
A Comparison of Methods for Transductive Transfer Learning

Andrew Arnold, Ramesh Nallapati and William W. Cohen
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{aarnold, nmramesh, wcohen}@cs.cmu.edu

Abstract

In this paper we examine the problem of domain adap-
tation for protein name extraction. First we define the gen-
eral problem of transfer learning and the particular sub-
problem of domain adaptation. We then describe some cur-
rent state of the art supervised and transductive approaches
involving support vector machines and maximum entropy
models. Using these as inspiration, we turn to the unsuper-
vised version of the problem and introduce a novel maxi-
mum entropy based technique, pseudo-label based rescal-
ing (PLR), that achieves comparable performance with no
labeled target data. We present the results of experimental
comparisons between all the methods described and con-
clude with a discussion of trends observed and promising
routes for future work.

1 Introduction

1.1 Problem formulation

Consider the task ofnamed entity extraction(NER).
Specifically, you are given a corpus of encyclopedia arti-
cles in which all the personal name mentions have been la-
beled. The standard supervised machine learning problem
is to learn a classifier over this training data that will suc-
cessfully label unseen test data drawn from the same distri-
bution as the training data, where “same distribution” could
mean anything from having the train and test articles writ-
ten by the same author to having them written in the same
language. Having successfully trained a named entity clas-
sifier on this encyclopedia data, now consider the problem
of learning to classify tokens as names in instant messenger
data. Clearly the problems of identifying names in ency-
clopedia articles and instant messages are closely related,
and learning to do well on one should help your perfor-
mance on the other. At the same time, however, there are

serious differences between the two problems that need to
be addressed. For instance capitalization, which will cer-
tainly be a useful feature in the encyclopedia problem, may
prove less informative in the instant messenger data since
the rules of capitalization are followed less strictly in that
domain. Thus there seems to be some need for altering the
classifier learned on the first problem (called thesource do-
main) to fit the specifics of the second problem (called the
target domain). This is the problem ofdomain adaptation
and is considered a type oftransfer learning.

The intuitive solution seems to be to simply train on the
target domain data. Since this training data would be drawn
from the same distribution as the data you will ultimately
test over, this approach avoids the transfer issue entirely.
The problem with this idea is that often large amounts of
labeled data are not available in the target domain. It has
been shown that even small amounts of labeled target data
can greatly improve transfer results [6, 7]. There has been
relatively little work, however, on the case when there is
no labeled target data available, that is, totally unsupervised
domain adaptation. This is the main problem we address in
this paper.

One idea for approaching this unsupervised case is the
use of maximum entropy classifiers. The maximum en-
tropy model [15, 3] has proven very successful on many
NER tasks. One of its strengths is its ability to take advan-
tage of arbitrary, not necessarily independent features. Dur-
ing training, maximum entropy allocates certain weights to
these features. Normally, in the non-transfer case, these
weights are set so as to produce a model that maximizes
the likelihood of the training data. Then, when the trained
classifier is applied to unseen data (but data drawn from
the same distribution as the training data) it will also give
reasonable predictions. In the transfer setting, however,
the distribution of the data is different between the train
(source) and test (target) data. This is true for both the
marginal distribution of the features, and more problemat-
ically, the conditional distribution of the class labels given

the features. This means the weights assigned during train-
ing may not generalize well to test data drawn from the
target domain. Our solution, presented in this paper, is to
modify the way weights are assigned by maximum entropy.
Instead of blindly maximizing the likelihood of the train-
ing data, we want to add some regularization that takes into
account the distribution of the target domain. More specif-
ically, we would like to use target domain data to down-
weight features that might excel on the source data, but
won’t transfer to the target data. This will force maximum
entropy to allocate that weight somewhere else, where it
might not classify the training data as well, but will transfer
better to the target data.

Since the target data is unlabeled, however, this poses a
problem. We can estimate the marginal distribution of the
target features, but not the conditional. Empirically we have
seen that incorporating just the marginal information is not
enough to improve performance. Thus we propose an EM-
like algorithm for estimating a kind of pseudo-conditional
distribution for the target data. This works by training a
classifier on the source data, then using this classifier to get
predicted class-probabilities for the target data. Using these
predicted pseudo-labels, we can generate a target pseudo-
conditional distribution. We then adjust the weights of the
features in the source data to match this target conditional,
and then train again on the adjusted data. The trade-off be-
tween setting the feature weights to match the source dis-
tribution and matching the target distribution can be con-
trolled by a regularization parameter. This regularization is
important because we believe the source data to be based
on correct labels, but not quite relevant data, while the tar-
get data is based on faulty labels, but is at least drawn from
the correct distribution.

1.2 Domain

We now turn toprotein name extraction, an interesting
problem domain in which to test these methods. In this set-
ting you are given text related to biological research (usually
abstracts, captions, and full body text from biological jour-
nal articles) which is known to contain mentions of protein
names. The goal is to identify which words are part of a
protein name mention, and which are not. Various machine
learning methods and approaches have been applied to this
particular problem [17, 22] with varying success. One ma-
jor difficulty is that there is a large variance in how these
proteins are mentioned and annotated between different au-
thors, journals, and sub-disciplines of biology. There are
even differences between protein name usage in different
sections of the same article. For instance, the full name of
a protein may be given in the introduction, but an abbre-
viation may be used in a subsequent caption. Because of
this variance it is often difficult to collect a large corpus

of truly identically distributed training examples. Instead,
researchers are often faced with heterogeneous sources of
data, both for training and testing, thus violating one of the
key assumptions of most standard machine learning algo-
rithms.

1.3 Previous work

Our present work draws on a long line of closely related
research. One of the first formulations of the transfer learn-
ing problem was presented over 10 years ago by Thrun [20].
More recently there has been a focus on using source data to
learn various types of priors for the target data [16]. Other
techniques have tried to quantify the generalizability of cer-
tain features across domains [10, 11], or tried to exploit the
common structure of related problems [2, 4].

Transfer learning is also closely related tosemi-
supervised learning[9, 23], in which one has access to
both labeled and unlabeled data from the same domain at
train time, andtransductive learning[21, 12, 14, 18], in
which one has access to the unlabeled testing data at train-
ing time (but still assumes the train and test distributionsare
the same).

Another related problem ismulti-task learning[1, 19].
In this case, the distribution of the data does not change,
but the task (and therefore the labels) do. For instance,
a researcher may have previously learned to classify pro-
tein names, and now wants to learn to classify cell names.
She might assume that there are many common features that
would be informative for both tasks, but would need a way
to find out which ones generalize across tasks, and which
are task-dependent.

2 Transfer is not transduction

Given an examplex and a class labely, the standard sta-
tistical classification task is to assign a probability,p(y|x),
to x of belonging to classy. In the binary classification case
the labels areY = {0, 1}. In the case we examine, the ex-
amples are represented as binary vectors where each value
in the vector represents the presence or absence of a feature
in a certain tokent. That is, given the set of feature func-
tionsF = f1...fF , whereF is the number of features, and
a tokenti drawn from the corpusT = t1...tN , whereN is
the number of examples, we can construct the feature vector
xi = F(ti) = 〈f1(ti), ..., fF (ti)〉. Eachfj(ti) will be 1 if
that feature function is true on the token, and 0 otherwise.
We can further group these individual feature vectors into
the setXtrain = x1...xN , which we will call our training
set. In order to evaluate our performance, we usually create
another setXtest, formed in a similar way, upon which we
want to use our trained classifier to make predictions.

Table 1. Summary of learning settings. Natural names are noted along with equivalences, where
applicable. For all settings we assume Dsource

train is used, and Ytest is unknown. Settings for which we
have run experiments (see table 3) are marked in bold, along with their experimental name.

Natural name for learning setting Experiment name
Auxiliary data Test data

Domain Yauxiliary Domain Xtest

classic supervised learning SuprvNonTransfer Dsource seen Dsource unseen
classic transductive learning SuprvNonTransfer Dsource seen Dsource seen
classic transfer learning UnsuprvTransfer Dsource seen Dtarget unseen
transductive transfer learning UnsuprvTransfer Dsource seen Dtarget seen
classic semi-supervised learning Dsource unseen Dsource unseen
transductive semi-supervised learning Dsource unseen Dsource seen
semi-supervised transfer learning Dsource unseen Dtarget unseen
transductive semi-supervised transfer learning Dsource unseen Dtarget seen
reverse-transfer supervised learning1 Dtarget seen Dsource unseen
reverse-transfer transductive supervised learning1 Dtarget seen Dsource seen
supervised inductive transfer learning2 SuprvTransfer Dtarget seen Dtarget unseen
supervised transductive transfer learning2 Dtarget seen Dtarget seen
reverse-transfer semi-supervised learning1 Dtarget unseen Dsource unseen
reverse-transfer transductive semi-supervised learning1 Dtarget unseen Dsource seen
unsupervised inductive transfer learning2 Dtarget unseen Dtarget unseen
unsupervised transductive transfer learning2 UnsuprvTransfer Dtarget unseen Dtarget seen
1 These settings and names are unusual and not likely in practice, but are included for completeness.
2 Equivalent to its classic version if we exclude theDsource

train data.

In the non-transfer learning problemXtest andXtrain

are both assumed to have been drawn from the same distri-
bution,D. In the transfer setting, however, we would like to
apply our trained classifier to examples drawn from a dis-
tribution different from the one upon which it was trained.
We therefore assume there are two different distributions,
Dsource andDtarget, from which data may be drawn. Given
this notation we can then precisely state the transfer learn-
ing problem as trying to assign labelsY to test dataXtarget

test

drawn fromDtarget, given training dataXsource
train drawn

fromDsource.

In supervised inductive machine learning,Xtrain is
known and labeled (that isYtrain is also known), while
bothXtest andYtest are completely hidden. In the trans-
ductive case, however,Xtest (but, importantly, notYtest), is
also known at training time. That is, the learning algorithm
knows exactly which examples it will be evaluated on after
training. This can be a great asset to the algorithm, allow-
ing it shape its decision function to match and exploit the
properties seen inXtest.

It is important to point out that transduction is orthogonal
to transfer. That is, one can have a transductive algorithm
that does or does not make the transfer learning assump-
tion, and vice verse. Much of the work in this paper, how-
ever, was inspired by the belief that, although distinct, these

problems are nevertheless intimately related. More specifi-
cally, when trying to solve a transfer problem between two
domains, it seems intuitive that looking at the data of the tar-
get domain during training will improve performance over
ignoring this source of information. Similarly, even if one
believes he is not solving a transfer problem, it may still be
beneficial to model one’s training and test data as if they
were not identically distributed.

Finally, there is the issue of supervision. We can define a
third set of data,Xauxiliary , that is used, along withXtrain,
to train the classifier. In the case of non-transfer learning, if
Xauxiliary is labeled, this is just standard supervised learn-
ing (sinceXtrain andXauxiliary are drawn from the same
distribution). If Xauxiliary is unlabeled, then this is semi-
supervised learning. There is a similar distinction in the
transfer case, whereXauxiliary can be either labeled or un-
labeled, and drawn fromDsource orDtarget. Unfortunately,
however, it does not seem possible to use labeled test data
in the transductive transfer case. The reason is obvious: in
transduction you can see your test data during training time.
Thus, ifXtest were labeled, there would be no need to train
a classifier in the first place. These various conditions for
performing each kind of learning are summarized in table 2.

Given this analysis then, it seems that one can do super-
vised inductive transfer learning, and unsupervised trans-

ductive transfer learning, but not supervised transductive
transfer learning. In other words, in the transfer case, dur-
ing training you have to choose whether you would rather
know exactly what your unlabeled test data will look like
or remain ignorant of this but instead see some labeled data
drawn from the same distribution as your eventual test data.

3 Methods considered

3.1 Maximum entropy models

Entropy maximization (MaxEnt) is a way of modeling
the joint distribution of examples and labels. Given a set of
training examplesXtrain ≡ {xtrain1

, . . . , xtrainN
}, their

labelsYtrain ≡ {ytrain1
, . . . , ytrainN

}, and the set of fea-
turesF ≡ {f1, . . . , fF}, MaxEnt learns a model consisting
of a set of weightsΛ = λ1...λF over the features so as
to maximize the conditional likelihood of the training data,
p(Ytrain|Xtrain), given the modelpΛ. In exponential para-
metric form, this conditional likelihood can be expressed
as:

pΛ(yi|xi) =
1

Z(xi)
exp(

∑

j

fj(xi, yi)λj) (1)

whereZ is the normalization term:

Z(xi) =
∑

y′∈{0,1}

exp(
∑

j

fj(xi, y
′)λj) (2)

In order to avoid overfitting the training data, theseλ’s are
often further constrained to be near 0 by the use of a reg-
ularization term which tries to minimize||Λ||1 ≡

∑

j |λj |.
Thus the entire expression being optimized is:

argmax
Λ

log pΛ(Y |X) − β||Λ||1 (3)

whereβ is a parameter controlling the amount of regular-
ization. Maximizing this likelihood is equivalent to con-
straining the conditional expectations of each feature in the
learned model,EΛ[fj |y], to match those found in the train-
ing data, which we denoteEtrain[fj |y]:

Etrain [fj |y] =
1

N

N
∑

i

fj(xtraini
, ytraini

= y) (4)

where:

fj(xi, yi = y) =

{

1 fj occurs in examplexi, andyi = y

0 otherwise
(5)

Finally, we defineEΛ as:

EΛ =
1

N

∑

i

∑

y

fj(xtraini
, y)pΛ(y|xtraini

) (6)

This model has proven highly successful and is used ex-
tensively in many domains including natural language and
information extraction. One of its benefits is that the set
of featuresF do not have to be independent of each other,
which is not the case in some comparable methods. This
frees the user to choose an arbitrary set of features she feels
will best summarize the data without worrying about inde-
pendence. One assumption the model does make is that the
conditional expectation of the features is the same in the
train and test data. This becomes a problem in the transfer
learning setting and is addressed in the following sections.

3.1.1 Source trained prior models

One recently proposed method [6] for transfer learning
in MaxEnt models involves modifyingΛ’s regularization
term. First a model of the source domain,Λsource,
is learned by training on{Xsource

train , Y source
train }. Then a

model of the target domain is trained over a limited set
of labeled target data

{

X
target
train , Y

target
train

}

, but instead of
regularizing thisΛtarget to be near zero by minimizing
∑

j |λ
target
j |, Λtarget is instead regularized towards the

previously learned source valuesΛsource by minimizing
∑

j |λ
target
j − λsource

j |. Thus the modified optimazation
problem is:

argmax
Λtarget

log pΛtarget(Y |X)−β||Λtarget−Λsource||1 (7)

It should be noted that this model requiresY
target
train in order

to learnΛtarget and is therefore supervised transfer.

3.1.2 Feature space expansion

Another approach to the problem of supervised transfer
learning is explored by Daumé [7, 10]. Here the idea
is that there are certain features that are common be-
tween different domains, and others that are particular to
one or the other. More specifically, we can redefine our
feature setF as being composed of two distinct subsets
Fspecific

⋃

Fgeneral, where the conditional distribution
of the features inFspecific differ betweenXsource and
Xtarget, while the features inFgeneral are identically dis-
tributed in the source and target. Given this assumption,
there is an EM-like algorithm [10] for estimating the pa-
rameters of these distributions. There is also a simpler ap-
proach [7] of just making a duplicate copy of each fea-
ture in Xsource and Xtarget, so whereas before you had
xi = 〈f1(xi)...fF (xi)〉, you now have

xi = 〈 f1(xi)
specific, f1(xi)

general

...fF (xi)
specific, fF (xi)

general 〉
(8)

where specific is source or target respectively, and
fj(xi)

specific is just a copy offj(xi)
general. Note that here

Figure 1. Illustration of feature space trans-
formation in transfer learning problem. hS

and hT easily separate the source and target
data respectively, using only a single feature
each. But a projection onto G is required be-
fore hG can successfully separate both distri-
butions at once.

we letfj(xi) (the marginal form of equation 5) be 1 when
fj occurs in examplexi, and 0 otherwise. The idea is that
by expanding the feature space in this way MaxEnt will be
able to assign different weights to different versions of the
same feature. If a feature is common in both domains its
general copy will get most of the weight, while its spe-
cific copies (fsource andf target) will get less weight, and
vice versa. Despite its simplicity, this method demonstrates
an elegant interpretation of the transfer problem and works
quite well

3.1.3 Conditional reweighting

The approach taken in this paper is slightly different. We
attempt to directly modify the empirical conditional dis-
tribution of the features that MaxEnt tries to learn. For
ease of notation we will allowEsource [fj |y] to mean
Ex∈Dsource [fj(x)|y], and similarly fortarget. One prob-
lem with transfer in MaxEnt is that the conditional distri-
bution of the features differs between the source and target
domains. In other words,Esource [fj |y] does not neces-
sarily equalEtarget [fj |y]. This becomes an issue because
MaxEnt learns a model to maximize the likelihood of the
training data based on these expectations. If the expecta-
tions in the train and test datasets are similar, then theΛ
learned on the training data will also maximize the expec-
tation of the test data. The more these distributions differ,
however, the less well the trained model will perform.

Figure 1 illustrates this phenomenon. In this example,
there are two features comprising the feature space. The

distribution of the positive (+) and negative (-) classes of
the source (S) and target (T) distributions are plotted with
respect to these features. The supervised, non-transfer prob-
lems are simple in this setting since the source and target
data are each easily separable in this feature space, byhS

andhT respectively. For transfer learning, however, if we
train on the source, we might learn the classifierhS, which
depends onlyfeature 1. If we then attempt to classify the
target data we will fail, sincefeature 1is a poor discrimi-
nator of the target data. What we would like to do is trans-
form the feature space so that the distribution of the positive
and negative classes in that transformed feature space is the
same for both domains. This transformation is represented
by G in the figure, a line upon which the data have been
projected. Given this new transformation,hG can easily
be learned over the source data and subsequently performs
equally well when transfered to the target data. Phrased in
terms of maximum entropy, we are trying to learn a transfor-
mationG() of the feature spaceF such that the conditional
distributions of the source and target data are aligned:

Etarget [fj |y] = Esource [G(fj)|y] , ∀fj ∈ F (9)

The simple solution seems to be to ignoreEsource [fj |y]
and instead train ourΛ based solely onEtarget [fj |y]. The
problem with this, of course, is that in the unsupervised
case we do not haveY target and therefore cannot esti-
mate Etarget [fj|y]. The best we can do is to estimate
the target marginalEtarget [fj]. We should note, how-
ever, that training on the source data won’t generally lead
to Esource [fj|y] = Etarget [fj|y] since even the marginals
of the two distributions might be different.

One way around the problem of missing conditionals is
to assignpseudo labelŝY target to our target data. This
would then allow us to estimate pseudo conditional expec-
tations of the features in the target dataÊtarget [fj |ŷ]. The
question then becomes how best to assign these pseudo la-
bels. One obvious approach is to use our classifier trained
on the available, labeled source data to classify the unla-
beled target data. We can then use the predicted target class
labels to calculate the predicted target conditional expec-
tations. With thesêEtarget [fj |ŷ]’s we can do two things.
Our first intuition might be to throw away our source data
and proceed to directly train a new modelΛ̂target. This is
attractive because, ultimately, we are only concerned with
testing on data drawn fromDtarget and so it seems that the
sooner we can stop using the source data, the sooner we will
stop being in a transfer problem, and so, hopefully, get bet-
ter results by not violating our learner’s assumptions. The
downside to this, of course, is that thisΛ̂target would only
be as good as the pseudo labels it was based on, which in
turn are only as good as the classifierΛsource. But Λsource

cannot be expected to perform very well onXtarget since
it was trained on onlyXsource. One idea for improving

Ŷ target (and thusΛ̂target) is to use our pseudo target con-
ditional likelihoods, not to train our own target model, but
instead to improve the source-trained model’s performance
on the target data. In this way, we will get betterΛ̂target’s,
yielding betterÊtarget [fj|ŷ]’s, and so on. This is the idea
behind our pseudo-label based rescaling (PLR) technique:

Input: Esource [fj|y], Êtarget [fj|ŷ], θ

Output: Esource
[

f ′
j |y

]

f ′
j |y = θ ∗ fj + (1 − θ) ∗ fj ∗

Êtarget[fj |ŷ]
Esource[fj |y]

Esource
[

f ′
j |y

]

= 1
N

∑

i fj(xi, yi = y)

The effect is to rescalefj(x), putting more weight on
features that occur frequently in the target but rarely in
the source, and downweighting features that are common
in the source but seldom seen in the target. Thus, after
each iteration we get new, modified, source conditionals
Esource

[

f ′
j |y

]

that we can use to train a new model and
get a newΛ′source. The parameterθ controls the degree to
which we use the target pseudo conditionals to alter the the
source conditionals. Ifθ = 1 we ignore the pseudo con-
ditionals, while settingθ = 0 lets us reassign the source
conditionals to match the target pseudo conditionals. We
can see this by first observing that during each iteration the
original featuresfj are linearly transformed into modified
f ′

j:

f ′
j = fj ∗

Êtarget [fj |ŷ]

Esource [fj|y]
(10)

In effect this changes the originally binary-valued fea-
tures into real-valued ones. The effect of this transformation
can be written as:

Esource
[

f ′
j |y

]

=
1

N

∑

i∈source

f ′
j(xi, yi)

=
Êtarget [fj |ŷ]

Esource [fj |y]
∗

1

N

∑

i∈source

fj(xi, yi)

=
Êtarget [fj|ŷ] ∗ Esource [fj |y]

Esource [fj |y]

= Êtarget [fj|ŷ] (11)

Thus, using the re-weighting of equation 10, we are able
to express the conditional target distribution in terms of a
transformed version of the source conditional, just as we
had hoped in equation 9.

One final question is how, exactly, to calculate
Êtarget [fj |ŷ]. If we trust our pseudo labels completely,
we can just let̂ptarget(y|x) = 1 iff y = ŷ, and 0 other-
wise. The problem with this is that our classifier may be
more confident about its predicted labels for some exam-
ples than others. Specifically, we would assume it to do
better on examples in the target domain that “looked like”
examples in the source domain. Consequently, we would

like to boost the contribution of these confident pseudo la-
bels to the pseudo conditional expectation, while minimiz-
ing the contribution of less certain labels. Since MaxEnt
outputs a conditional probability of each class label given
an example, we already have a means for making this dis-
tinction. We have two options: we can ignore pseudo labels
that have a predicted probability less than some threshold
(maybe90%), or we can weight the conditional expectation
by this predicted class probability. We call the first method
thresholded hard labeling(THL), and the secondsoft label-
ing (SL).

3.1.4 Biased thresholding

One further problem that arises in the transfer setting is that
the marginal probability of a class label can differ signifi-
cantly between the source and target domains. In the binary
classification problem MaxEnt tries to estimatep(y|x) for
y = {0, 1} (see equation 1). It then chooses they with
highest probability. The problem arises whenpsource(y) is
very different fromptarget(y). In this case MaxEnt, having
seen, say, very few positive examples in the source training
data may develop a strong prior against positive examples
when classifying the target data. One way around this is
to adjust the decision rule used to decide which class la-
bel to predict. Naively, this threshold would be 50%, so
that whichever class has the greater conditional probability,
given the example and the model, would be predicted. If the
model if over-predicting positive labels, however, we want
to bias this threshold towards the negative examples.

More concretely, say we are training a classifier to pre-
dict whether it will rain tomorrow given today’s weather
report. Our training source data are weather reports from a
city in a humid climate where the marginal chance of rain on
any given day is 50%. We would like to apply our learned
classifier to a target domain where the chance of rain is, on
average, only 5%. In this case, we could expect a naively
trained model to over-predict the chance of rain in the arid
climate. To overcome this, we can adjust our threshold for
predicting rain. Whereas previously we had predicted rain
whenever our model told us there was a greater than 50%
chance of rain, now we want to move this threshold up, so
the model must be, say, 95% sure that it will rain, given
its humid model, before we actually predict rain in the arid
climate.

But how, exactly, do we set this threshold? One natural
idea is to set the threshold so that the percentage of unla-
beled target examples predicted to be in the positive class
by the source-trained classifier is equal to some prior be-
lief of the true proportion of positive examples in the target
domain. Although this technically violates the terms of to-
tally unsupervised transfer learning, in practice estimating
this single parameter over the target domain does not re-

quire nearly as much labeled target data as learning all the
parameters of a fully supervised model, and thus serves as
a nice compromise between the two extremes. It should be
noted that this kind of thresholding is not necessary when
ranking is the goal instead of classification.

3.2 Support vector machines

Support vector machines (SVM’s) [13] take a different
approach to the binary classification problem. Instead of
explicitly modeling the conditional distribution of the data
and using these estimates to predict labels, SVM’s try to
model the data geometrically. Each example is represented
as anF -dimensional real-valued vector of features and is
then projected as a point inF -dimensional space. The algo-
rithm then fits a discriminative hyperplane between the pos-
itively and negatively labeled training examples so as to best
separate the two classes. This separation is called the mar-
gin, and thus SVM’s belong to the margin based approach to
classification. This simplification has proven very success-
ful as SVM’s currently have some of the lowest error rates
of any popular learning algorithm. But this performance
does come at a cost. In the transfer domain, for instance,
we are acutely aware of our need for confidences in order
to combine the source and target models. While SVM’s do
not have an explicit notion of probability, they do rely on
the related concept of clustering. Specifically, the cluster
assumption is that examples with common labels will lie
near each other in feature space. Deciding how near, and in
what feature space, are often difficult tasks in and of them-
selves, but can often be addressed by the thoughtful use of
kernels.

3.2.1 Inductive SVM

As far as we know, there has not been much work on us-
ing inductive support vector machines for transfer learning.
This may be due, in part, to the relative difficulty of inter-
preting and modifying the distances used in margin based
models, as opposed to probabilistic ones. Since most trans-
fer approaches rely on exploiting some connection between
either the data or models trained in the source and target
domains to exploit, the lack of an intuitive such connection
in SVM’s remains an obstacle. There has recently been an
intriguing line of inquiry [18] into developing kernels and
reproducing kernel Hilbert spaces that allow for this kind of
communication between SVM models. They looked specif-
ically at the non-transfer semi-supervised setting, but given
their framework, it seems that a related transfer approach
should be possible.

3.2.2 Transductive SVM

Transduction with SVM’s, in contrast to probabilistic mod-
els, is quite intuitive. Whereas, in the inductive case, we
tried to fit a hyperplane to best separate the labeled training
data, in the transductive case, we add in unlabeled testing
data which we must also separate. Since we do not know
the labels of the testing data, however, we cannot perform
a straight forward maximization, as in the supervised case.
Instead, one can use an iterative algorithm [12] similar in
flavor to the MaxEnt pseudo-label based rescaling (PLR)
algorithm of section 3.1.3. Specifically, a hyperplane is
trained on the labeled source data and then used to classify
the unlabeled testing data. As in PLR, one can adjust how
confident the hyperplane must be in its prediction in order to
use a pseudo-label during the next phase of training (since
there are no probabilities, large margin values are used as
a measure of confidence). The pseudo-labeled testing data
is then, in turn, incorporated in the next round of training.
The idea is to iteratively adjust the hyperplane until it is very
confident on most of the testing points, while still perform-
ing well on the labeled training points. In other words, we
want to choose a hyperplane to maximize the margin over
the training data and the pseudo-labeled testing data (this
idea is closely related to the concept of entropy minimiza-
tion outlined in [9]). To this end, the pseudo-labels of posi-
tive and negative testing examples can be switched in order
to improve this margin metric over the whole dataset. As
the algorithm proceeds the testing data’s pseudo labels get
more and more weight. One complication of this method
for transductive SVM, however, is the time it takes to try
the different possible labelings for the testing data. This
issue can be addressed by using a spectral graph approach
[14], thus allowing for faster convergence and a more gen-
eral framework.

Although it does not specifically address the case of hav-
ing different distributions for the labeled training and un-
labeled testing data, using transductive SVM’s for transfer
problems does allow for the incorporation of some infor-
mation from the target data’s different marginal distribution
and thus demonstrates improved performance over induc-
tive SVM applied to the same problem.

3.2.3 Prior class probabilities and cost factors

As with the maximum entropy approaches described in sec-
tion 3.1.4, transductive SVM’s used for transfer can also
suffer from a disparity between the prior proportion of pos-
itive examples in the source and target domains. In this
case, a similar biasing technique can be employed to ad-
just the SVM’s classification rule. Specifically, whereas the
SVM usually just considers which side of the hyperplane
a test example is on in determining its label (i.e., a thresh-
old of 0), this threshold can be moved so that some points

Table 2. Summary of data used in experi-
ments

Corpus name Abstracts Tokens % Positive

UT 748 216,795 6.6%
Yapex 200 60,530 15.0%

that lie nearest on the negative side of the hyperplane and
would normally be given a negative label, would instead re-
ceive a positive one, or vice verse. As with MaxEnt models,
this relatively small piece of information (the proportionof
positive examples in the target data) can effect a dramatic
increase in performance.

Another related way to deal with a disproportionate
number of positive or negative examples is to adjust the
loss function minimized by SVM. Instead of treating false-
positive and false-negative classification mistakes equally,
if you, for example, expect a larger proportion of negative
examples (as is often the case in named entity extraction),
you might weigh false-negative errors more heavily (since
each rare true-positive occurrence you miss is dear).

4 Investigation

4.1 Data

Our corpora of abstracts from biological journals come
from two sources: University of Texas, Austin [5] and
Yapex [8]. Each abstract was tokenized and each token
was hand-labeled as either being part of a protein name or
not. Some summary statistics for these data are shown in
Table 2. We purposely chose corpora that differed in two
important dimensions: the total amount of data collected
and the relative proportion of positively labeled examples
in each dataset. Specifically, UT has over three times as
many tokens as Yapex but has only half the proportion of
positively labeled protein names. This disparity is not un-
common in the domain and could be attributed to differing
ways the data sources were collected and annotated. Specif-
ically, since we are performing binary classification on the
data, if the protein mention annotations in Yapex tend to be
longer (that is, extend for more tokens) then the proportion
of positively labeled tokens will be higher in Yapex. For
all our experiments, we used the larger UT dataset as our
source domain and the smaller Yapex dataset as our target.

4.2 Experiments and results

We assessed the relative performance of the various
methods described in section 3 across the three dimensions

of supervision, transduction and transfer (see table 1). Be-
cause of the relatively small proportion of positive examples
in both the UT and Yapex datasets, we were more interested
in achieving both high precision and recall instead of simply
maximizing classification accuracy. Since we were dealing
with binary, and not sequential classification, the definition
of these measures was straightforward: a token was cor-
rectly classified if its predicted label (POS or NEG) matched
its true label, and vice verse. We summarize the combined
precision and recall of the various methods with the com-
mon F1 measure. Table 3 summarizes the results under the
unsupervised and weakly supervised (prior knowledge of
proportion of positive examples known) settings.

Notice how MaxEnt dominates the non-transfer experi-
ment, achieving an F1 of 82% compared to TSVM’s 73%.
This should not be surprising given MaxEnt’s suitability to
classification in the natural language domain. Moving to the
unsupervised transfer setting causes all three methods’ per-
formances to fall, but MaxEnt falls most sharply, causing it
to lose its entire lead over TSVM. Again, this might be ex-
plained in light of MaxEnt’s dependence on its feature set.
TSVM is able to adjust its hyperplane in light of the trans-
fer data, even though it is unlabeled, because it knows where
these points lie relative to the labeled training points in fea-
ture space. MaxEnt, in contrast, only knows the marginal
expectations of the features in the target domain (not the
conditionals) and this is not enough to help it fully exploit
its statistical modeling capabilities. In the weakly super-
vised setting, finally, where the target dataset is still unla-
belled but all algorithms are told the expected proportion
of positive examples, TSVM excels. Again, while MaxEnt
is able to make significant use of this information, it seems
TSVM does a better job leveraging the prior knowledge into
better performance. Speculating a bit, this is most likely
because of the difference in the ways these two algorithms
adjust their thresholds to achieve the desired predicted pos-
itive classification rate. For TSVM, moving the hyperplane
directly relates the proportion of positively labeled exam-
ples to the relative position of points in feature space. For
MaxEnt, however, the relationship between the raw features
and the decision rule is less clear, allowing more interven-
ing factors to dilute the flow of information from prior to
prediction.

Towards the bottom of table 3 we see the effect of our
pseudo-label based rescaling algorithm (PLR, section 3.1.3)
on MaxEnt’s unsupervised transfer performance. We use
a conservative value ofθ (.95) to ease the transition from
source- to target-based conditional feature expectations, and
the soft labeling technique for determining our pseudo-
conditional expectations. Indeed, as expected from our pre-
vious analysis, iteratively combining the pseudo conditional
feature expectations in the target data with the true condi-
tionals of the source data improves the overall performance

Table 3. Summary of % accuracy (Acc), precision (Prec), recall (Rec), and F1 for inductive SVM (ISVM),
transductive SVM (TSVM), regular maximum entropy (MaxEnt), pseudo-label based rescaling MaxEnt
(PLR), prior-based regularized MaxEnt (Regularize), and feature expansion MaxEnt (Expand) models
under the conditions of supervised non-transfer, (SuprvNonTransfer), transfer with unlabeled target
data, (UnsuprvTransfer), transfer with unlabeled target data but prior knowledge of % positive in tar-
get, (UnsuprvTransferPrior), and transfer with labeled auxiliary target data (SuprvTransfer).

Method
SuprvNonTransfer UnsuprvTransfer UnsuprvTransferPrior SuprvTransfer

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1
ISVM 92 78 58 67 90 86 40 54 90 86 40 55 92 86 52 65
TSVM 92 68 79 73 91 86 46 60 92 72 75 73 93 86 58 70
MaxEnt 95 85 78 82 89 75 42 54 90 65 68 67 91 81 54 65

PLR, 1 iter - - - - 79 41 90 56 - - - - - - - -
PLR, 2 iters - - - - 82 45 86 59 - - - - - - - -
Regularize - - - - - - - - - - - - 96 87 84 85

Expand - - - - - - - - - - - - 93 84 62 72

on the target data. It seems this method is bounded, how-
ever, by the quality of the initial pseudo labels generated by
the source-trained classifier. Given a relatively poor initial
classification, how can we bootstrap our way up to higher
and higher performance? This is certainly a question wor-
thy of future study.

Finally, the last rows of table 3 compare the performance
of the two methods for supervised transfer learning: the
prior-based regularized maximum entropy method (Regu-
larize, described in section 3.1.1), and the feature expand-
ing version (Expand, described in section 3.1.2). The algo-
rithms were trained on the full labeled source data and 80%
of the target training data, and then evaluated on the held-
out 20% target testing data. We can see that both methods
handily outperform the totally unsupervised transfer meth-
ods described in the second column of table 3, and for the
most part outperform even the weakly supervised versions
in column three. This should not be surprising given the
fact that the supervised methods can actually see some la-
beled examples from the target domain and thus, in the case
of MaxEnt, better estimate the conditional expectation of
the features in the target data. Likewise, since they have
access to labeled target data, they can also assess the pro-
portion of positive examples and adjust their decision func-
tions accordingly. What is more surprising, however, is the
fact that these methods do not significantly outperform the
supervised non-transfer methods described in the first col-
umn of table 3. This suggests that these supervised transfer
methods are relying almost entirely on their labeled target
data in order to train their classifiers, and are not making
full use of the large amount of labeled source data. One
might assume that having access to almost four times as
much related data, in the form of the labeled source data,
would significantly boost their ability to classify the target

data (this is, after all, one of the stated goals of transfer
learning). Disheartingly, in this instance, this seems notto
be the case. The regularized maximum entropy model does
outperform1 the non-transfer MaxEnt, but not by as much
as might have been hoped for.

In order to measure how much these supervised transfer
methods’ explicit modeling of the transfer problem was re-
sponsible for their performance, we compared them to the
baselines of ISVM, TSVM, and MaxEnt trained on a sim-
ple concatenation of the labeled source and target training
data (first three rows of theSuprvTransfercolumn). Eval-
uated onXtarget

test , these transfer-agnostic methods clearly
benefited from the addition of labeled target data (as com-
pared to columnUnsuprvTransfer), yet still yielded consis-
tently lower F1 than the transfer-awareRegularizeandEx-
pandmethods, suggesting that the mere presence of labeled
sets of both types (source and target) of data is not enough
to account for transfer methods’ superior results. Instead,
it is the modeling of the different domains in the transfer
problem, even in simple ways, that can provide the extra
boost to performance.

5 Conclusions

These experiments and analysis have shed light on a
number of important issues and considerations related to the
problems of transduction and transfer learning.

We have seen that even a small amount of prior knowl-
edge about the target domain can greatly improve perfor-
mance in a transfer problem. In contrast, however, even

1Regularizehas F1 of 85 vs. MaxEnt’s 82. Significance was de-
termined by comparing the 99% binomial confidence intervalsfor each
method’s recall and precision.

large amounts of source data cannot overcome the advan-
tage of having access to labeled data drawn from the test
distribution.

We have also seen the degree to which pseudo-labeling
based schemes (in both TSVM’s margin-based model and
our PLR’s MaxEnt-based model) can improve performance
by incorporating the unlabeled structure of the target do-
main. The magnitude of this improvement is closely tied
to the respective method’s ability to relate this information
(whether manifested as position in feature space or marginal
distribution in probability space) to the labeled source data
it has available and its eventual decision function.

Finally, we have seen that probabilistic methods, like
maximum entropy, seem better able to make use of the raw
information available in the features provided, as long as
those features faithfully represent the distribution of the data
to be tested upon. But margin based methods, like transduc-
tive support vector machines, seem better able to adapt their
decision surfaces in light of new data drawn from a different
distribution.

It seems, then, that the best transfer methods may lie
somewhere between the two, leveraging maximum en-
tropy’s precise probabilistic modeling with SVM’s robust
margin based approach.

6 Future work

Given the promising results of our MaxEnt based
pseudo-label based rescaling methods, we would like to fur-
ther investigate the theoretical properties of the PLR-type
algorithms. In particular, it would be nice to be able to guar-
antee convergence. We have some intuition that there exists
a convex formulation of the transfer problem in terms of the
interaction between the source and target conditionals ex-
pectation that would allow for such a result. The fact that
transductive SVM makes better use of prior information,
when supplied, suggests there is also room to improve Max-
Ent’s ability to exploit the advantages of the transductive
setting, perhpas by incorporating prior information directly
into PLR’s inner loop, or adjusting its soft-thresholding.

In terms of the named entity extraction application, we
are also looking towards applying these techniques to the
sequential, rather than just binary labeling problem. Most
transfer learning results have emphasized the use of struc-
ture in relating the source and target domain, and it seems
sequential classifiers like conditional random fields [19]
would be better equipped to exploit this structure.

References

[1] R. K. Ando and T. Zhang. A framework for learning pre-
dictive structures from multiple tasks and unlabeled data.In
JMLR 6, pages 1817 – 1853, 2005.

[2] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Anal-
ysis of representations for domain adaptation. InNIPS 20,
Cambridge, MA, 2007. MIT Press.

[3] A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum
entropy approach to natural language processing.Computa-
tional Linguistics, 22(1):39–71, 1996.

[4] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation
with structural correspondence learning. InEMNLP, Syd-
ney, Australia, 2006.

[5] R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ra-
mani, and Y. Wong. Comparative experiments on learn-
ing information extractors for proteins and their interac-
tions. In Journal of Artificial Intelligence in Medicine,
2004. Data from ftp://ftp.cs.utexas.edu/pub/mooney/bio-
data/proteins.tar.gz.

[6] C. Chelba and A. Acero. Adaptation of maximum entropy
capitalizer: Little data can help a lot. In D. Lin and D. Wu,
editors,Proceedings of EMNLP 2004, pages 285–292. ACL,
2004.

[7] H. Daumé III. Frustratingly easy domain adaptation. In
ACL, 2007.

[8] K. Franzén, G. Eriksson, F. Olsson, L. Asker, P. Lidn, and
J. Cöster. Protein names and how to find them. InInter-
national Journal of Medical Informatics, 2002. Data from
http://www.sics.se/humle/projects/prothalt/
yapextext collection.tar.

[9] Y. Grandvalet and Y. Bengio. Semi-supervised learning by
entropy minimization. InCAP, Nice, France, 2005.

[10] H. D. III and D. Marcu. Domain adaptation for statistical
classifiers. InJournal of Artificial Intelligence Research 26,
pages 101–126, 2006.

[11] J. Jiang and C. Zhai. Exploiting domain structure for named
entity recognition. InHuman Language Technology Confer-
ence, pages 74 – 81, 2006.

[12] T. Joachims. Transductive inference for text classification
using support vector machines. InICML 16, 1999.

[13] T. Joachims.Learning to Classify Text Using Support Vector
Machines. Kluwer, 2002.

[14] T. Joachims. Transductive learning via spectral graphparti-
tioning, 2003.

[15] K. Nigam, J. Lafferty, and A. McCallum. Using maximum
entropy for text classification, 1999.

[16] R. Raina, A. Y. Ng, and D. Koller. Transfer learning by
constructing informative priors. InICML 22, 2006.

[17] L. Shi and F. Campagne. Building a protein name dictionary
from full text: a machine learning term extraction approach.
In BMC Bioinformatics 6:88, 2005.

[18] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point
cloud: from transductive to semi-supervised learning. In
ICML, pages 824–831. ACM, 2005.

[19] C. Sutton and A. McCallum. Composition of conditional
random fields for transfer learning. InHLT/EMLNLP, 2005.

[20] S. Thrun. Is learning then-th thing any easier than learning
the first? InNIPS, volume 8, pages 640–646. MIT, 1996.

[21] V. Vapnik. Statistical Learning Theory. Wiley, 1998.
[22] R. C. Wang, A. Tomasic, R. E. Frederking, and W. W. Co-

hen. Learning to extract gene-protein names from weakly-
labeled text in preparation. Inpreparation, 2006.

[23] X. Zhu. Semi-supervised learning literature survey. In Tech-
nical Report 1530. University of Wisconsin, 2005.

