure. Table 3 summarizes the results under the

ceive a positive one, or vice verse. As with MaxEnt models, \,nsypervised and weakly supervised (prior knowledge of
this relatively small piece of information (the proportioh proportion of positive examples known) settings.

positive examples in the target data) can effect a dramatic . . .
increase in performance Notice how MaxEnt dominates the non-transfer experi-

Another related way to deal with a disproportionate me_nt, achieving an F1 O_f 82% _compared to, TS\./M’S. .73%'
number of positive or negative examples is to adjust the This §hou!d npt be surprising given MaxEn_ts Su't?b"'ty 0
loss function minimized by SVM. Instead of treating false- c|a35|f|ca§|on in the natural_language domain. Moving to,the
positive and false-negative classification mistakes egual unsupervised transfer setting causes all three methods’ pe

if you, for example, expect a larger proportion of negative formances to fall, but MaxEnt falls most sharply, causing it

examples (as is often the case in named entity extraction),tO lose its entire lead over TSVM. Again, this might be ex-

you might weigh false-negative errors more heavily (since plalned_ in light of l\/I_axE_nts dependem_:e on its feature set.
each rare true-positive occurrence you miss is dear). TSVM is able to adjust its hyperplane in light of the trans-
fer data, even thoughit is unlabeled, because it knows where

these points lie relative to the labeled training pointsia-f

4 Investigation ture space. MaxEnt, in contrast, only knows the marginal
expectations of the features in the target domain (not the
4.1 Data conditionals) and this is not enough to help it fully exploit

its statistical modeling capabilities. In the weakly super
Our corpora of abstracts from biological journals come vised setting, finally, where the target dataset is stilbunl
from two sources: University of Texas, Austin [5] and belled but all algorithms are told the expected proportion
Yapex [8]. Each abstract was tokenized and each tokenof positive examples, TSVM excels. Again, while MaxEnt
was hand-labeled as either being part of a protein name oris able to make significant use of this information, it seems
not. Some summary statistics for these data are shown inTSVM does a better job leveraging the prior knowledge into
Table 2. We purposely chose corpora that differed in two better performance. Speculating a bit, this is most likely
important dimensions: the total amount of data collected because of the difference in the ways these two algorithms
and the relative proportion of positively labeled examples adjust their thresholds to achieve the desired predicted po
in each dataset. Specifically, UT has over three times asitive classification rate. For TSVM, moving the hyperplane
many tokens as Yapex but has only half the proportion of directly relates the proportion of positively labeled exam
positively labeled protein names. This disparity is not un- ples to the relative position of points in feature space. For
common in the domain and could be attributed to differing MaxEnt, however, the relationship between the raw features
ways the data sources were collected and annotated. Specifand the decision rule is less clear, allowing more interven-
ically, since we are performing binary classification on the ing factors to dilute the flow of information from prior to
data, if the protein mention annotations in Yapex tend to be prediction.
longer (that is, extend for more tokens) then the proportion  Towards the bottom of table 3 we see the effect of our
of positively labeled tokens will be higher in Yapex. For pseudo-label based rescaling algoriti?hR, section 3.1.3)
all our experiments, we used the larger UT dataset as oulpn MaxEnt's unsupervised transfer performance. We use
source domain and the smaller Yapex dataset as our targety conservative value df (.95) to ease the transition from
source- to target-based conditional feature expectataons
4.2 Experiments and results the soft labelingtechnique for determining our pseudo-
conditional expectations. Indeed, as expected from our pre
vious analysis, iteratively combining the pseudo condiio
We assessed the relative performance of the variousfeature expectations in the target data with the true condi-
methods described in section 3 across the three dimensiontionals of the source data improves the overall performance



Table 3. Summary of % accuracy (Acc), precision (Prec), recall (Rec), and F1 for inductive SVM (ISVM),
transductive SVM (TSVM), regular maximum entropy (MaxEnt), pseudo-label based rescaling MaxEnt
(PLR), prior-based regularized MaxEnt (Regularize), and feature expansion MaxEnt (Expand) models
under the conditions of supervised non-transfer, (SuprvNonTransfer), transfer with unlabeled target
data, (UnsuprvTransfer), transfer with unlabeled target data but prior knowledge of % positive in tar-
get, (UnsuprvTransferPrior), and transfer with labeled auxiliary target data (SuprvTransfer).

Method SuprvNonTransfer UnsuprvTransfer UnsuprvTransferPrior SuprvTransfer
Acc | Prec| Rec| F1 || Acc | Prec| Rec| F1 || Acc | Prec| Rec| F1 || Acc | Prec| Rec| F1
ISVM 92 | 78 | 58 | 67| 90 | 86 | 40 |54 | 90 | 86 | 40 |55 92 | 8 | 52 | 65

TSVM 92 | 68 | 79 | 73| 91| 86 | 46 |60 | 92 | 72 | 75 | 73| 93 | 86 | 58 | 70
MaxEnt 95 | 85 | 78 | 82| 89 | 75 | 42 | 54| 90 | 65 | 68 |67 || 91 | 81 | 54 | 65

PLR, 1 iter - - - - 79 | 41 | 90 | 56 - - - - - - - -

PLR, 2 iters|| - - - - 82 | 45 | 86 | 59 - - - - - - - -

Regularize - - - - - - - - - - - - 96 | 87 | 84 | 85
Expand - - - - - - - - - - - - 93 | 84 | 62 | 72

on the target data. It seems this method is bounded, how-data (this is, after all, one of the stated goals of transfer
ever, by the quality of the initial pseudo labels generated b learning). Disheartingly, in this instance, this seemstaot
the source-trained classifier. Given a relatively pootiahit  be the case. The regularized maximum entropy model does
classification, how can we bootstrap our way up to higher outperfornt the non-transfer MaxEnt, but not by as much
and higher performance? This is certainly a question wor- as might have been hoped for.

thy of future study. In order to measure how much these supervised transfer
methods’ explicit modeling of the transfer problem was re-
sponsible for their performance, we compared them to the
baselines of ISVM, TSVM, and MaxEnt trained on a sim-
ple concatenation of the labeled source and target training
data (first three rows of thBuprvTransfecolumn). Eval-

Finally, the last rows of table 3 compare the performance
of the two methods for supervised transfer learning: the
prior-based regularized maximum entropy methBedu-
larize, described in section 3.1.1), and the feature expand-

ing version Expand described in section 3.1.2). The algo- tarqgot .
rithms were trained on the full labeled source data and 80%“"’1'“3d onX,..; . these transfer-agnostic methods dlearly

of the target training data, and then evaluated on the held_benefited from the addition of labeled target data (as com-

out 20% target testing data. We can see that both method?ared to columiinsuprvTransfex, yet still yielded consis-

handily outperform the totally unsupervised transfer meth tently lower F1 than the_z transfer-awaRegularizeand Ex-
ods described in the second column of table 3, and for thepandmethods, suggesting that the mere presence of labeled

most part outperform even the weakly supervised versionssetS of both types (source and target) of data is not enough

in column three. This should not be surprising given the to account for transfer methods’ superior results. Instead

fact that the supervised methods can actually see some Iai_t is the modeling of the different domains in the transfer
roblem, even in simple ways, that can provide the extra

beled examples from the target domain and thus, in the cas

of MaxEnt, better estimate the conditional expectation of 00st 0 performance.
the features in the target data. Likewise, since they have
access to labeled target data, they can also assess the pr& Conclusions
portion of positive examples and adjust their decision func
tions accordingly. What is more surprising, however, is the
fact that these methods do not significantly outperform the
supervised non-transfer methods described in the first col-
umn of table 3. This suggests that these supervised transfe
methods are relying almost entirely on their labeled target
data in order to train their classifiers, and are not making
full use of the large amount of labeled source data. One
might assume that havmg access to almast four times as IRegularizehas F1 of 85 vs. MaxEnts 82. Significance was de-
much related data, in the form of the labeled source datatermined by comparing the 99% binomial confidence interfaiseach
would significantly boost their ability to classify the tetg  method's recall and precision.

These experiments and analysis have shed light on a
number of important issues and considerations relatectto th
Problems of transduction and transfer learning.

We have seen that even a small amount of prior knowl-
edge about the target domain can greatly improve perfor-
mance in a transfer problem. In contrast, however, even




large amounts of source data cannot overcome the advan-[2] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. lAna

tage of having access to labeled data drawn from the test
distribution.

We have also seen the degree to which pseudo-labelin
based schemes (in both TSVM'’s margin-based model and
our PLR’s MaxEnt-based model) can improve performance
by incorporating the unlabeled structure of the target do-
main. The magnitude of this improvement is closely tied
to the respective method'’s ability to relate this inforroati
(whether manifested as position in feature space or mdrgina
distribution in probability space) to the labeled sourcada
it has available and its eventual decision function.

Finally, we have seen that probabilistic methods, like
maximum entropy, seem better able to make use of the raw
information available in the features provided, as long as
those features faithfully represent the distribution efdata
to be tested upon. But margin based methods, like transduc-
tive support vector machines, seem better able to adapt thei
decision surfaces in light of new data drawn from a different
distribution.

It seems, then, that the best transfer methods may lie
somewhere between the two, leveraging maximum en-
tropy’s precise probabilistic modeling with SVM'’s robust
margin based approach.

6 Futurework

Given the promising results of our MaxEnt based [11]

pseudo-label based rescaling methods, we would like to fur-
ther investigate the theoretical properties of the PLRetyp
algorithms. In particular, it would be nice to be able to guar

(4]

(5]

(6]

(7]

ysis of representations for domain adaptation.NIRS 20
Cambridge, MA, 2007. MIT Press.

9 [3] A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum

entropy approach to natural language processtamputa-
tional Linguistics 22(1):39-71, 1996.

J. Blitzer, R. McDonald, and F. Pereira. Domain adaptati
with structural correspondence learning. BMNLP, Syd-

ney, Australia, 2006.
R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ra-

mani, and Y. Wong. Comparative experiments on learn-
ing information extractors for proteins and their interac-
tions. In Journal of Artificial Intelligence in Medicine
2004. Data from ftp:/ftp.cs.utexas.edu/pub/mooney/bio-
data/proteins.tar.gz

C. Chelba and A. Acero. Adaptation of maximum entropy
capitalizer: Little data can help alot. In D. Lin and D. Wu,
editors,Proceedings of EMNLP 200pages 285-292. ACL,
2004.

H. Daumé Il
ACL, 2007.

Frustratingly easy domain adaptation. In

] K. Franzén, G. Eriksson, F. Olsson, L. Asker, P. Lidngdan

(9]

[10]

[12]

antee convergence. We have some intuition that there existslls]

a convex formulation of the transfer problem in terms of the

J. Coster. Protein names and how to find them.Inber-
national Journal of Medical Informatics2002. Data from
http://www.sics.se/humle/projects/prothalt/
yapextextcollection.tar

Y. Grandvalet and Y. Bengio. Semi-supervised learnigg b
entropy minimization. ICAP, Nice, France, 2005.

H. D. lll and D. Marcu. Domain adaptation for statistica
classifiers. InJournal of Artificial Intelligence Research 26
pages 101-126, 2006.

J. Jiang and C. Zhai. Exploiting domain structure fomea
entity recognition. IrHuman Language Technology Confer-
ence pages 74 — 81, 2006.

T. Joachims. Transductive inference for text clasaffon
using support vector machines. IGML 16, 1999.

T. JoachimsLearning to Classify Text Using Support Vector
Machines Kluwer, 2002.

interaction between the source and target conditionals ex-[14] T. Joachims. Transductive learning via spectral gragti-

pectation that would allow for such a result. The fact that

transductive SVM makes better use of prior information, [15]

when supplied, suggests there is also room to improve Max-

Ent's ability to exploit the advantages of the transductive [16]

setting, perhpas by incorporating prior information dilec
into PLR’s inner loop, or adjusting its soft-thresholding.
In terms of the named entity extraction application, we

[17]

are also looking towards applying these techniques to the[18]

sequential, rather than just binary labeling problem. Most
transfer learning results have emphasized the use of struc-
ture in relating the source and target domain, and it seems

[19]

sequential classifiers like conditional random fields [19] [20]

would be better equipped to exploit this structure.

[21]
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