
Speakman • November 2013

Dynamic Pattern Detection with
Temporal Consistency and
Connectivity Constraints

Skyler Speakman

School of Computer Science, Carnegie Mellon University
speakman@cmu.edu

Abstract

This work explores scalable and accurate dynamic pattern detection methods in graph-based
data sets. The proposed Dynamic Subset Scan method is applied to the task of detecting, track-
ing, and source-tracing contaminant plumes spreading through a water distribution system
equipped with noisy, binary sensors. While static patterns affect the same subset of data over
a period of time, dynamic patterns may affect different subsets of the data at each time step.
These dynamic patterns require a new approach to define and optimize penalized likelihood
ratio statistics in the subset scan framework, as well as new computational techniques that scale
to large, real-world networks. To address the first concern, this work develops a new subset
scan methods that allows the detected subset of nodes to change over time, while incorporat-
ing temporal consistency constraints to reward patterns that do not dramatically change between
adjacent time steps. Second, the Additive GraphScan algorithm allows this novel scan statistic
to process small graphs (500 nodes) in 4.1 seconds on average while maintaining an approxi-
mation ratio over 98% compared to an exact optimization method, and to scale to large graphs
with over 12,000 nodes in 30 minutes on average. Evaluation results across multiple detection,
tracking, and source-tracing tasks demonstrate substantial performance gains achieved by the
Dynamic Subset Scan approach.

1 Introduction

Detecting patterns in massive data sets has multiple real-world applications in fields such as
public health, law enforcement, and security. The “subset scan” approach to pattern detection
treats the problem as a search over subsets of data, with the goal of finding anomalous subsets.
This approach poses two main challenges: appropriately evaluating the “anomalousness” of a
given subset, and the computational issue of searching through the exponentially many subsets
of the data. Previous approaches [8, 12, 10, 11] have addressed the first concern by “scoring”
each subset using likelihood ratio statistics such as the expectation-based Poisson (EBP) [12, 10]
or expectation-based binomial (EBB) [8] scan statistics. This current work allows for a more
sophisticated scoring function by penalizing the likelihood ratio statistic, considering additional
prior information from each data element. The penalized likelihood ratio typically does not sat-
isfy useful properties such as “linear-time subset scanning” [11], making efficient optimization
over subsets a challenging task. However, the EBB likelihood ratio statistic can be written as
an additive function, enabling efficient optimization of a penalized version of that statistic over
subgraphs. The first major contribution of this work is the development of temporal consistency
constraints which allow for additional penalties or rewards to act on the scoring function, reward-
ing spatial subsets that are temporally consistent with each other, and efficient optimization of
the resulting, penalized scan statistic to detect dynamic clusters subject to these constraints. The

1

Speakman • November 2013

second major contribution is the Additive GraphScan algorithm, which efficiently identifies anoma-
lous (high scoring), connected subgraphs, thus incorporating both (hard) connectivity constraints
and (soft) temporal consistency constraints. Each of these contributions will be discussed in detail
below.

Many complex data sets containing emerging events or patterns are commonly represented
in a known and fixed graph structure. Examples of this include water pipelines, transportation
routes, power grids, and supply chains in general. While other recent work [9, 5] has focused
on learning graph structure, here we assume a given graph structure and wish to detect which
nodes are currently affected, by observing data produced at the nodes of the graph on each time
step.

The motivating example comes from the field of public health: with focus on detecting, track-
ing, and source-tracing contaminant plumes in a water distribution system. Creating sensor
networks for detecting deliberate or accidental contamination of these systems has been a popu-
lar research domain following the terror attacks of September 11, 2001. The “Battle of the Water
Sensor Networks" (BWSN) [1] provided real-world data to teams tasked with placing perfect sen-
sors to quickly detect contaminants and limit the amount of contaminated water consumed by
the population. The placement problem is an interesting one explored further in [3, 7]. This
current work focuses on the complementary problem of fusing data collected from noisy sensors
assuming a given placement. Sensor fusion attempts to combine data from multiple distributed
sensors in order to increase the detection power of the entire network [14].

The simulation proceeds by modeling simple, binary sensors at each pipe junction (graph
node) in the system with a fixed false positive rate (e.g., FPR = 0.1) and true positive rate (e.g.,
TPR = 0.9). An additional assumption is that each sensor operates independently of the others in
the network. The simulations use the network structure and plumes provided in the BWSN data
to generate sensor readings over the course of 12 one-hour intervals.

The task is then: Given (1) the graph structure (pipe network), (2) false positive and true
positive rates of the sensors, and (3) independent observations from the sensors over time, the
method(s) must provide: (A) whether or not a contaminant is present in the system for each one-
hour time step, (B) hour-to-hour tracking of which pipe nodes have been affected by the plume
on the current and recent past time steps, and (C) source-tracing to determine which node(s) in
the system spawned the contaminant. Corresponding evaluation metrics include: (A) average
time (in hours) to plume detection as a function of false positive rate (number of false alarms per
month), (B) spatial-temporal overlap coefficient between the true and detected subsets of nodes
over time, and (C) spatial overlap coefficient between the true and identified subsets of source
nodes.

This is not the first work to apply spatial or subset scan statistics to contamination early
warning systems. Koch and McKenna [6] used Kulldorff’s spatial scan [8] to detect statistically
significant circular clusters of anomalous activity. They used properties of the pipe network to
create a distance metric based on travel time between sensing nodes in order to define their
“circles”. However, they were not able to enforce connectivity constraints and take advantage of
the topology of the network. Through our Additive GraphScan algorithm, we are able to search
over connected subsets of the pipe network to find anomalous connected subgraphs. Berry et
al. [2] have also considered the detection power of a network of imperfect sensors, showing
that it is worth deploying a sensor network even when individual sensors have low detection
probability. However, their experiments did not allow for sensors with false positives, making
the detection and source tracing problems much easier to solve as compared to the more difficult
scenario considered here.

Spatial scan statistics attempt to identify regions of interest or “hot spots”. This is achieved by

2

Speakman • November 2013

maximizing a scoring function F(S), typically defined as the likelihood ratio F(S) = Pr(Data | H1(S))
Pr(Data | H0)

,

over spatial regions S. In this expression H1(S) assumes increased activity in region S, and H0 as-
sumes regular behavior. This work monitors binary sensors si each producing ci ∼ Bernoulli (FPR)
“triggers” under H0 or ci ∼ Bernoulli (TPR) “triggers” for H1(S) containing node si. This makes
the expectation-based binomial scan statistic [8] a logical choice.

Spatial-temporal scan statistics incorporate the time dimension. It is standard to aggregate
this temporal information over a time window w so that ci = ∑t=1...w ct

i . Once the temporal
information has been aggregated for each window w = 1 . . . W, maximizing the spatial-temporal
scan statistic for that window proceeds identically to the regular spatial scan statistic; it then
maximizes over all window sizes from 1 to W. However, an inherent assumption in this aggrega-
tion of temporal information is that the affected spatial-temporal subset does not change over time.
Therefore, this approach will be referred to as the Static scan method throughout this text.

The fundamental goal of this work is to relax this strong assumption on the spatial-temporal
structure in order to increase the power to detect dynamic patterns that change the affected region
over time. One simple approach is to optimize each of the w time steps independently. This
allows for each time step t to identify an entirely different spatial region, but does not allow the
sharing of information between time steps, possibly reducing detection power. This approach is
referred to as the Independent scan method throughout this text.

As a compromise between Static and Independent methods, the Dynamic Subset Scan is pro-
posed which enforces temporal consistency constraints to allow temporally adjacent time steps
to share information forward and backward in time. As demonstrated below, this flexibility
increases power to detect and track dynamic patterns while scaling to the size of real-world
networks.

The rest of the paper is laid out as follows. Section II introduces temporal consistency con-
straints, applied to the expectation-based binomial scoring function, and demonstrates how the
penalized scan statistic can be efficiently optimized over (not necessarily connected) dynamic
subsets. Section III explains the Additive GraphScan algorithm, which efficiently identifies high-
scoring, connected subsets of data with an underlying graph structure. Section IV provides empir-
ical results of the simulations of the water distribution network from the BWSN, comparing the
Dynamic Subset Scan approach to several other approaches, and demonstrating improvements
in detection, tracking, and source-tracing performance. Finally, Section V concludes the paper.

2 Temporal Consistency Constraints

This section has four sequential objectives. The first is to demonstrate how the expectation-
based binomial (EBB) scoring function may incorporate additional constraints while remaining
straightforward to optimize over all possible subsets S (i.e., show that EBB can be written as an
additive function over the data elements si ∈ S). Second, is to show that these constraints may
be interpreted as the prior log-odds for a given node si to be in the detected subset. The sec-
tion continues by providing the formal definition of temporal consistency constraints based on
a probabilistic generative model that incorporates both forward and backward temporal consis-
tency. The section concludes with a description of the iterative optimization process that “lines
up” the spatial-temporal region according to the provided temporal consistency constraints.

3

Speakman • November 2013

2.1 Additive Scoring Function and Additional Terms

Conditioned on the false and true positive rates (FPR, TPR) of the sensors, the EBB statistic
can be written as an additive set function over the data elements si ∈ S. This is an important
feature for two reasons. First, additive functions are easy to optimize over all possible subsets.
Without connectivity constraints, the optimization process is simply including all records making
a positive contribution and excluding the rest. Determining the “most positive” connected subset
is more complicated, and is covered in the Additive GraphScan section below. Second, additive
functions allow for additional penalty terms ∆i to be included at the element level while the total
penalized scoring function remains additive and thus amenable to efficient optimization.

Theorem 1. The expectation-based binomial statistic may be written as F(S) = ∑si∈S λi, where λi
depends only on the binary sensor response ci for sensor si (i.e., whether that sensor triggers or not) as well
as the false and true positive rates of the sensors in general.

Proof. The log-likelihood ratio form of the EBB scan statistic can be written as follows:

F(S) = log
Pr(Data|H1(S))

Pr(Data|H0)

= log
∏si∈S Pr(ci ∼ Bernoulli(TPR))

∏si∈S Pr(ci ∼ Bernoulli(FPR))

= log ∏
si∈S

(TPR)ci (1 − TPR)1−ci

(FPR)ci (1 − FPR)1−ci

= ∑
si∈S

[
ci log

(
TPR
FPR

)
+ (1 − ci) log

(
1 − TPR
1 − FPR

)]

Then λi = ci log
(

TPR
FPR

)
+ (1 − ci) log

(
1−TPR
1−FPR

)
.

Next, assume a bonus or penalty ∆i for each si ∈ S. These can easily be incorporated into the
score function. Define:

Fpen(S) = F(S) + ∑
si∈S

∆i = ∑
si∈S

(λi + ∆i).

Fpen(S) is a penalized form of the EBB scan statistic that is still additive over the data elements si.
Note that the ∆i terms are assumed to be a function of only the given data element si; they cannot
depend on the entire subset S. This as a limitation of the current work and will be investigated
in extensions to more sophisticated penalties in future work.

2.2 Prior Log-odds Interpretation

These soft constraints, ∆i, have a convenient interpretation as the prior log-odds that each data
element si will be included in the detected subset. Let pi be the prior probability that data element
si will be contained in the detected subset. Then ∆i can be defined as log

(
pi

1−pi

)
. The prior log

probability of selecting a subset S is then:

4

Speakman • November 2013

log Pr(S) = log(∏
si∈S

pi ∏
si /∈S

(1 − pi))

= ∑
si∈S

(log pi − log(1 − pi)) +
N

∑
i=1

log(1 − pi)

= ∑
si∈S

∆i −
N

∑
i=1

log(1 + exp(∆i)).

However, note that the term ∑N
i=1 log(1 + exp(∆i)) is constant and does not affect the proba-

bility of selecting any particular subset. Thus, this term can be ignored when optimizing over all
subsets of the data, and be subtracted once the highest-scoring subset of the data has been identi-
fied. When ∆i > 0, record si is more likely to be included in the detected subset, and the opposite
is true when ∆i < 0. When ∆i = 0 for all i, which is the default setting for spatial-temporal scan
statistics, then every subset S is considered equally likely a priori.

2.3 Derivation of ∆t
i

This section derives the formulas for ∆t
i that correspond to the following generative model for

temporal consistency. Let pt
i be the prior probability that data element si will be contained in the

detected subset St on time step t. Let xt
i be 1 if data element si is included in St, and 0 otherwise.

Let nt
i be the number of neighbors of si that are included in St, and let ki be the degree of node

si. Then the generative model of event propagation, which incorporates temporal consistency
constraints, is defined as:

log

(
pt

i
1 − pt

i

)
= β0 + β1xt−1

i + β2
nt−1

i
ki

. (1)

As a concrete example of the interpretation of this model, assume β0 = −1.5, β1 = 5, and
β2 = 0. Then, if a node is included in the previous detected subset, St−1, it has a 97% prior
probability of being included in the current detected subset, St. If it was not included in the
previous subset, then it only has an 18% probability of being included in the current subset.
When β2 > 0, the proportion of neighbors j included in St−1 will further influence the prior
probability of si being included in the current subset.

Consider ∆t
i as the total impact of including xt

i on the overall penalized log-likelihood ratio
score F(S), as compared to the score F(S \ xt

i) when xt
i is excluded. The log-linear model of pt

i
above provides:

∆t
i =

(
log(pt

i)− log(1 − pt
i)
)
+ ∑

j∈St+1

(
log(pt+1

j | xt
i)− log(pt+1

j | x̄t
i)
)

+ ∑
j ̸∈St+1

(
log(1 − pt+1

j | xt
i)− log(1 − pt+1

j | x̄t
i)
)

.
(2)

In equation (2), the initial difference results from the prior probability of xt
i , conditioned on

xt−1
i and its number of included neighbors nt−1

i from the previous time step. This difference can

5

Speakman • November 2013

be calculated directly from the model:

log(pt
i)− log(1 − pt

i) = β0 + β1xt−1
i + β2

nt−1
i
ki

. (3)

The two sums in (2) account for the fact that including xt
i changes the prior probabilities of

xt+1
i and its neighbors nt+1

i for the next time step. These sums can be rewritten as:

∑
j∈St+1

(
log(pt+1

j | xt
i)− log(pt+1

j | x̄t
i)
)
+ ∑

j ̸∈St+1

(
log(1 − pt+1

j | xt
i)− log(1 − pt+1

j | x̄t
i)
)

= ∑
j∈St+1

(β0 + β1xt
j + β2

nt
j

kj
| xt

i)− ∑
j

f (β0 + β1xt
j + β2

nt
j

k j
| xt

i)

− ∑
j∈St+1

(β0 + β1xt
j + β2

nt
j

kj
| x̄t

i) + ∑
j

f (β0 + β1xt
j + β2

nt
j

k j
| x̄t

i),

(4)

where the function f (x) = log(1 + exp(x)). Next, note that the contributions to equation (4)
are equal to 0 for all nodes j except for node i and its neighbors. For j = i, the corresponding
terms in (4) simplify to:

β1xt+1
i + f

(
β0 + β2

nt
i

ki

)
− f

(
β0 + β1 + β2

nt
i

ki

)
. (5)

For each neighbor j of i, the corresponding terms in (4) simplify to:

β2

(
xt+1

j

kj

)
+ f

(
β0 + β1xt

j + β2
nt

j

k j

)
− f

(
β0 + β1xt

j + β2
nt

j + 1

kj

)
. (6)

Adding the contributions of equations (3), (5), and (6) provides:

∆t
i = β0 + β1

(
xt−1

i + xt+1
i

)
+ β2

nt−1
i
ki

+ ∑
j∈St+1

1
kj


+ f

(
β0 + β2

nt
i

ki

)
− f

(
β0 + β1 + β2

nt
i

ki

)

+ ∑
j

f

(
β0 + β1xt

j + β2
nt

j

kj

)
− ∑

j
f

(
β0 + β1xt

j + β2
nt

j + 1

kj

)
,

(7)

where the sums are taken over all neighbors j of i. In the special case of β2 = 0, equation (7)
simplifies to:

∆t
i = β0 + β1

(
xt−1

i + xt+1
i

)
+ f (β0)− f (β0 + β1) . (8)

Note that, when β2 = 0, ∆t
i can be computed exactly. When β2 ̸= 0, ∆t

i can must be approx-
imated assuming that β0 + β2 ≪ 0 and β0 + β1 ≫ 0. Noting that f (x) ≈ 0 when x ≪ 0, and

6

Speakman • November 2013

f (x) ≈ x when x ≫ 0, provides:

∆t
i ≈ β0 + β1

(
xt−1

i + xt+1
i

)
+ β2

nt−1
i
ki

+ ∑
j∈St+1

1
k j

−
(

β0 + β1 + β2
nt

i
ki

)
+

∑
j∈St

(
β0 + β1 + β2

nt
j

k j

)
− ∑

j∈St

(
β0 + β1 + β2

nt
j + 1

k j

)

=β1

(
xt−1

i + xt+1
i − 1

)
+ β2

nt−1
i
ki

+ ∑
j∈St+1

1
k j

− ∑
j∈St

(
1
ki

+
1
k j

) .

(9)

However, equation (9) assumes knowledge of which other elements are contained in St, and
this information would not be known in advance. Thus the final sum over j ∈ St is approximated
with half the corresponding sum over all neighbors j of i:

∆t
i ≈β1

(
xt−1

i + xt+1
i − 1

)
+ β2

nt−1
i
ki

+ ∑
j∈St+1

1
kj

− 1
2 ∑

j

(
1
ki

+
1
k j

) . (10)

The intuitive role of ∆t
i is that it must simultaneously make St appear likely to have been

generated from St−1 and able to generate St+1, thus conveying temporal consistency information
both forwards and backwards in time.

2.4 Iterative Convergence

The previous section provided definitions and interpretations for Fpen(S) = ∑st
i∈S(λ

t
i + ∆t

i) for
the EBB scan statistic with temporal consistency constraints. However, recall that the values of
∆t

i for a given time step t depend on the detected subsets at t − 1 and t + 1, which creates a
computational paradox. To solve this, the Dynamic Subset Scan uses an iterative method that
converges to a (local) optimum. To better approach the global optimum, multiple restarts and
simulated annealing (which gradually increases the strength of the ∆t

i from 0 to their full values)
are wrapped around steps (3)-(13) in the algorithm below.

3 Additive GraphScan

The previous section outlined how the expectation-based binomial (EBB) scoring function may
be penalized with temporal consistency constraints Fpen(S) = ∑si∈S(λi + ∆i) while remaining
an additive set function over the data elements si ∈ S. Optimizing additive functions without
connectivity constraints is very straightforward and consists of including all records with positive
contributions (λi + ∆i > 0) and excluding the rest. Enforcing hard connectivity constraints on
additive functions (i.e. determining the “most positive” connected subset) is an interesting and
difficult problem. For example, not all nodes making positive contributions will be included
in a high-scoring connected subset because they are likely disconnected in the underlying graph
structure. Also, a high-scoring connected subset may include a node with a negative contribution
in order to connect two positive nodes.

The GraphScan algorithm [13] exactly identifies the highest scoring connected subset for any
scoring function that satisfies the Linear-Time Subset Scanning (LTSS) property [11]. It is trivially

7

Speakman • November 2013

Algorithm 1 Iterative convergence to local optimum for Dynamic Subset Scan (without multiple
restarts or simulated annealing)

1: for window duration w from 1 to max window W do
2: Initialize each of the w spatial subsets independently (i.e., separately compute the highest

scoring subsets St for each time step t, assuming ∆t
i = 0 for all si).

3: repeat
4: Randomly select a time step t that is not flagged as “Checked”. Copy current spatial

subset St.
5: Compute ∆t

i for each node si given subsets St−1 and St+1, using equation (8) or (10).
6: Compute new optimal subset S′t for time step t using ∆t

i . Without connectivity con-
straints, simply include all positive contributions λt

i + ∆t
i ; with connectivity constraints,

call Additive GraphScan.
7: if new subset S′t does not improve penalized log-likelihood ratio of spatial-temporal sub-

set S then
8: Revert to St and mark time step t as “Checked”.
9: end if

10: if new subset S′t does improve penalized log-likelihood ratio of spatial-temporal subset
S then

11: Replace St with S′t and remove “Checked” flags from time steps t − 1, t + 1, and t.
12: end if
13: until no further changes improve penalized log-likelihood ratio of spatial-temporal subset

S, i.e., all time steps have been flagged as “Checked”.
14: end for
15: Return the highest scoring spatial-temporal subset S∗

w.

shown that additive functions satisfy LTSS, and therefore GraphScan could be used to determine
the highest scoring (“most positive”, in the case of an additive scoring function) connected sub-
set. However, GraphScan is designed to optimize over more complex scoring functions; most
importantly, its computation time is exponential in the graph size and therefore it does not scale
well in this setting. Therefore, Additive GraphScan is proposed as an efficient heuristic alternative
to GraphScan which can be used to identify high-scoring (most positive) connected subsets in a
given graph structure with real-valued weights at each node.

3.1 Additive GraphScan Algorithm

Additive GraphScan makes use of the following notation. w(n) is the real-valued weight of node
n. A path p is any connected subgraph of nodes. w(p) is the sum of weights for every node
in the path. g(p) is the gain that would result from merging path p into a single node. It is
the difference between the weight of the resulting merged node and the highest weighted node
in the path. Identifying and merging paths with positive gains is an integral part of Additive
GraphScan. g(n, p∗) is the gain that would result from merging two paths together. The first
path, p∗, is a previously identified path of interest with positive gain. The second path is the
shortest path between node n and any point along path p∗. g(n, p∗) is the difference between the
weight of the resulting merged paths and max(w(n), w(p∗)).

pw(n) is the pathweight of a node used when calculating single source, shortest paths travers-
ing through the node. Note the difference between the weight of a node w(n) (which may be
positive or negative and is used in the gain calculations above) and the pathweight of a node
pw(n) (which is non-negative and used in shortest path calculations). Pathweights of positive

8

Speakman • November 2013

nodes are set to 0, reflecting no penalty (or reward) for traversing positive nodes while iden-
tifying shortest paths. Pathweights for negative nodes with no positive neighbors are −w(n).
Pathweights for negative nodes with positive neighbors have

pw(n) = −min

0, w(n) + ∑
pos neighbors,ni

w(ni)

degree(ni)

 .

These positive weights may be thought as uniformly “diffusing” over their negative neighbors
and then using this altered weight as the pathweight for negative nodes with positive neighbors.
In the case where a large positive node overwhelms its negative neighbor, the negative neighbor’s
pathweight is set to 0.

Finally, s(na, nb, nc) determines a fourth node, ns in the graph as a Steiner point for na, nb,
and nc. A Steiner point in this setting is a node that forms the shortest interconnect between
the three provided nodes using the pathweights of the graph. s(na, nb, nc) returns the shortest
interconnecting path formed between the three nodes going through ns.

Some basic pre-processing may be applied to the graph before running Additive GraphScan.
For example, any positive node with a positive neighbor may be merged together into a larger,
single positive node (adding their weights) and repeated until no further merges exist. Also, any
negative nodes with degree of 1 or less may be recursively removed because these are guaranteed
to not be included in a high scoring connected subset. Lastly, any negative node with at least
two positive neighbors may be merged into a single node if the resulting merged node has a
higher weight than any individual positive neighbor. Additive GraphScan can then be applied
to the pre-processed graph. The Additive GraphScan algorithm scales as O(kN2) = O(N2.5),
dominated by steps (3) and (5).

Algorithm 2 Additive GraphScan
1: while positive gain path merges exist do
2: Identify top-k positive nodes where k =

√
N.

3: Compute path weights pw(n) for all nodes and create single-source shortest paths from
each top-k node.

4: Compute g(p) for each shortest path p between top-k pairs. Determine highest gain path
p∗ and record endpoints as na and nb.

5: Compute g(ni, p∗) for each remaining top-k node, ni. Determine highest gain node for p∗

and record as nc. If no positive gain exists between p∗ and any ni, then merge p∗ and
restart.

6: Form new path p∗∗ as the union of p∗ and the path connecting p∗ to nc.
7: Compute s(na, nb, nc). Compare w(s(na, nb, nc)) and w(p∗∗). Merge the one with higher

weight.
8: end while
9: The highest weight merged node is returned as the most positive connected subset found

by Additive GraphScan. Note that this node may need to be “unpacked” to determine the
contents in the original graph form.

9

Speakman • November 2013

Figure 1: An example graph to demonstrate the Additive GraphScan algorithm. The large bolded numbers are node
identifiers and the small numbers within each node are the nodes’ corresponding weights. The most positive
subgraph consists of nodes {0, 1, 6, 3, 4, 8, 9} and is correctly identified by Additive GraphScan.

3.2 Additive GraphScan Example

This section concludes by applying Additive GraphScan to a sample pre-processed graph found
in Figure 1. The most positive connected subgraph consists of nodes {0, 1, 6, 3, 4, 8, 9} where node
6 is the Steiner point used to connect nodes 0, 4, and 9. Additive GraphScan correctly identifies
this subgraph even though node 6 is not on the shortest paths connecting nodes 0 and 4 or nodes
4 and 9. A key insight into the strong performance of Additive GraphScan is delaying path
merges while searching for a potential Steiner point. Begin at step (2:) Nodes 0, 4, and 9 are
identified as the top-k nodes. (3:) Dijkstra’s algorithm is called on nodes 0, 4, and 9 providing
single-source shortest path information from each of them. (4:) The shortest path from node 0 to
node 4, p∗ = {0, 1, 2, 3, 4}, has highest gain of g(p∗) = (5 − 1 − 2 − 1 + 5)− 5 = +1. Because a
positive gain path was found between nodes na = 0 and nb = 4, Additive GraphScan continues
searching for a third node, nc. (5,6:) Node nc = 9 is found with p∗∗ = {0, 1, 2, 3, 4, 7, 8, 9} and
w(p∗∗) = 8. (7:) Calculate a Steiner point for nodes 0, 4, and 9 and note that node 6 forms
the shortest interconnect between these three points. This interconnect is formed by the nodes
{0, 1, 6, 3, 4, 8, 9} and w(s(0, 4, 9)) = 5 − 1 − 3 − 1 + 5 − 1 + 5 = 9. Because w(s(0, 4, 9)) > w(p∗∗)
the Steiner interconnect s(0, 4, 9) is condensed into a single node with weight 9. After this merge,
no more positive gain path merges exist and the loop exits. (9:) The highest scoring connected
subset is then {0, 1, 6, 3, 4, 8, 9}. Notice that greedily merging either p∗ or p∗∗ would have resulted
in a sub-optimal merge.

4 Results

4.1 Comparison of Additive GraphScan vs. GraphScan

This section compares the fast heuristic, Additive GraphScan, to the slower, but exact, GraphScan
algorithm. First, a runtime analysis is presented comparing the two optimization algorithms.
The much larger “network 2” provided in the Battle of the Water Sensor Networks [1] is used to
create connected subgraphs of various sizes from 50 to 500 nodes from the network. The graphs
are processed with three different scans: Dynamic Subset Scan with GraphScan, Dynamic Subset

10

Speakman • November 2013

Figure 2: Runtime comparisons for the Dynamic Subset Scan with GraphScan and Additive GraphScan as the opti-
mization algorithm. Independent Scan with Additive GraphScan is also shown.

Scan with Additive GraphScan, and Independent with Additive GraphScan. The average runtime
for each method is reported and are shown in Figure 2.

GraphScan begins to struggle with graph sizes of 250 nodes while Additive GraphScan
quickly scans graphs of 500 nodes in approximately 4.1 seconds. Independent with Additive
GraphScan processed the entire 12,000+ node “Network 2” in 221 seconds while Dynamic with
Additive GraphScan required 1830 seconds (approximately a half hour). This difference repre-
sents the additional calls to Additive GraphScan required by Dynamic Subset Scan to “align” the
individual spatial subsets according to the temporal consistency constraints.

The comparison of Additive GraphScan and GraphScan is concluded by analyzing the scores
of the spatial-temporal subsets identified by the scanning methods using both Additive Graph-
Scan and GraphScan. The approximation ratio results compare the highest-scoring subsets found
by Additive GraphScan and GraphScan as a percentage averaged over 2000 simulations. Table
1 provides detailed information for the approximation ratios. The ratios over 100% in the Dy-
namic cases reflect the noise in the iterative convergence process outlined above in Section 2.4.
To be clear, Additive GraphScan is not identifying a higher scoring subgraph than GraphScan for
an individual time slice. However, the local optimum after the iterative convergence of Additive
GraphScan-based optimizations at each step may have a higher score than the local optimum
reached with GraphScan-based optimizations at each time step. The Static and Independent
methods do not use this iterative convergence process to identify the highest scoring spatial-
temporal region and may reflect a more direct comparison between the performance of Additive
GraphScan and GraphScan. The ratio does not fall below 98.4% indicating that Additive Graph-
scan is providing a huge speed increase with minimal loss of accuracy compared to scan statistics
using GraphScan.

4.2 Detecting, Tracking, and Source-Tracing Plumes

This section evaluates the detection, tracking, and source-tracing abilities of the Dynamic Subset
Scan. The 129-node “Network 1” from the Battle of the Water Sensor Networks [1] served as the
test bed for these evaluations. Two simulations were performed. One with sensors at FPR = 0.1
and TPR = 0.9 and a second with weaker sensors at FPR = 0.2 and TPR = 0.8. All results below

11

Speakman • November 2013

Table 1: Approximation ratios comparing scores for Additive GraphScan and GraphScan for multiple methods and
FPR and TPR.

method Background(0.1) Injects(0.9) Background(0.2) Injects(0.8)
Static 100.00% 100.00% 99.15% 99.83%
Independent 100.00% 99.99% 98.48% 99.65%
Dynamic 100.59% 101.44% 99.70% 100.50%

Table 2: Summary of learned parameter values

method FPR TPR β0 β1 β2

Dynamic 0.1 0.9 -1.3 6.6 1.8

Dynamic 0.2 0.8 -1.3 3.6 2.0

Dynamic Alt. 0.1 0.9 -1.1 8.2 0

Dynamic Alt. 0.2 0.8 -1.2 2.4 0

are averaged over 200 contaminant plumes simulated for 12 hours each. A separate 100-plume
training set was used for cross-validation for the scan statistics that required learning parameters.

Comparisons are made for 4 different spatial-temporal scan statistics:

• Static scan does not allow the detected spatial region to change over time.

• Independent scan allows the detected spatial region to change over time but does not share
temporal information between time steps.

• Dynamic scan allows the detected spatial region to change over time and uses temporal
consistency constraints to “align” the individual time steps.

• Dynamic Alt. scan is similar to Dynamic scan but does not use any information from neigh-
bors when enforcing temporal consistency constraints, i.e., forces β2 = 0 when learning the
model parameters.

For the temporal component of the scans, max window size W = 12 is used. This allows Static,
Dynamic, and Dynamic Alt. to detect a spatial-temporal subset between 1 and 12 hours in
duration. However, for the Independent scan, the highest scoring spatial-temporal region will
always be maximum duration. This consequence of the Independent scan is discussed further
below.

The β0 . . . β2 parameters for the Dynamic scan, and the β0 and β1 parameters for Dynamic
Alt. were set using a grid search on the separate 100-plume training set. The parameter values
that maximized spatial-temporal overlap in the training data are shown in Table 2. Note the large
changes in β1 when moving from the easier to harder scenarios, while β0 and β2 remain relatively
constant.

Figure 3 reports the average time required by each method to detect a contaminant plume
for various false positive rates. These results were calculated by processing 2160 “background”
hours (approximately 3 months of data) with no contaminants. These were compared with scores
produced by the scan statistics during the 200 simulated plumes. The 0 false positive alarms

12

Speakman • November 2013

Figure 3: Detection results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors
on the right. The detection results are reported through Activity Monitoring Operating Characteristic
(AMOC) curves. These show the average time required for each method to detect a contaminant in the
system, assuming a fixed number of allowable false positives per month.

interpretation is that it took 4.3 hours (on average) for the scores produced by Dynamic Scan to
exceed the largest score found by Dynamic Scan in the 2160 “background” hours. As the threshold
for detection is lowered, the number of false positive alarms increases but the time to detect
decreases, as shown by the Activity Monitoring Operating Characteristic (AMOC) curves [4] in
Figure 3.

The Static, Dynamic, and Dynamic Alt. methods achieve similar power for event detection in
the easier scenario (FPR = 0.1, TPR = 0.9). However, Dynamic achieves the overall best perfor-
mance (6.62 hours to detect at 0 false positives) when detecting a weaker signal (FPR = 0.2, TPR
= 0.8). Note the influence that a node’s neighbors have on distinguishing performance between
Dynamic and Dynamic Alt. in the 0.2/0.8 scenario. The easier scenario did not require additional
information from neighbors in order to obtain similar performance, but this information is im-
portant when working with weaker sensors. The Independent method’s poor performance is due
to the relatively high subset scores found by Independent when no contaminant is present. Its
unconstrained flexibility allows it to overfit to noise in the background, making detection of a true
contamination event more difficult.

Figure 5 reports the methods’ tracking ability over the duration of a spreading contaminant
plume (12 hours). A scan statistic’s tracking ability is measured through spatial-temporal overlap.
Spatial-temporal overlap is a combination of precision and recall applied to spatial-temporal
subsets. A measure of 1.0 corresponds to perfect agreement between the affected and detected
spatial-temporal regions, while 0.0 means the affected and detected regions are disjoint. For two

spatial-temporal subsets, Affected and Detected, the overlap is defined as: |Affected∩Detected|
|Affected∪Detected| .

See Figure 4 for details.
The relative performance of the Static and Dynamic methods in the easier scenario demon-

strates Static’s lack of tracking ability as the plume grows over time. Static’s tracking performance
quickly levels off while Dynamic continues to achieve higher spatial-temporal overlap over the
course of the contamination event. This increase in performance is due to the (constrained) flex-
ibility allowed to the Dynamic Subset Scan. The difference in tracking performance between
Static and Dynamic methods is not as large in the harder scenario, but note the importance of
incorporating information from a node’s neighbors. The poor performance of the Independent

13

Speakman • November 2013

Figure 4: This figure demonstrates the calculation of spatial-temporal overlap for plume tracking. A plume spreads
through a simple 5-node line graph over the course of four time steps. Affected nodes turn from white to red
as the contaminant spreads. The Static scan method is constrained to keep the exact same detected spatial
region throughout the event duration. Hence, it may fail to capture the plume at later time steps. Dynamic
Scan allows the detected spatial region to change at each time step, tracking the plume as it spreads. Due to
connectivity constraints, both methods must return a connected subgraph as the detected spatial region at
each time step. Spatial-temporal overlap is penalized for both false positives and false negatives. A measure
of 1.0 corresponds to perfect agreement between the affected and detected spatial-temporal regions, while 0.0
means that the affected and detected regions are disjoint.

Figure 5: Tracking results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors on
the right. Tracking ability is measured by reporting the spatial-temporal overlap of the detected and affected
subsets over the course of 12 hours.

14

Speakman • November 2013

Figure 6: Source-tracing results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8
sensors on the right. Source-tracing ability is measured by reporting the spatial overlap between the earliest
detected spatial region and the original affected node(s).

scan, particularly in the early stages of the contamination event, is due to its tendency to report
spatial-temporal regions of maximum duration which are not a good match to the true affected
region.

Figure 6 reports the methods’ ability to identify where the contaminant originated over the
duration of the plume (12 hours). This is measured through purely spatial overlap between the
earliest time step in the detected region and the source node(s) of the plume. Note that it is
possible for a quickly spreading plume to affect multiple nodes within the first hour. In such
cases, all of these nodes are treated as source nodes.

The source-tracing results clearly demonstrate the advantage of sharing information between
time steps during the optimization process. Static’s ability to identify the source nodes actually
decreases over the course of the contamination event as more information is gathered. Exploring
this result further, note that Static has very high spatial recall (0.995) but very low precision (0.144)
for identifying the source nodes on hour 12. This suggests that Static tends to return very large
subsets at the later stages of the plume. The large regions returned by the Static method harm its
ability to accurately identify the source of the contaminant.

The key to the Dynamic Subset Scan’s success for source-tracing is the backwards flow of
temporal consistency information allowed in our model. Dynamic is able to change the detected
subset for previous time steps based on new, more current data. This gives it superior source-
tracing abilities in both the easier (0.1/0.9) and harder (0.2/0.8) scenarios. The importance of
including neighbor information is evident in the harder scenario: while the Dynamic method
achieves similar performance to Static during the early stages of the contamination event and
much better performance in the later stages, the performance of Dynamic Alt. (which does not use
neighbor information) does not surpass Static until the ninth hour. Finally, note the substantial
increase in performance of the Independent method at hour 12, though its overall performance
is still low. This is an artifact of Independent preferring to return 12-hour regions.

5 Conclusions

This work introduced the Dynamic Subset Scan for detecting, tracking, and source-tracing dy-
namic patterns that change the affected subset over time. This novel extension of the well-known

15

Speakman • November 2013

spatial and subset scan statistics is composed of two main contributions. First is the incorpo-
ration of temporal consistency constraints that may be enforced on temporally adjacent, spatial
subsets. These constraints are a fruitful compromise between traditional spatial-temporal scan
statistics that do not allow the detected region to change over time (Static) and the other extreme
where temporal information is ignored (Independent). The key insight to enforcing temporal
consistency constraints is recognizing that the expectation-based binomial scoring function may
be written as an additive function over the data records. This allows for additional terms (con-
straints) to be included in the penalized log likelihood ratio while remaining efficient to optimize.
Critically, these temporal consistency constraints were derived to allow temporal information to
be shared both forward and backward in time.

The second novel contribution is the Additive GraphScan algorithm, which allows the Dy-
namic Subset Scan to enforce both soft temporal consistency constraints and hard connectivity
constraints while scaling to large, real world networks. Additive GraphScan is a fast, heuristic
alternative to GraphScan. However, the results demonstrate an approximation ratio of over 99%,
suggesting a very small sacrifice for dramatic gains in speed and scalability.

The Dynamic Subset Scan was evaluated on data provided through the “Battle of the Water
Sensor Networks” [1]. Dynamic scan succeeded in detecting contamination events sooner and
tracking these events more accurately compared to other competing methods. The gains were
due to Dynamic Scan’s constrained flexibility: competing methods either failed to capture the dy-
namics of the spreading plume (Static) or were susceptible to over-fitting from lack of constraints
(Independent). In scenarios with a weaker signal to be detected, incorporating information from
a node’s neighbors in the Dynamic Scan proved worthwhile, leading to substantial gains in per-
formance on the detection, tracking, and source-tracing tasks.

In summary, relaxing constraints on spatial-temporal region shape must be done carefully.
Strict temporal constraints work well when the affected subset of the data does not change over
time. However, removing them completely in order to track dynamic patterns performs poorly as
shown by the Independent method results. Dynamic Subset Scan with temporal consistency and
connectivity constraints provides a scalable solution for future work in dynamic pattern detection
in graph-based or sensor network data.

Acknowledgment

A special thanks to Professor Daniel Neill and the Event and Pattern Detection Laboratory for
their (too many?) ideas and multiple edits of this work. Also, thanks to Yating Zhang who
helped me think through Additive GraphScan at the implementation level. Thanks to R. Ravi for
providing insights on the use of Steiner points. This work was partially supported by NSF grants
IIS-0916345, IIS-0911032, and IIS-0953330.

References

[1] Avi Ostfeld et al. The battle of water sensor networks: A design challenge for engineers and
algorithms. Journal of Water Resources Planning and Management, 134(6):556–568, 2008.

[2] J. Berry, R. D. Carr, W. Hart, V. J. Leung, C. A. Phillips, and J. P. Watson. Designing contam-
ination warning systems for municipal water networks using imperfect sensors. Journal of
Water Resources Planning and Management, 135(4):253–263, 2009.

16

Speakman • November 2013

[3] J. Berry, L. Fleischer, W. Hart, and C. Phillips. Sensor placement in municipal water networks.
J. Water, 131:237–243, 2003.

[4] T. Fawcett and F. Provost. Activity monitoring: noticing interesting changes in behavior. In
Proc. 5th Intl. Conf. on Knowledge Discovery and Data Mining, pages 53–62, 1999.

[5] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and
influence. In Proc. 16th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pages
1019–1028, 2010.

[6] M. W. Koch and S. A. Mckenna. Distributed sensor fusion in water quality event detection.
Journal of Water Resources Planning and Management, 137:10–19, 2011.

[7] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient sensor place-
ment optimization for securing large water distribution networks. Journal of Water Resources
Planning and Management, 134(6):516–526, November 2008.

[8] M. Kulldorff. A spatial scan statistic. Communications in Statistics: Theory and Methods,
26(6):1481–1496, 1997.

[9] S. Myers and J. Leskovec. On the convexity of latent social network inference. In Advances
in Neural Information Processing Systems 23, pages 1741–1749. 2010.

[10] D. B. Neill. Expectation-based scan statistics for monitoring spatial time series data. Interna-
tional Journal of Forecasting, 25:498–517, 2009.

[11] D. B. Neill. Fast subset scan for spatial pattern detection. Journal of the Royal Statistical Society
(Series B: Statistical Methodology), 74(2):337–360, 2012.

[12] D. B. Neill, A. W. Moore, M. R. Sabhnani, and K. Daniel. Detection of emerging space-time
clusters. In Proc. 11th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, 2005.

[13] S. Speakman and D. B. Neill. Fast graph scan for scalable detection of arbitrary connected
clusters. In Proc. International Society for Disease Surveillance Annual Conference, 2010.

[14] R. Viswanathan and P. K. Varshney. Distributed detection with multiple sensors: Part I
Fundamentals. Proceedings of the IEEE, pages 54–63, 1997.

17

