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Abstract

Total energies of crystal structures can be calculated to high precision using quantum-
based density functional theory (DFT) methods, but the calculations can be time
consuming and scale badly with system size. Boron carbide exhibits disorder in the
distribution of boron and carbon atoms among the crystallographic sites. A cluster ex-
pansion of the DFT energy in a series of pairs, triplets, etc. is prohibitive owing to the
structural complexity. We fit the energies using machine learning methods like neural
network, Gaussian process and support vector regression based on pair correlations
only in order to capture nonlinear effects associated with many-body interactions. We
use our interaction model in Monte Carlo simulations to evaluate the phase diagram.

1 Introduction

Boron carbide is an extremely hard and very light material with wide range of applications
in industry and in the military. It is also used as efficient neutron absorbent in nuclear power
plants. Despite its importance, the phase diagram of boron carbide is not precisely known
[1, 2] due to its structural complexity, difficulty of equilibration and the small difference
between the atomic numbers of boron, which is 5, and carbon, which is 6. The phase diagram
describes the stable structures of boron carbide at certain conditions like temperature and
composition which is crucially important both for industry and in fundamental physics.

Two major problems exist in the widely accepted experimental boron carbide phase
diagrams [3, 4]. The solubility range of carbon is 9% − 19.2% and does not shrink as
temperature decreases. Extrapolation of this range to low temperature will violate the
third law of thermodynamics at T = 0 K. The second issue is that the upper limit of
carbon solubility range is 19.2% which is less than 20%, the composition of a theoretically
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predicted low temperature stable structure. Since experimental measurement is not reliable
at low temperature (< 1000 K), theoretical research is warranted to resolve these remaining
problems.

The primitive cell of boron carbide is shown in Fig. 1. The primitive cell (smallest
repeating unit) of B13C2 has 15 atoms, a C-B-C chain in the center and a 12-atom boron
icosahedron at every vertices. Boron atoms on top and bottom of the icosahedron can be
substituted by carbon atoms with very low energy cost. This degree of freedom leads to
infinitely many possible structures in the thermodynamic limit. To study thermodynamics,
especially phase transitions of boron carbide, we need to well sample the configuration space
of large supercells (e.g. 8×8×8 cell = 7680 atoms) and accurately determine the energies
of the structures. The task of this project is to accurately determine the energies of boron
carbide structures by combining quantum mechanical calculations and machine learning
models.

Figure 1: The primitive cell of boron carbide (B13C2). Dashed blue lines depict the cell.
Two grey atoms are carbon atoms. Both green and purple atoms are boron atoms. The top
and bottom of the icosahedron (purple) can be substituted by carbon atoms at low energy
cost.

2 Background

2.1 Density functional theory

In quantum mechanics, the energy of a system is determined by solving its Schrodinger
Equation:

H(~R1, ~R2, ..., ~r1, ~r2, ...)Φn(~R1, ~R2, ..., ~r1, ~r2, ...) = EnΦn(~R1, ~R2, ..., ~r1, ~r2, ...), (1)

where H is the Halmitonian of the system, Φn is the wavefunction of the nth excited stated
(n=0 for ground state), En is the energy of nth excited state, {~Ri} are the position of
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ions and {~ri} are the position of electrons in the system. Eq. 1 is a linear second order
differential equation. However it may have hundreds to thousands variables and thus is
usually intractable to solve directly.

Hohenberg and Kohn [5] theoretically proposed and proved that the ground state energy
of the system can be uniquely determined by the electron density n(~r), namely how many
electrons exist at position ~r. Kohn and Sham [6] showed how to replace Eq. 1 with a set of
coupled nonlinear equations with a single 3-D variable ~r. These theories, which are referred
to as density functional theory (DFT), won Kohn the Nobel Prize in Chemistry in 1998. In

DFT, instead of directly calculating Φn(~R1, ~R2, ..., ~r1, ~r2, ...) which has hundreds to thousands
variables, the electron density n(~r) is calculated, which has only one 3-D variables. DFT thus
dramatically decreases the computational complexity. Standard DFT software packages, like
the Vienna Ab initio Simulation Package (VASP) [7, 8], are well developed and widely used
in physics, chemistry and material science communities. The DFT calculated energies and
various other physical properties of crystals are very accurate and can be directly compared
with experiments.

2.2 Interatomic Potentials

Despite the great success of DFT, it is still expensive to calculate energies of structures with
primitive cells of hundreds of atoms or more. For example, it takes around a week for a
4-core machine to calculate the energy of one boron carbide 3×3×3 structure (405 atoms).
Since the time complexity scales as O(N3) in DFT, where N is the number of atoms, it is
almost impossible to calculate the energy of even larger cells.

On the other hand, to study the phase transitions of boron carbide, the energies of millions
large-cell structures (at least 8×8×8 = 7680 atoms) have to be accurately determined. We
thus need to construct an accurate energy model based on DFT calculated energy dataset
of relatively small cells (2×2×2 and 3×3×3). We call this energy model an interatomic
potential, which ultimately only depends on the positions of the atoms in the cell. The
underlying assumption is that the interaction between atoms are the same in cells with
different sizes which is generally true for most crystals.

2.3 Physical Model

One way of modeling the energies of structures is using cluster expansion [9, 10]. In principle,
if we know the numbers of pairs (2-atom clusters) of all types, numbers of triplets (3-atom
clusters) of all types, numbers of quadruplets (4-atom clusters) of all types, and so on, we
can uniquely identify the structure. Ignoring noise, if we assign (through a fit) an energy for
every such cluster, we can in principle perfectly recover the energies of the structures by the
cluster expansion,

E( ~Npairs, ~N triplets, ...) =
∑

Epair
i Npair

i +
∑

Etriplet
j N triplet

j + ... (2)

where ~Npairs denotes the collection of numbers of pairs at certain distances, ~N triplet denotes
the collection of numbers of triplets of certain types.
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However, due to the complexity of the boron carbide structure, there are too many
triplets or higher order clusters to be included. One feasible approximation to the exact
cluster expansion is to truncate the expansion at the pairwise level. The numbers of carbon-
boron pairs and boron-boron pairs are determined if we know the numbers of carbon-carbon
pairs. Moreover, since boron carbide is a hard material, the atoms always stay close to the
fixed lattice sites. Thus the relaxed energy is a deterministic functions of the initial positions
of carbon atoms. Our linear model based on this physical approximation, which serves as a
baseline model, is

E( ~N) = E(N0, ..., N23) = E0 +
23∑
i=0

βiNi, (3)

where Ni’s are the features we use. Most of the features are number of carbon-carbon pairs
in the structure. A detailed description of the features is in Section 4. We use 24 different
pairs, which include carbon-carbon bonds up to 6.5 Å.

We notice that information in the higher order terms like triplets might be expressed
as nonlinear function of pairs. We thus should try nonlinear models that capture the local
nonlinear properties to improve the fit. This motivates our study with machine learning
methods.

3 Machine Learning Method

We fit the DFT calculated energies with four machine learning models. We first exploit two
parametric models the L1-penalized polynomial regression (PR) and neural network (NN)
and then two nonparametric models, Gaussian process (GP) and support vector regression
(SVR). We discuss the essence of them in this section. Since we eventually decide to use GP
and SVR, we describe them in more detail here.

3.1 Polynomial Regression

One direct nonlinear generalization of the linear model in Eq. 3 is the polynomial models.
Due to the limited size of data (∼ 600), we choose second order polynomial model,

E( ~N) = E(N0, ..., N23) = E0 +
23∑
i=0

βiNi +
23∑
j=0

23∑
k=j

γjkNjNk, (4)

which fully characterize the second order interactions between number of pairs with 325
parameters. To avoid overfitting and perform feature selection we add a L1 penalty term.
The resulting optimization problem is,

min
~θ

M∑
m=1

1

2
(EDFT

m − E( ~Nm; ~θ))2 + λ‖~θ‖1, (5)
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where ~θ is the collection of all parameters, E0, {βi} and {γik}, λ is a tuning parameter,

EDFT
m is the DFT calculated energy of the mth structure, ~Nm is the 24 dimensional feature

vector of mth structure and M is the size of the training set. To clarify, in this paper, we
use i, j and k as the index for the features and l, m and n for the index of samples.

3.2 Neural Network

In our neural networks, the input layer contains 24 nodes corresponding to the components
of the 24 dimensional input vector. We choose one to two hidden layers and one to ten nodes
in every layer. We use nonlinear activation functions like “tanh” and “sinh” in the hidden
layers and linear function in the single node output layer. However, since we only have around
600 data, complex neural network can easily overfit. We use the Bayesian regularization for
the parameters in the model to reduce/avoid overfitting. A detailed description of neural
network can be found in [11].

3.3 Gaussian Process

In GP, we assume the energies of structures are gaussian distributed,(
Etrain

Epred

)
∼ N (µ,Σ) , and Σ =

(
Σtt Σtp

ΣT
tp Σpp

)
,

where the Etrain and Epred vectors denote the energies of training structures and structures
whose energies to be predicted (predicting structures) respectively, µ is the mean of the
energy distributions (set to zero in later derivation for simplexity), Σ is the covariance
matrix. Σtt is the covariance matrix of training structures, Σtp is the covariance matrix
between training structures and predicting structures, and Σpp is the covariance matrix of
predicting structures.

The mth row and nth column of the covariance matrix Σ is,

Σmn = k( ~Nm, ~Nn), (6)

where ~Nm and ~Nn are the feature vectors of the mth and nth structure respectively, and
k( ~Nm, ~Nn) is called the kernel function.

The kernel function characterizes the similarity between two feature vectors, and therefore
structures. In our study, we use and compare the polynomial kernel (1 + β ~Nm · ~Nn)d, the

Gaussian kernel exp(−‖ ~Nm − ~Nn‖2/γ2), and the Laplacian Kernel exp(−‖ ~Nm − ~Nn‖1/γ).
A constant variance term δ2 is added to the kernel when m = n to model the noise. The
parameters β, d, γ and δ in the kernels are called hyperparameters. We can optimize
these hyperparameters by maximizing the likelihood of the training data, which is a convex
optimization problem that can be efficiently solved [12].

The covariant matrix Σ can be calculated using the feature vectors only. Under the
assumptions of GP, the conditional distribution of energies of predicting structures are,

Epred|Etrain ∼ N (ΣT
tpΣ

−1
tt Etrain,Σpp − ΣT

tpΣ
−1
tt Σtp). (7)
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We take the mean values of the distribution as the predicted energies. More explicitly, for a
new structure with feature vector ~Nl, the predicted energy is,

E( ~Nl) =
M∑
m=1

M∑
n=1

k( ~Nl, ~Nm)(Σ−1
tt )mnEtrain,n. (8)

Moreover, GP also provides the variance of the predicted energy which implies the accuracy
or confidence of the prediction. For a new structure with feature vector ~Nl, the variance of
the predicted energy is,

σ2( ~Nl) = k( ~Nl, ~Nl)−
M∑
m=1

M∑
n=1

k( ~Nl, ~Nm)(Σ−1
tt )mnk( ~Nn, ~Nl). (9)

Figure 2: A GP fit of a toy one-dimensional function. A “+” denotes a data point. The
solid curve is the GP fitted function. The shaded region is the region within one standard
error of the GP prediction.

To illustrate the properties of GP, Fig. 2 shows a toy example of fitting a one dimensional
function. The fitted nonlinear function well captures the local properties of the data. More-
over, the fit provides the standard error of the prediction, where standard error indicates
small data density in nearby region. The standard error of prediction thus can be used to
check whether the data well sample the feature space.

3.4 Support Vector Regression

In SVR [11] the fitted function E( ~N) = ~ω · ~Φ( ~N) + b minimizes the target function,

C
M∑
m=1

max(0, |E( ~Nm)− EDFT
m | − ε) +

1

2
‖~ω‖22, (10)

6



where C and ε are positive real numbers, and ~Φ( ~N) is a collection of chosen functions of ~N .
We can introduce the slack variables, construct the Lagrangian and obtain the dual form of
this optimization problem as,

max
~a,~e
−1

2

M∑
m=1

M∑
n=1

(am − em)(an − en)k( ~Nm, ~Nn)− ε
M∑
m=1

(am + em) +
M∑
m=1

(am − em)EDFT
m

subject to 0 ≤ am ≤ C and 0 ≤ em ≤ C, ∀m = 1, 2...M, (11)

where k( ~Nm, ~Nn) = ~Φ( ~Nm)T ·~Φ( ~Nn) is called the kernel function, similar as in GP. The kernel

function rather than ~Φ( ~N) is used to perform feature transformation and make prediction
with,

E( ~N) =
M∑
m=1

(am − em)k( ~N, ~Nm) + b, (12)

where only data points on or outside the ε tube has nonzero a and e values, and are called
support vectors. b can be calculated by support vectors,

b = E( ~Nl)− ε−
M∑
m=1

(am − em)k( ~Nl, ~Nm), (13)

where ~Nl is any one of the support vectors. The usage of SVR in prediction is similar as GP
but just need to sum over support vectors in Eq. 12 rather than all the training samples in
Eq. 8.

4 Data Description

4.1 Data generation

We have a dataset of around 600 structures. Every structure has a 24 descriptors and the
DFT calculated energy which is treated as the ground truth energy. We use the pack-
age VASP [7, 8] to perform DFT calculations with the projector augmented wave (PAW)
[13,14] method utilizing the PBE generalized gradient approximation [15] as the exchange-
correlation functional. We subtract the reference energies of B4C and B13C2. The final
energy in the dataset is within 0 to 600 meV/cluster, where a cluster contains 15 atoms.

The first feature is the carbon concentration, the remaining 23 features are the numbers
of C-C pairs at certain discrete distances. Since the structures are of different size (mainly
of sizes 2×2×2 and 3×3×3), we normalize all the features and the energies to be values
per cluster independently. After that, we normalize all the features to be between 0 and 1
independently.
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4.2 Exploratory data analysis

The histograms and pairwise scatter plots of three selected features (C concentration, number
of nearest C-C bonds, number of second nearest C-C bonds) and energy are shown in Fig. 3.
All the variables are screw distributed due to the physical distribution of the boron carbide
structures. Transformations like logarithmic or Box-Cox types could be performed. However,
to maintain the interpretability we stick to the untransformed features. The distribution of
energy is more normal-like than the features but still has some positive screwness. We also
do not take logarithmic transform of the energy, to avoid large prediction errors in certain
energy ranges. Moreover, the scatter plot shows the features are correlated but not collinear.
The energy correlates with these three features. The variances of energies at different feature
values are not the same. The screwed distributions and non-constant variances might bring
difficulty to linear model and other models with similar assumptions.

Figure 3: The histograms (diagonal plots) and pairwise scatter plots (off-diagonal plots) of
data points. The variables from left to right and from top to bottom are the C concentration,
number of nearest C-C bond, number of second nearest C-C bond and the ground truth
energy. All the three features are normalized. Every red star represents the value of one
structure.

5 Results

5.1 Performances and Analysis

We first perform 5-fold cross validation (CV) to evaluate the models. The root mean square
errors (RMSEs) of CV, the improvement, and the total variance explained (TVE) of these
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models are shown in Table 1. The improvement is defined as the percentage decrease of
RMSE compared to the baseline linear model. TVE of a model M is defined as,

TVE(M) = 1− RMSE(M)2

Var(E)
, (14)

where the RMSE is from the validation sets in CV, and Var(E) is the variance of the DFT
energies of the whole dataset, which is 78 meV/cluster.

MODEL RMSE (meV/cluster) improvement TVE
Linear 7.2 ± 0.06 0% 99.16±0.02%
PR2 5.8 ± 0.09 20±1% 99.46±0.02%
NN 5.6 ± 0.10 24±1% 99.49±0.02%
GP 4.8 ± 0.10 33±1% 99.63±0.02%
SVR 4.9 ± 0.08 32±1% 99.61±0.02%

Table 1: RMSE of 5-fold cross validation, improvement and TVE of different models. The
standard error of these quantities are obtained from the statistics of ten times of cross
validation.

The second order polynomial regression with L1 penalty (PR2) outperforms the baseline
linear model by a decrease of 20% in RMSE error. The RMSE minimizes at 197 nonzero
parameters.

The neural network (NN) performs similarly to PR2 in CV. The best performing NN
has 24 input nodes (features), one hidden layer of 3 or 4 nodes with “tanh” activation
function and a single-node output layer with linear activation function. We used the Bayesian
regularization of the parameters.

The nonparametric GP and SVR models decreases the CV error by around 33%. Since
GP has a probabilistic interpretation, we choose the hyperparameters by maximizing the
likelihood of the training data. However, SVR does not have such interpretation, thus we
perform an extensive search over the grid of hyperparameters to find the set of hyperparam-
eters that minimizes the 5-fold CV error.

The goodness of fit is shown in Fig. 4 by comparing the predicted energies of the val-
idation sets in the 5-fold CV with the corresponding DFT energies. The points generally
lie near the y = x line. Both GP and SVR perform better than the baseline linear model.
To illustrate the fine details, we only show structures with energies upto 200 meV/cluster
rather than the maximum energy of around 600 meV/cluster. GP and SVR predictions are
slightly different and can be used as a cross check to identify suspicious predictions.

To further compare the performance of linear model and GP, the residuals of the valida-
tion sets in the 5-fold CV are shown in Fig. 5. The residuals of linear models are generally
larger than residuals of GP. More obvious patterns exist in the residuals of the linear model
which indicates underfitting. Moreover, the variance of the linear model residuals is clearly
not constant for different feature values.
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Since we need to predict energies of large cell structures in our Monte Carlo simulation,
we also study the performance of our models when generalize to large cells. We use 2x2x2 and
3x3x3 cell structures as the training set and the remaining 12 larger cell structures (3x3x4 and
4x4x4) as the generalization set. The generalization error are 6.5, 6.9 and 12.9 meV/cluster
for SVR, GP and the linear model respectively. All these models have larger generalization
errors than the CV errors of the whole dataset. This difference is less pronounced for SVR
and GP. Moreover, GP and SVR have generalization error 47% and 50% smaller than the
linear model.

We perform a greedy stepwise feature selection, as shown in Fig. 6 where the 24 features
yield the smallest CV errors. Note that the CV error is still decreasing near 24 features,
which suggests that our description of the structures with these 24 features is insufficient
and further improvement could be made by adding more effective features. Moreover, Fig.
6 shows that both GP and SVR CV errors are insensitive to the choice of kernel.

Figure 4: The predicted energies in 5-fold CV vs the ground truth DFT energies. The blue
lines are y = x line. Left panel shows linear model (black) and GP (red) predictions, and
the right panel shows linear model (black) and SVR (green) predictions.

5.2 Model Selection and Acceleration

Since the CV error is insensitive to the choice of kernel, we use GP with polynomial kernel of
degree two to predict the energies fast enough for the Monte Carlo themodynamics simula-
tion. In the Monte Carlo simulation, millions to billions structures are generated one-by-one
sequentially and energies has to be predicted one by one. Directly using Eq. 8 or Eq. 13
to predict is very slow since to predict one energy we have to sum over the whole training
set (∼ 600) or all support vectors(∼ 400). It thus takes several hundreds inner products of
24-dimensional vectors to predict one energy. However, we realize with polynomial kernel
of degree two, we can use a change of summation order trick to accelerate the prediction,
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Figure 5: The residuals of predicted energies in 5-fold CV of linear model (top) and GP
(bottom). From left to right the x-axis represents the DFT energy, carbon concentration,
number of nearest bonds and number of second nearest bonds, respectively.
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Figure 6: RMSE of linear model, GP and SVR vs number of features. The black curve
is linear model, solid curves are GP with different kernels. Dashed curves are SVR with
different kernels.

which is essentially rewriting the GP prediction in a parametric form.
Define ~α = Σ−1

tt Etrain which can be easily calculated offline before the Monte Carlo
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simulations, the prediction can be rewritten as,

E( ~Nl) =
M∑
m=1

αmk( ~Nl, ~Nm) =
M∑
m=1

αm(1 + β ~Nl · ~Nm)2 = c+ ~v · ~Nl + ~NT
l A

~Nl, (15)

where c =
∑M

m=1 αm, ~v =
∑M

m=1 2βαm ~Nm and the matrix A =
∑M

m=1 β
2αm ~Nm

~NT
m. Since c, ~v

and A can be easily calculated offline using the training set, the online calculation to predict
one structure only needs 25 vector multiplications, which is 30 times fewer than directly
using Eq. 8. In practice, the prediction is fast enough for Monte Carlo simulation.

5.3 CV error vs Data Size

To examine whether our data set is large enough, we calculated the CV errors using parts
of the whole dataset. In Fig. 7, the CV error of linear model saturates at around 450 data
points. In contrast, the CV errors of NN, GP and SVR are still decreasing with more data
which suggests that the dataset is not large enough for these three models. The CV error
and presumably the generalization error can be further reduced by effectively adding new
data points.
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Figure 7: 5-fold CV error vs the data size. The dashed black curve is linear model, the green
curve is SVR, blue is GP and red curve is NN.
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6 Improvement

6.1 More Features

As shown in Fig. 6, the CV errors are not saturated with the number of features. As a
direct generalization, we count the numbers of C-C pairs with distance between 6.5 Å and
9 Å and add them as new features. The total number of features is 51 in this new dataset.
The CV errors with different number of features are shown in Fig. 8. The CV error of
GP decreases from 4.8 to 3.6 meV/cluster (23%) and CV error of linear model decreases
from 7.2 to 5.8 meV/cluster (20%). Fig. 8 shows we almost reach the limit of using this
type of features. However, since the DFT uncertainty is still less than our CV error, our
model might be further improved by adding other effective features. As a future work we
plan to add in many-body interaction-related features. The interaction between nuclei are
coulomb interactions which is a two-body interaction. However, the surrounding electrons
effectively induce many-body interactions between the nuclei. Although the product of two
pairs includes some information relating to many-body interaction at the whole supercell
level, we expect adding selected descriptors that directly relate to many-body interactions
at local structural level could possibly improve the models.
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Figure 8: CV errors of linear model (black), SVR with Gaussian kernel (orange) and GP
with three different kernels with 24 to 51 features.

6.2 Improve dataset

Since as shown in Fig. 7 the CV error has not saturated yet with the whole dataset. More-
over, since we need accurately predicted energies in the whole structural space for Monte
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Carlo simulation, we need more data to sample the blank regions of the structural space. One
effective way of adding data is guided by GP using a large set of structures with unknown
energies. GP not only predicts the energies of structures but also provides the standard error
σ of every prediction. A structure with large σ implies a low density of data in that region.
Adding that structure to the dataset by calculating its energy with DFT will improve the
fit.

Our recipe to add data to the dataset is to first generate a large number of structures
(∼1 million) through Monte Carlo simulation, and then use the GP model to predict the
energies and σ’s of the energies. We then pick out the structures with large predicted σ’s and
calculate their energies with DFT and finally add them into the dataset. We can perform this
update of the dataset iteratively. An example of the histogram of predicted σ’s of unlabeled
data is shown in Fig. 9. The majority of structures have σ smaller than 5 meV/cluster, the
CV error of the model. We thus obtain 207 structures with σ larger than the RMSE of the
model as candidates to perform DFT calculations. We pick the 39 largest σ structures from
several simulations, calculate them and add them to the dataset. By always using these
39 points as training data, the CV RMSE decreases slightly with GP and increases slightly
with linear model. This discrepancy might be because the linear model does not have the
flexibility to learn those hard points well. We can still add in more data until the CV error
saturates and the standard errors of GP predictions are all small.
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Figure 9: The histogram of the predicted standard error of the one million unlabeled struc-
tures. The Y-axis is in log scale. The red bars are for structures with predicted standard
errors larger than 5 meV/cluster.
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7 Monte Carlo Simulation

In the MC simulation, we find our current GP model predicts nonphysically low energies to
some structures. This is probably because our dataset size is limited and GP is too flexible
to be well extrapolated. We thus need to modify our GP model. One observation is that
the GP model with polynomial kernel of degree two is similar to a parametric polynomial
regression of degree two (PR2). We can try less flexible PR2 models with physics-guided
feature selections to achieve similar accuracy with good extrapolation results. For example,
physically we know that the interaction between C-C nearest bonds and C-C second nearest
bonds is much more important than the interaction between C-C nearest bonds and C-C
10th nearest bonds. We thus start with the 24 features Ni and add the products NiNj

successively as new features for i = 0, 1, 2 and j = i, i+ 1, ..., 10. The 41-feature PR2 model
has smallest CV error, which is 5.2±0.1 meV/cluster, only 0.5 meV/cluster higher than the
GP model. The generalization error to the 12 large cell structures is 7.6 meV/cluster, 1
meV/cluster larger than GP but 6.3 meV/cluster smaller than linear model. Moreover, the
41-feature PR2 model does not predict nonphysical energies in our simulations.

We use the 41-feature PR2 model to perform Monte Carlo (MC) simulations to calculate
the phase diagram of boron carbide and compare with the linear model results. In the MC
simulation, the conventional Metropolis method is used. We accept a new trial structure
with probability,

min{1, exp(
E1 − E2 + µ(Nc2 −Nc1)

kBT
)}, (16)

where E1 and Nc1 are the energy and the number of carbon of current structure respectively,
E2 and Nc2 are the energy and the number of carbon of the new trial structure, µ is the
chemical potential difference of carbon and boron, kB is the Boltzmann constant, and T is
temperature.

The MC simulation and analysis is similar as in [16]. We perform MC simulation at given
T and µ to obtain how many structures occur at certain energies, which we call the histogram
at T and µ. We simulate at various T ’s and µ’s and make sure nearby histograms are well
overlapped. Histograms of the linear model and the 41-feature PR2 model with T = 600K
and different µ’s are shown in Fig. 10. The µ’s we use is in the unit of kBT . Rapidly
changing histograms, or multiply-peaked histograms indicate a possible phase transition.
The histograms of the linear model indicate a phase between µ =0.8 and 1.0. The 41-feature
PR2 model indicate two phase transtitions, one between µ =0.8 and 1.0 and the other
between µ =-0.3 and 0.0. To evaluate which model is physically better, we need to study
the order parameter and the symmetry breaking path which are still ongoing.
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Figure 10: Energy histograms of the linear model (left) and the 41-feature PR2 model (right).

8 Conclusion

In this project we performed data analysis on a dataset of boron carbide structures with
quantum mechanical (DFT) calculated energies. Constructing an accurate energy model
is crucial for the Monte Carlo simulation of thermodynamics and phase diagram of boron
carbide. We started with a physics motivated linear model as the baseline. We then exploit
the nonlinear interaction between features using parametric models like an L1-penalized
polynomial model, neural network and nonparametric models like Gaussian process and
support vector regression.

Comparing with the baseline linear model, our result shows that the L1-penalized poly-
nomial model and neural network decrease the cross validation error by 20% and 24% re-
spectively but not as much as GP and SVR of around 33%. The accuracy of GP and SVR is
insensitive to the choice of kernel in our problem. We chose the GP with polynomial kernels
with degree two to adapt to the requirement of fast prediction in our Monte Carlo simula-
tion. We also observed that the cross validation error are not saturated with the number
of data and number of features. We made further improvements by adding more features
and by effectively adding training data guided by the Gaussian process predicted standard
error. We performed Monte Carlo simulations and found a possibly new phase transition
unseen from the linear model. As future work, we plan to add many-body interaction-related
features and more DFT calculated structures in the dataset. We also plan to generalize our
model to the extended physics problem of allowing chain substitutions.
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