Multi-agent Learning in Extensive Games with Complete
Information *

Pu Huang
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

phuang@cs.cmu.edu

ABSTRACT

Learning in a multi-agent system is difficult because the
learning environment jointly created by all learning agents
is time-variant. This paper studies the model of multi-agent
learning in complete-information extensive games (CEGs).

We provide two provably convergent algorithms for this model.

Both algorithms utilize the special structure of CEGs and
guarantee both individual and collective convergence. Our
work contributes to the multi-agent learning literature in
several aspects: 1. We identify a model of multi-agent learn-
ing, namely, learning in CEGs, and provide two provably
convergent algorithms for this model. 2. We explicitly
address the environment-shifting problem and show that
how patient agents can collectively learn to play equilib-
rium strategies. 3. Many game-theoretical work on learning
uses a technique called fictitious play, which requires agents
to build beliefs about their opponents. For our model of
learning in CEGs, we show it is true that agents can collec-
tively converge to the sub-game perfect equilibrium (SPE)
by repeatedly reinforcing their previous success/failure ex-
perience; no belief building is necessary.

Categories and Subject Descriptors: [ARTIFICIAL IN-
TELLIGENCE]: 1.2.11, Distributed Artificial Intelligence
- Multiagent systems; 1.2.6 Learning - Concept learning.
General Terms: Algorithms, Economics.

Keywords

Multi-agent systems, Learning, Extensive games.

1. INTRODUCTION

Learning in general refers to the process of acquiring and ap-
plying knowledge to improve the behavior and performance
in a certain task. Machine learning techniques for building

*This research was supported by CoABS DARPA contract
F30602-98-2-0138 and AFOSR contract F49620-01-1-0542.

Katia Sycara
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

katia@cs.cmu.edu

intelligent agents that can learn automatically has drawn
much attention from computer scientists in the last decade.
Most work in machine learning to date has dealt with single-
agent learning problems. In these problems, a single agent
operates in a stochastic environment that evolves according
to a Markov process; the agent must decide which action
to take in every environment state and the decision made
stochastically determines the successive state the agent will
reach as well as the immediate reward the agent will get.
The environment is assumed time-invariant, i.e., the pa-
rameters characterizing the Markov process do not change
over time. The agent’s goal is to find an optimal policy
(i.e., decide which action to take in every environment state)
that maximizes the infinite-horizon discounted reward or the
long-run average reward through learning. These types of
problems are well modeled as Markov Decision Processes
(MDPs). The structure of the optimal policy of MDPs has
been well understood [1]; many learning algorithms have
been proposed [15]; many applications have been developed
[8].

In contrast to the well-developed understanding of single-
agent learning, the field of multi-agent learning is still far
from mature. A multi-agent system consists of a collec-
tion of autonomous and self-interested agents that interact
with each other. Multi-agent systems differentiate them-
selves from single-agent systems not only by the number of
agents, but also by the fact that every agent is autonomous.
Autonomy means every agent is an independent entity, and
there exists no centralized control for the system as a whole.
A system with multiple agents and a centralized control still
falls into the single-agent category, because the centralized
control mechanism can be used to “force” the agents to pur-
sue a single goal (for example, to maximize the collective
welfare of all the agents). Agents in a multi-agent system
are self-interested in the sense that they have, and are free
to pursue, their own interests, which may or may not align
with each other.

The presence of multiple autonomous and self-interested
agents makes multi-agent learning a difficult problem. The
reason is that if every agent is learning, then everyone faces
a time-variant environment. Since all agents are learning,
how the other learning agents will react to the strategy im-
provement of an individual agent will depend on how this
agent improves its own strategy, which, in turn, determines
how the learning environment of this agent will shift. (To an

individual agent, all the other agents are a part of its envi-
ronment.) Therefore, the way in which a single agent learns
affects how its environment will shift over time. To fur-
ther complicate the matter, different agents may respond to
the policy improvement of the same agent differently, which
makes it even harder for the agents to anticipate how the
environment will shift.

This paper examines a specific multi-agent learning model:
learning in complete-information extensive games (CEGs).
Various negotiation processes can be modeled as CEGs (see,
e.g. [4]). As e-commerce prevails, we expect more intelligent
agents will be deployed as human delegates to play market
games. In order to be “intelligent”, agents must acquire
the ability to learn. In this paper, we will study general
multi-agent learning algorithms for CEGs without mention-
ing detailed models for on-line agent negotiation, which is
out of the scope this work.

An extensive game has a tree-like structure that defines the
detailed sequential moves of participating agents. Complete
information means that every agent can fully observe the
actions taken by all other agents (see, e.g. [4]). Because of
the tree-like structure and the presence of complete infor-
mation, a CEG admits a strong solution concept: the sub-
game perfect equilibrium (SPE) (see Section 2 for details).
In this paper, we propose two reinforcement-learning algo-
rithms for multi-agent learning in CEGs. We also prove that
both algorithms are convergent to the SPE. Our results are
based on the observation that multi-agent learning in CEGs
is closely related to single-agent learning in MDPs. Actually,
if only one agent is learning and all others behave accord-
ing to some fixed strategies, the CEG model degenerates to
an MDP (see Section 3 for details), and the learning agent
faces the problem of maximizing its long-run average reward.
The MDPs derived for CEGs inherit the tree-like structure,
and because of this structure, we can slightly change the
well-known “learning automaton” algorithm [13], and apply
the modified version for multi-agent learning in CEGs. We
call this algorithm Multi-agent Learning Automata (MLA).
If all agents are patient enough (use small learning rates)
and apply MLA simultaneously, we show that the collec-
tive learning process actually converges to the SPE. MLA
reinforces actions by estimating the “value” of each action;
the values themselves are not recorded. If we keep the val-
ues recorded, update them in the learning process, and then
choose actions according these values, we get another prov-
ably convergent multi-agent learning algorithm for CEGs.
We call it MQ-learning.

Our work contributes to the multi-agent learning literature
in several aspects: 1. We identify a model of multi-agent
learning, namely, learning in CEGs, and provide two prov-
ably convergent algorithms for this model. 2. We explic-
itly address the environment-shifting problem and show that
how patient agents can collectively learn to play equilib-
rium strategies. 3. Many game-theoretical work on learning
uses a technique called fictitious play, which requires agents
to build beliefs about their opponents. For the particular
model of learning in CEGs, we show it is actually true that
agents can collectively converge to the SPE (a fully ratio-
nal outcome) by repeatedly reinforcing their previous suc-
cess/failure experience; no belief building is necessary.

The rest of the paper is organized as follows. Section 2 intro-
duces CEGs and the concept of SPE. Section 3 discusses the
relation between multi-agent learning in CEGs and single-
agent learning in MDPs. In Section 4 and 5 we present the
MLA algorithm and the MQ-learning algorithm and show
that both converge to the SPE. Section 6 numerically tests
our two algorithms. Relate work is discussed in Section 7.
Section 8 concludes this paper.

2. EXTENSIVE GAMESWITHCOMPLETE
INFORMATION

An extensive game played by I players can be represented
by a tree G. Every non-leaf node s of G is owned by a player
i € I. A player owning a non-leaf node s can take any action
a € A(s) when it is his turn to play, where A(s) is the set
of all available actions in node s. After this player takes an
action a, the game moves to a successive node s =<s,a>.
Depending on whether s’ is a non-leaf node or a leaf node,
the game continues or stops: if s’ is a non-leaf node, the
game progresses and the player who owns node s’ will take
his turn to move; otherwise, if s’ is a leaf node, the game ends
and every player i gets a reward (payoff) r;(s’). Rewards in

a leaf node s’ are represented by a vector r(s'), and the 7’s
component 7;(s") represents player 4’s reward.

In every non-leaf node s, player i follows a strategy (policy)
mi(s) to play the game. Player i’s strategy m;(s) in node s is
a probability distribution over A(s). In other words, when
the game progresses to a node s owned by player 4, he selects
an action a € A(s) to play according to the probability
distribution 7;(s). All the 7;(s)’s in all the nodes owned by
player 7 constitute player i’s strategy m; for the whole game.
All the 7;’s of all the players constitute a strategy profile 7 =
{71, 72,y .. ,mn }. A player i’s strategy m; is a contingency
plan that specifies which action to take in every node owned
by him. All these contingency plans of all the players form a
strategy profile of the game. Once the structure of the game
tree G and the strategy profile 7 of all the players are given,
any individual player i’s ezpected reward, R;(mi|m—s;, G), is
determined as well. We can calculate R;(m;|m—s, G) as

Ri(milm—i,G) = Y P"(s)ri(s),

SELF(G)

where LF(G) is the set of all leaf nodes in the game tree
G; P7(s) is the probability that the game ends at a leaf
node s, given that the strategy profile of all the players is 7;
and 7_; denotes the strategy profile of all the other players
excluding player .

An extensive game is said to be with complete information
if all the actions taken previously are observable to every
player; otherwise, the game is with incomplete information.
The above definition of strategy is valid for complete infor-
mation games only. For incomplete information games, be-
cause of unobservable information, a player’s strategy is con-
tingent on information sets instead of single nodes (see, e.g.
[4])- This paper deals with learning in complete-information
extensive games (CEGs) only. We’ll discuss issues related
to incomplete-information games in the conclusion section.

Figure 1 is a CEG played by three players. In this game,
non-leaf nodes are labeled with a pair representing the name

Figure 1: An extensive game played by three play-
ers. Non-leaf nodes are labeled with a pair repre-
senting the name and the owner; leaf nodes are la-
beled with the name only. The payoffs of the players
are shown as vectors below the leaf nodes.

and the owner; leaf nodes are labeled with the name only.
For example, label (s1,1) of the root node represents that
this node is named s; and owned by player 1; label s¢ is
the name of a leaf node that is the direct successor of node
(s2,2). Two actions, we call them [and r, are available in
each non-leaf node except s, where only action [is available.
The payoffs are shown in the figure as vectors below the leaf
nodes. The first entry in every vector is the payoff of player
1, the second entry is the payoff of player 2, and so on.

An important solution concept of CEGs is sub-game perfect
equilibrium (SPE). A sub-game of an extensive game is the
game represented by a sub-tree G, rooted at a node s, of
the original game tree G. A strategy profile 7* = {n{,n%;}
is a SPE if for every sub-game Gs C G and every player i,
strategy m; of player i maximizes his expected reward, i.e.,

Ri(mi|m*;, Gs) > Ri(mi|m™;, Gs)

for any strategy m; other than 7;. An equilibrium strategy
profile is a stable profile in the sense that any individual
player i will not deviate from his strategy =; if all the other
players stick to their equilibrium strategy w*;, which, in
turn, holds because no player deviates.

If the reward vector in every leaf node is known to every
player, backward induction can be used to find the SPE.
Backward induction finds the SPE of a CEG by propagating
the reward vectors in the leaf nodes to the non-leaf nodes,
starting from the leaf nodes, ending at the root. The reward
vector r(s) of a non-leaf node s represents the rewards all the
players would obtain by playing the SPE strategies in the
sub-game G, rooted at node s. The procedure of backward
induction is described as follows.

Let B(1) denote the set of nodes whose successors are leaf
nodes only, i.e.,

B(1) = {s| < s,a >€ LF(G), forVa € A(s)}. (1)

Then in every node s € B(1), the owner of s (suppose it to
be player ¢) would choose an action a that leads to a leaf
node < s,a > where he can get the maximum reward, i.e.,
player ¢ would choose an action a such that

a = argmax{r;(< s,b >)|s € B(1)}.
beA(s)

The reward player ¢ gets in node s by choosing action a is
ri(s) = ri(< s,a >), (2)
and every other player i’ # i gets reward
ry(s) =ry(< s,a>). (3)

Putting equations (2) and (3) together, the reward vector
r(s) in node s can be represented by

7(s) = (< s,a >, for Vs € B(1). 4)

We call B(1) level-1 set. Similarly, we can define level-2 set
B(2) as the set of nodes whose successors are leaf nodes or
nodes in B(1), i.e.,

B(2) = {s|<s,a>€ LF(G)UB(1) for Va € A(s)
and s ¢ B(1)}. (5)

For every node s € B(2), the owner of s (suppose to be
player j) would choose an action a such that

a = argmax{r;(< s,b >)|s € B(2)},
beEA(s)

and therefore the reward vector in node s is determined by
r(—ss =r(< s,a >), for Vs € B(2). (6)
In general, level k set B(k) is defined as

B(k) ={s|<s,a>€ LF(G)UB(1)U..UB(k—1)
for Va € A(s) and s ¢ B(1)U..UB(k—1)}. (7)

For every node s € B(k), the owner of s would choose an
action a that maximizes his own reward and the reward
vector in node s is thus determined by

r(_ss =7r(< s,a >), for Vs € B(k). (8)

Continue this procedure until reaching the root of the game
tree. The reward vector in the root then is the SPE reward,
and every player’s strategy in every node constitutes the
SPE strategy profile.

In this paper, we assume for every play ¢ and every pair of
distinct terminal nodes s and s', r;(s) # r;(s'), i.e., there is
no tie for every player. This type of CEG is called generic
and has a unique SPE. In the game shown in Figure 1, the
unique SPE reward is the reward vector in the leaf node so.

3. LEARNING IN EXTENSIVE GAMES

If only one player in a CEG is learning, then the environ-
ment this single learning player faces is an MDP. To give a
concrete example, refer to Figure 1. Suppose both players
2 and 3 have chosen to move according to a fixed strategy.
Player 2’s strategy is: m2(s2) = {1}, and m2(ss) = {0.9, 0.1},
i.e., player 2 always chooses action / in state s2, and selects
action ! and r in state ss with probability 0.9 and 0.1 respec-
tively. Player 3’s strategy is m3(s3) = {0.4,0.6}. Then the
MDP the single learner, player 1, faces is shown in Figure

2. The states of the MDP consist of all the non-leaf nodes
owned by player 1 and all the leaf nodes. The actions avail-
able in every state are | and r, represented in the figure by
solid-line arrows. Taking certain actions in some states leads
to another state with probability one. We mark these ac-
tions with two numbers, the first one is the probability, and
the second one is the payoff. For instance, if player 1 chooses
action r in node s4, he will move to sg with probability 1 and
get payoff —1. Taking other actions probabilistically leads
to several other states. For instance, if player 1 takes action
r in state s1, then he will move to state s4, s9, and s10 with
probabilities p1 = 0.4, p» = 0.54, and p3 = 0.06 respectively,
getting payoffs 0, 2, and 1 respectively. We use dashed-line
arrows to represent the transition from one state to sev-
eral other states. Each dashed-line arrow is marked with
the probability of this transition and the payoff obtained by
player 1.

~~(0.06,1)

r(L- 1) (0542)

RS

Figure 2: The tree-like MDP player 1 faces assuming
he is the only learner and all other players move
according to some fixed strategies.

If the single learner in a CEG does not own the root of
the game, such as player 2 in Figure 1, then the learning
problem of this learner consists of several tree-like MDPs.
For example, if players 1 and 3 have fixed strategies and
player 2 is learning, then player 2 learns on two separate
tree-like MDPs, one consists of states s2 and sg, the other
consists of states ss, sg, and s19. Learning on two, or more,
MDPs poses no extra difficulty here. The learner updates
his strategy in an MDP only when some states in this MDP
are visited in a round of game play; otherwise, if no state is
visited in a play, the learner just keeps his previous strategy.

Players in a CEG learn through repeatedly playing the same
game. Every player has his own goal of maximizing his own
long-run average reward. We call a round of game play an
episode and index episodes by t. Given an extensive game
G, if player 4 is the only learner (thus only his strategy =
changes over time), and all the other players move according
to a fixed strategy m—_;, then player i’s average reward in N
episodes is defined as

Z Ri(m{|m-i,G)
N)
where R;(7wf|7_;, G) is the expected payoff player i obtains

in episode t. The long-run average reward of player i is
defined as the limit of AR (7!) as N goes to infinity, i.e.,

ARN (xh) =

For any fixed strategy m—; of player 4, there exists a strategy
w; for this player such that w; maximizes his expected re-

ward R;(7{|m—;, G) in one round of game play. If, through
learning, player #’s long-run average reward AR;(w!) con-
verges to R;i(w; |7—;, G), we say the learning algorithm adopted
by player ¢ is individually convergent.

If all players in an extensive game G are learning, then every
player’s strategy changes over time. Let 7 = {nf,x%;}
denote the strategy profile of all the players in episode ¢,
again, define player i’s average reward in N episodes and
long-run average reward as

Ri(m{|n%;, G)
N)

s

ARz (T"z |7r—z) -

ARi(ﬂﬂwt,i) = ngnoo ARY (7rf|7rt,l)

Let m* = {m;,n;} denote the SPE strategy profile of game
G. Then if every player #’s long-run average reward con-
verges to his SPE reward R; (7] |n*;, G), we say the learning
algorithm adopted by the players is collectively convergent.
The distinction between individual convergence and collec-
tive convergence is that the former assumes a time-invariant
environment, while the later does not.

Remarks: Note that rewards are averaged over episodes
and every round of game play causes the episode index in-
creases one. This is different from the definition of average-
reward in MDPs, in which time index increases every time
when a state transition happens.

One commonly asked question is why a player, say, player
2 in Figure 1, would follow some mixed strategy, say, in
node ss, instead of sticking to the best strategy in this node,
choosing action [? There are two reasons: (1) In the learning
process, playing greedily is not necessarily of a player’s best
interest. For example, if player 1 always takes action [in
node s4, player 3 will eventually “learn” this fact and will
never take action ! in node s3, and consequently player 1
will have no chance to get the best reward it would get in
leaf node s7. Therefore, players randomize their strategies
to explore the best rewards they can get. (2) We assume
players only know their own payoffs in leaf nodes. (Both of
our algorithms do not require a player to know its opponents’
payoffs.) Without knowing other players’ payoffs, a player
can not decide taking which action (pure strategy) is of its
best interest and therefore need to randomize its strategy to
explore the best reward it can get. This latter assumption is
critical for modeling negotiations. In a negotiation process,
it is usual that agents can observe their opponents’ moves,
but not their final rewards/payoffs.

4. MULTI-AGENT LEARNING AUTOMATA
(MLA)

The learning automaton algorithm has been shown conver-
gent for single-agent average-reward learning in ergodic *
MDPs [11, 13]. Because of the special tree-like structure
of the MDPs derived from CEGs, we can slightly change
the standard learning automaton algorithm and prove that

! An MDP is ergodic if every policy results in a single recur-
rent class, though different policies may result in different
recurrent sets. See [11] for details.

the modified version is actually both individually and collec-
tively convergent. We call the modified version Multi-agent
Learning Automata (MLA). We state MLA for multi-agent
learning in CEGs, the single-agent version for learning in
tree-like MDPs is the same. The algorithm is as follows:

In every non-leaf node s of the game, the owner of this node
(assume to be player 7) keeps a probability distribution 7f(s)
over all actions available in this node, i.e., wf(s) = {pi(a)},
where a € A(s) and Y pi(a) = 1. Every time when it is
a€A(s)

player i’s turn to move, he takes an action according to this
probability distribution. Assume player ¢ takes an action a
in episode t, then at the end of this episode, the probability
distribution 7f(s) is updated according to

pi " (a) = pi(a) + aB(1 — pi(a)),)

where 0 < a < 11is alearning rate, and g is the scaled reward
received in episode ¢. To ensure that 7!(s) is a probability
distribution at any time, 3 is scaled to fit into interval [0, 1],
with 0 representing the lowest reward the 1 representing the
highest reward.

Theorem 1: For any £ > 0, there exists a learning rate
0 < @ < 1 such that if the learning rate of every player is less
than a, then the long-run average reward every player gets
by following the MLA algorithm shown above will converge
to the e—range of his SPE reward.

Proof: We prove this theorem by induction on the depth of
the game tree. Define the level-1 set B(1) as in (1), then in
every node s € B(1), taking an action will lead to an imme-
diate reward. By the convergence of the single-automaton
algorithm [13], given any € > 0, there exists 0 < a(s) <1,
such that if the owner of the node s (suppose it to be player
i) chooses a learning rate less than a(s), then his strat-
egy 7! (s) will converge close enough to the optimal strategy
77 (s) (under Euclidean metric) such that AR;(7wi(s)), the
long-run average reward player ¢ gets by following strategy
nt(s), satisfies

|AR:(7i(s)) — ri(s)| <, (10)

where 7;(s) is the maximum reward player ¢ can obtain in
node s, as defined in (2). For any other player i’ # i who
does not own node s, mf(s) converges to m;(s) means that
the long-run average reward player ¢’ gets in node s will also
converge to the reward she would get if player ¢ follows the

optimal strategy w;(s), i.e.,
|AR;: (7} (s)) — 7 ()| < e, (11)

where 7;/(s) is defined in (3). Note that ¢; in (11) may not
equal € in (10). However, by decreasing «(s), the upper-
bound of learning rate in node s, we can always control
how close 7} (s) will converge to =} (s) and thus control &;;
therefore, without loss of generality, the following statement
holds:

For any node s € B(1), given any ¢ > 0, there exists 0 <
a(s) < 1, such that if the owner of the node s (suppose it
to be player ¢) chooses a learning rate less than a(s), then

[AR(7(s)} — 1(s)| < e T, for Vs € B(1), (12)

where T is a vector with all entries equal to one; AR(w!(s)) =
{AR;(7}(s)), ARy (mi(s))} is a vector representing the av-

erage rewards all players will get in node s if player 4, the

owner of node s, follows strategy 7f(s); r(s), as defined in

(4), is the SPE reward vector every player gets if they play

SPE strategy in the sub-game rooted in node s.

Now we move onto the level-2 set B(2). In any node w €
B(2), taking an action leads to either a leaf node or a node in
B(1). Without loss of generality, assume all actions lead to a
node in B(1). After the average reward vector in every node
of B(1) has converged to the e—range of the SPE reward
of this node, as shown in (12), the learning problem in the
nodes of B(2) is the same as that in the nodes of B(1), except
that we cannot pinpoint the rewards to exact numbers but
constraint them into intervals. More specifically, suppose
player j owns a node w € B(2) and takes an action b € A(w)
that leads to a successive node s =< w,b >€ B(1), then
because of the convergence of the learning process in node
s € B(1), the reward player j gets by taking action b in node
w would fall into the interval [r;(s) —e, r;(s) + €], where
rj(s) is the jth entry of r(s). Therefore, by the convergence
of the single-automaton algorithm, there exists an upper
bound 0 < a(w) < 1, such that if player j chooses a learning
rate less than a(w), his average reward in node w converges
to the SPE reward of the sub-game rooted in node w, i.e.

|AR; (7 (w)) — rj(w)] < 2,

where r;(w) is SPE reward player j gets in the sub-game
rooted in node w. Again, since we can always control the
convergence range by controlling a(w), we have

|AR(n (w)) — m| < ZeT), for Yw € B(2).

By induction, we conclude that Theorem 1 holds. It is also
clear that the upper bound « of the whole game is the min-
imum of the upper bounds in all nodes. a

Theorem 1 says that the MLA algorithm is collectively con-
vergent for multi-agent learning in CEGs. If only one player
is learning and all others follow fixed strategies, then as
shown in Section 3, the CEGs degenerates to tree-like MDPs.
By using the same induction technique as shown above, we
can show that the MLA algorithm is also individually con-
vergent.

Corollary 1: Give any € > 0, a single learning player in a
CEG can use the learning automaton algorithm and choose
a small enough learning rate to guarantee that his long-run
average reward converges to the e—range of the maximum
reward he can get.

5. MQ-LEARNING

The MLA algorithm uses the reward obtained in every episode
to reinforce the strategy in every node of a CEG. If we keep a
value for each node-action pair and use the reward obtained
in every episode to reinforce these values, we get another
provably convergent algorithm, MQ —learning. The name
stands for Multi-agent Q-learning, because the idea of re-
inforcing values is derived from the Q-learning algorithm.
Here is the algorithm:

In every non-leaf node s of the game, the owner of this node
(let it be player ¢) keeps a vector Qf(si storing the g-values

of all actions available in this node, i.e. Q(s) = {q}(s,a)},
for every a € A(s). Every time when it is player i’s turn to
move, he favors the action with the maximum g-value and
at the same time uniformly explores other actions. More
specifically, player i’s strategy in node s is

arg max{q!(s,b)} prob.1 —o
7!'?(8) — beA(s)
¢ uniform{d|d # arg max{q}(s,b)}} prob. o
bEA(s)
i.e., with probability 1 — o, player ¢ chooses the action with
the maximum g-value, and with probability o, player ¢ chooses
other actions uniformly.

Assume player i takes an action a in episode ¢, and then at
the end of this episode, the g-vector in node s is updated
according to

QfH(Saa) = (1 _’Y)Qf(saa) +7/Ha (13)
;' (s,0) = gi(s,b), Vb # a,

where 0 < v < 1 is a learning rate, and f is the reward
received at the end of episode t. Here we do not need to
re-scale the reward S.

Theorem 2: For any € > 0, there exists an exploration
threshold 0 < o < 1, such that if the exploration threshold
of every player is less than o, then for any node s and any a €
A(s), the expected g-value of this pair E[q!(s,a)] converges
to the e—range of the SPE reward of the sub-game rooted
in node < s,a >.

Proof: Again, we prove this theorem by induction on the
depth of the game tree. Take an arbitrary node s € B(1)
and assume the owner of this node is player #; our first ob-
servation is that for any a € A(s), ¢!(s,a) converges to the
reward player 7 would get if the game ends at the leaf node
< s,a >. Actually, updating procedure (13) defines a dif-
ference equation and the solution of this difference equation
is

q[(s,a) :,3+(q?(s,a)—,6’)(1—'y)7, (14)

where ¢?(s,a) is the initial g-value of action a, T indexes
the number of times action a has been taken®. Given that
0 < 7 < 1, the above solution is globally stable, i.e., g; (s, a)
converges to (from any initial point ¢?(s,a). Note that
taking an action in s € B(1) leads to a leaf node < s,a >,
and thus the reward 8 is a deterministic number equal to
ri(< s,a >). Therefore, given 0 < vy < 1, ¢7 (s, a) converges
to r;(< s,a >) exponentially with any given initial value.

Now we move on to level-2 set B(2). In any node w € B(2),
taking an action b leads to either a leaf node or a node in
B(1). If it is a leaf node, for the same reason stated above,
the g-value converges. Otherwise, if s =< w,a > is a non-
leaf node belonged to B(1), then the reward player j gets by
taking action b in node w is a random variable: if the owner
of node s chooses the SPE strategy (with probability 1 —a),

2We call this the local time in node s and do not use episode
index t here, because any specific action a is not activated
in every episode.

the reward is r;(s), where r;(s) is the SPE reward player
j gets in node s; if the owner of node s does not choose
the SPE strategy (with probability o), then the reward is a
random variable u depending on which sub-optimal action
has been taken. Put together, player j’s reward is 8 =
(1 — o)r;j(s) + ou. Since solution (14) is globally stable,
the expected g-value E[q] (w,b)] converges to E[§] = (1 —
o)r;j(s) + cE[u]. With small enough exploration threshold
o, Elqj (w,b)] can be bounded as

|Elq; (w,a)] —r;j(s)| <&, for Vw € B(2) and Vb € A(w),

where s =< w,a > is a node in B(1).

By induction, we conclude that Theorem 2 holds. The ex-
ploration threshold for the whole game is the minimum of
the exploration threshold in all nodes. O

There are two methods available for a player j to estimate
the expected g-value E[q] (w,b)]: The first one is to av-
erage q; (w,b) over local time T (long-run average reward)
to approximate E[g] (w,b)]. Due to the Theorem of Large
Numbers, this average converges to the expectation. The
second way is to decrease the learning rate 7 to suppress
the variance of ¢f (w,b). Theoretically, as in Q-learning, if
player j’s learning rate v" at local time 7 satisfies

(oo}

Z ! _ 00, and i ! < 0o

s) syl 3

T=0 A/T 7=0 (’YT)

q; (w, b) itself converges to its expectations and player j can
directly use gj (w,b) to estimate E[q] (w,b)].

Again, If only one player is learning and all others follow
fixed strategies, then by using the same induction technique,
we can show that the MQ-learning algorithm is also individ-
ually convergent.

Corollary 2: Give any € > 0, a single learner in a CEG
can use MQ-learning and chooses a small enough exploration
rate to guarantee that his long-run average reward converges
to the e— range of the maximum reward he can get.

6. EXPERIMENTS

In this section, we test our algorithms on the CEG shown
in Figure 1.

6.1 MLA

In the first experiment, we test the MLA algorithm and
set a1 = 0.005, a2 = 0.003, and a3 = 0.01, where a; is
the learning rate of player i. Figure 3 shows the evolution
of probability vectors in four nodes of the game. We only
show the probability of taking action ! in every node. Since
there are only two actions available in every node, the prob-
ability of taking action r in every node equals one minus
the probability of taking action !. Node sz is not included
in this figure because only one action is available in s and
thus p(s2,!) = 1. As we can see, after about 1000 learning
episodes, all players’ strategies converge very close to the
SPE profile. In the SPE profile, p(s4,!), the probability of
player 1 taking action !/ in node s4, equals one. Figure 3
shows that p(sa,l) actually converges to 0.957. The reason
is after p(ss,l) converges very close to zero, player 1, who
owns node s4, has little chance to visit this node any more.

If we decrease the maximum learning rate, the error between
the SPE profile and actual strategy profile can decrease as
well. In Figure 4, we change the learning rate of player 3
from a3z = 0.01 to 0.002 and keep everything the same as
in Figure 3. Compared with the previous experiment, two
observations about Figure 4 are clear: First, because of the
small learning rate of player 3, the convergence speed of
p(ss,1) is slower. (For the convenience of direct comparison,
we put Figure 4 in the same time scale as Figure 3. Even
though we cannot see the convergence of p(ss,) in Figure 4,
it actually converges very close to zero.) Second, p(s4,!) in
Figure 4 converges closer to one compared with the conver-
gence in Figure 3. In Figure 4, p(s4,[) converges to 0.998,
in contrast with 0.957 in Figure 3.

6.2 MQ-Learning

The learning rates of the three players are set to be vy; =
0.01, v2 = 0.02, and 73 = 0.01 and the exploration thresh-
olds are set to be 01 = 0.1, 02 = 0.05, and o3 = 0.2. All the
initial g-values are zero. Figure 5 shows the experimental
results.

As we can see, the g-value of every node-action pair eventu-
ally converges to a neighborhood of the SPE reward of the
successive node of this pair. Note that ¢(s4,r) converges ex-
tremely slowly; the reason is that this specific node-action
pair has little chance to be activated. We can accelerate
the convergence speed by two ways: First, choose larger ex-
ploration thresholds to ensure every node-action pair is suf-
ficiently activated in the learning process. Second, choose
larger learning rates to speed up the learning process. How-
ever, both acceleration methods have undesired side effects:
large exploration thresholds enlarge the e—range that con-
straints the expected g-values; large learning rates amplify
the variance of g-values.

7. RELATED WORK

Another model of multi-agent learning in games is the stochas-
tic game model. Littman [9] studied how agent can learn
to play minimax strategies in zero-sum stochastic games.
Hu and Wellman [5] and Littman [10] further extended this
model by allowing agents to play general-sum stochastic
games. These extensions used Nash equilibrium, which ex-
tends the minimax concept for zero-sum games to general-
sum games, as the solution concept. Bowling and Veloso
[2] studied how agents can learn to play general-sum ma-
trix games. Their algorithm, derived from Singh et al. [14],
which in turn has its root in evolutionary game theory, can
only provably guarantee to converge for very simple matrix
games with two players and two actions.

Game theorists are also interested in multi-agent learning
in various games. Their efforts on this topic, in response to
the often-quoted criticism that the various equilibrium con-
cepts in game theory assume unbounded rationality of the
players, mainly focus on developing an “alternative expla-
nation that equilibrium arises as the long-run outcome of a
process in which less than fully rational players grope for
optimality over time.” (Fudenberg and Levine [3], page 1.)
Our technique can be viewed as an example of this process.
Another example is the popular technique of fictitious play.
An agent fictitiously plays a game by adopting some statis-
tical method to form beliefs about the strategies of other

Probabilities of node-action pairs
o o o o o o
N w S v o ~

o
o

P,

0 . h . . . h . I
0 100 200 300 400 500 600 700 800 900 1000
Learning episode

Figure 3: The evolution of three players’ strate-
gies when using the automation learning algorithm.
The learning rates are set to be a; = 0.005, a2 =
0.003, and as = 0.01.

1

Probabilities of node-action pairs
© o o o o o o
N w S v o ~ o

o
o

0 . !
0 100 200 300 400 500 600 700 800 900 1000
Learning episode

Figure 4: The evolution of three players’ strate-
gies when using the automation learning algorithm.
Compared with Figure 3, only player 3’s learning
rate is changed to a3z = 0.002, all other parameters
are the same.

3 : : '
[a(s,.l)
TN " AW
2 [Py i s WMl IR Lislakitals MO
a(s,n
" alsyn
g 1 A
g
c
S
g
8 (5,0
3o
5 q(sg
k<)
P
g q(s,n
3
T-1
= q(s,)
q(sgn
ok
q(s,)
-3t T T I T I 1 L L .
o 1 2 3 4 5 6 7 8 9 10
Learning episode x10*

Figure 5: The evolution of g-values when using the
MQ-learning algorithm. The exploration thresh-
olds of three players are set to be o1 = 0.1, 02 =
0.05, and o3 = 0.2.

agents and then adjusts his own strategy according to these
beliefs. There are potentially many different ways to build
beliefs; different ways almost always bring about different
learning processes. Therefore, whether, and how, the learn-
ing process of a given fictitious-play model converges often
heavily depends on how agents build beliefs. Nodleke and
Samuelson [12] studied a fictitious play model for CEGs.
The learning process in their model does not converge to
SPE in general. Actually, the stable points of the learning
process in their model consist of not only SPE but also other
outcomes. For a complete treatment of fictitious play, refer
to Fudenberg and Levine [3] and the references therein.

Recently, reinforcement learning techniques have also drawn
attention from game theorists. After finishing this paper,
we noticed that Jehiel and Samet [6] proposed a similar al-
gorithm to our MQ-learning. Their algorithm differs from
MQ-learning in that it does not use equation (13) to update
the g-values and estimates the expected g-values by directly
averaging the reward obtained in every episode.

8. CONCLUSIONS

We show that a group of autonomous and self-interested
agents can learn to play the SPE strategy in a CEG by
repeatedly reinforcing their previous success/failure experi-
ence, without building beliefs about each other. This result
relies on two factors: (1) the special tree structure of a CEG,
and (2) the fact that every move is observable in a CEG.

In an extensive game with incomplete information, a player
cannot always observe the previous actions taken by other
players. Therefore, a player may not know exactly which
tree node he is located at during the learning process. In-
stead, he only has information about which nodes he might
be located at and this information is represented by a prob-
ability distribution over all possible nodes. Again, if we
assume only one player is learning, the problem of learning
in extensive games with incomplete information degenerates
to the problem of learning in Partially Observable Markov
Decision Processes (POMDPs), with the hidden states cor-
responding to nodes in the game. In future work, we are
going to investigate whether the single-agent learning algo-
rithms [7] for POMDPs can also be extended for learning in
extensive games with incomplete information.

Acknowledgment

The authors are grateful to Teddy Seidenfeld, Geoffrey Gor-
don and three anonymous reviewers for their helpful com-
ments that greatly improved the exposition and content of
this paper.

9. REFERENCES
[1] D. P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, Belmont, MA, 1996.

[2] M. H. Bowling and M. M. Veloso. Multiagent learning
using a variable learning rate. Artificial Intelligence,
136(2):215-250, 2002.

[3] D. Fudenberg and D. K. Levine. The Theory of
Learning in Games. MIT Press, Cambridge, MA, 1998.

[4] D. Fudenberg and J. Tirole. Game Theory. MIT
Press, Cambridge, MA, 1991.

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

J. Hu and M. P. Wellman. Multiagent reinforcement
learning: theoretical framework and an algorithm. In
Proc. 15th International Conf. on Machine Learning,
pages 242-250, 1998.

P. Jehiel and D. Samet. Learning to play games in
extensive form by evaluation. Working Paper.
HTTP://www.tau.ac.il/~ samet.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101:99-134, 1998.

L. P. Kaelbling, M. L. Littman, and A. P. Moore.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237-285, 1996.

M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of
the 11th International Conference on Machine
Learning (ML-94), pages 157-163, 1994.

M. L. Littman. Friend-or-foe g-learning in general-sum
games. In Proceedings of the 18th International
Conference on Machine Learning, pages 322-328,
2001.

S. Mahadevan. Average reward reinforcement
learning: Foundations, algorithms, and empirical
results. Machine Learning, 22(1-3):159-195, 1996.

G. Noldeke and L. Samuelson. An evolutionary
analysis of backward and forward induction. Games
and Economic Behavior, 5(3):425-454, 1993.

J. Richard M. Wheeler and K. S. Narendra.
Decentralized learning in finite markov chains. IEEE
Transactions on Automatic Control,
AC-31(6):519-526, 1986.

S. Singh, M. Kearns, and Y. Mansour. Nash
convergence of gradient dynamics in general-sum
games. In Proc. of the 16th Conference on Uncertainty
in Artificial Intelligence, pages 541-548, 2000.

R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
Massachusetts, 1998.

