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Abstract

A crucial task in the completion of genomic sequencing projects is annotation of predicted genes.
Annotation is facilitated by classification of sequences into families. Since members of a fam-
ily tend to have similar properties, attributes of well studied genes can be used to predict the
properties of newly discovered genes. Typically, only a small number of genes have been studied
experimentally. The functions of the majority of genes are unknown. Thus, gene family classifi-
cation can be cast as a learning problem with only a small number of labeled data. This scenario
is a natural application for semi-supervised learning algorithms that extract information not only
from labeled data, but also from the structure of unlabeled data.

In this study, I applied a graph-based semi-supervised algorithm developed by Zhu and Lafferty
to gene family classification and compared it with supervised learning using an analogous kernel
function. A novel similarity score was used that avoids false positives due to insertion of similar
sequence fragments into unrelated sequences. The performance of both methods was evaluated
using 18 hand curated families. In addition to overall performance comparison, the importance of
parameter selection for different families was investigated. My results show that semi-supervised
learning outperformed supervised learning for one third of the families, and performed equally
well in the rest families. The effect is especially significant when the number of labeled family
members is small.

1 Introduction

A gene family is a set genes that arose from the same origin. Since genes in the same family
share related functions, gene family classification is a powerful tool to infer evolutionary, functional
and structural properties of genes. Gene family classification has been used as the basis for high
throughput gene annotation in many genome projects. Gene family classification is also useful in
selecting targets for experimental study. For experimental biologists, top ranked predictions are
especially of interest.

Various unsupervised clustering methods have been developed to group proteins into different
families, including hierarchical clustering [24, 41, 55], spectral clustering [36], and Markov clus-
tering [11], and GENERAGE[12]. Although much progress has been made in this area, current
methods are still error prone because mutation results in many false positives and false negatives.
However, in many cases, some labeled data is available that could be used to improve classification
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performance. For example, when a genome project is completed, although a large number of new
gene predictions need to be verified, some of these genes have already been studied in depth by
independent laboratories and this information can be used to improve accuracy of classification.

Semi-supervised learning is a natural approach to the scenario where a small number of genes
have been studied experimentally and are well characterized. We would like to predict which
genes are in the same family as those known genes. Unlike supervised classification methods, semi-
supervised methods extract information not only from labeled data, but also from the unlabeled
data, by exploiting the graph structure. Thus, semi-supervised learning is especially suitable
for applications in which labeled data is difficult to obtain. Various semi-supervised learning
methods, including generative mixture models [8, 14, 35], transductive SVMs [20], co-training [5],
information regularization [48] and graph-based models [3, 4, 48, 50, 56], have been developed.
Graphical semi-supervised learning methods are a natural choice for protein classification because
the protein universe is easily modeled as a similarity graph, where the vertices are the proteins
and the weights of edges correspond to the degree of sequence similarity between pairs of protein
sequences.

In this paper, I applied the graph-based semi-supervised learning algorithms designed by Zhu
and Lafferty [56] to the problem of protein classification. The problem of identifying sequences
that are in the same family as the known sequences can be formally framed as a binary classifi-
cation problem. We are given as input a sequence similarity graph, where the vertices represent
protein sequences. Two vertices are connected by an edge if the corresponding sequences are
similar. We are also given set of labeled data. These can include known family members (positive
examples) and sequences known not to belong to the family (negative examples). The goal is to
separate the set of protein sequences into two groups: one is composed of family members and
the other one is composed of the remaining proteins.

I used an empirical approach to study the effectiveness of this semi-supervised learning method
in classifying protein families. I applied the method to a test set composed of eighteen well
studied families using amino acid sequences from mouse. The effectiveness of the method was
evaluated using AUC scores and the number of false negatives. I also investigated the stability of
the method by testing how strongly the performance depends on parameter choices. The semi-
supervised learning algorithm I used exploits graph structure. I compared its performance with
that of a comparable supervised classification method to understand how much information we
obtain from the structure of the graph.

The reminder of the paper is organized as follows. In section 2, I present a brief overview
the graph-based semi-supervised learning algorithm for binary classification. I review current
knowledge of the evolutionary process of proteins in section 3 and explain how these processes
challenge protein classification. In section 4, I present the methodology used in my empirical
study of the semi-supervised learning method in protein family classification. The results are
summarized in Section 5, along with detailed discussion of four typical families to highlight the
properties of the semi-supervised learning method in protein family classification.
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2 Overview of the graph-based semi-supervised learning algo-

rithm

In this section, I review Zhu and Lafferty’s algorithm for binary classification [56]. The algorithm
takes a weighted similarity graph, G = (V, E), as input. The vertices represent elements in the
dataset. The edge weights are proportional to the similarity between data points; i.e., edges be-
tween similar data points have large weights. The vertices include labeled data (L) and unlabeled
data(U). Usually L � U . As shown in Table 1, L = {(x1, y1), (x2, y2), ..., (xl, yl)} is used to repre-
sent the labeled dataset. If xi is a positive example, then yi = 1. If xi is a negative example, then
yi = 0. U = {xl+1, ..., xl+u} is used to represent unlabeled data. The goal of the semi-supervised
learning algorithm is to assign a real value f(xi) to every vertex xi in the unlabeled data set, such
that family members have higher values than nonfamily members. Then a cutoff can be used to
separate family members from nonfamily members in the unlabeled dataset.

Wi,j Edge weight between vertices xi and xj

Si,j Similarity between vertices xi and xj

σ Scaling factor in the smoothing function

L The set of labeled data

U The set of unlabeled data

(xi, yi) Labeled data points
yi = 1, if xi is a family member
yi = 0, otherwise

(xi, f(xi)) Unlabeled data points
f(xi): real value score assigned to xi

LF Number of labeled family members

LN Number of labeled nonfamily members

Table 1: Notation used in this paper

This graph-based semi-supervised method is based on the assumption that if two data points
are close to each other, they are likely to be in the same class. The method can be formulated as
label propagation. The labeled data act as source to send out signals to adjacent data points, and
further propagate through the graph. The unlabeled data receive these signals. The estimation of
f(xi) is determined by the information they received. The flow of label propagation is influenced
by the edge weights. Instead of using raw similarity scores, various smoothing functions have
been used to assign weights to edges. In this paper, I used the exponential smoothing function

W (i, j) = exp(
S(i, j) − 1

σ
), (1)

where W (i, j) is the weight of the edge between xi and xj, and S(i, j) is the raw similarity score.
The hyperparameter, σ, is critical in determining the relative importance of close and distance
data points. Therefore, its value can affect the performance of the algorithm. I used a similarity
score, S(i, j), that ranges from zero to one. Since the power of the exponential in Equation (1) is
(1−S(i, j)), the range of W (i, j) is also from zero to one. The limited range of W (i, j) facilitates
the study of the impact of σ, as discussed further in Sections 4 and 5.
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The graph-based semi-supervised learning algorithm assigns the scores, f(xi), to minimize
the following formula:

1/2 ∗
∑

j∈D

∑

i∈D

W (xi, xj)(yi − f(xj))
2, (2)

with the constraint that f(xi) = yi, when xi ∈ L. The optimization of this formula is equivalent
to solving the following equation:

fu = (Duu − Wuu)−1Wulfl (3)

where D = diag(di) is the diagonal matrix with di =
∑

j Wij .
Compared to the supervised method, the advantage of the semi-supervised method is that it

derives information from the graph structure. To understand how much information is obtained
from the graph, I compare the performance of graph based semi-supervised classification with
the corresponding supervised classification method. That algorithm selects values of f(xi) that
minimize

1/2 ∗
∑

j∈D

∑

i∈L

W (xi, xj)(yi − f(xj))
2. (4)

Notice, although Equation (2) and Equation (4) are similar, Equation (2) considers the distances
among all pairs of data points. In contrast, Equation (4) only considers the distances among
pairs where one element is labeled and the other is unlabeled.

3 The sequence similarity graph

In this work, the protein universe is modeled as a graph G = (V,E), where V is the set of all
amino acid sequences and two vertices are connected by an edge if the associated sequences have
significant similarity. The structure of this graph is influenced by the processes of molecular
evolution.

Proteins evolve through duplication, mutation and domain shuffling. Duplication is the ma-
jor force to increase gene family size. Mutations change protein sequences, leading to functional
differentiation. Domains are sequence fragments that can fold independent of context and act
as structural modules. These sequence fragments can be duplicated and transferred to differ-
ent proteins in the evolutionary process called domain shuffling. Since domains are structural,
evolutionary and functional units in proteins, domain shuffling enables rapid evolution of new
functions for proteins.

Ideally, all family members form a single clique, and there are no edges connecting this clique
to vertices from other families. In this case, the task of identifying gene families is simply to
find the clique. However, because the complex evolutionary history of protein families, neither of
these ideals is generally true. The accumulation of mutations can reduce the similarity between
genes in the same family to the point where it is not recognizable. As a result, genes in the same
family may not form a clique. In some cases, they may not even form a connected component.
On the other hand, mutations may cause genes in different families to have significant sequence
similarity. Domain shuffling can also result in significant sequence similarity between genes in
different families. As a result, proteins from different families can be connected by edges in the
similarity graph.
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In summary, evolutionary processes can result in both missing edges and wrong edges in the
sequence similarity graph. This deformation of the graph is the major challenge to graph-based
protein classification methods. In the following sections, I will discuss how these issues influence
the performance of the supervised and semi-supervised learning methods used in this study.

4 Experiments

To assess performance of different classification methods, benchmark datasets of known families
are needed. However, currently there are no suitable datasets available. I hand-curated a novel
benchmark dataset from mouse sequences. Using this dataset, I evaluated the effectiveness of
the semi-supervised learning method in separating family members from nonfamily members. I
investigated the stability of the method under different parameters, and compared it with the
supervised learning method.

Graph construction I collected 7000 complete mouse sequences from the SwissProt Version
44 [2] ∗, released in 09/2004. Similarity is typically assessed using a direct measure of similarity
(e.g., bitscores) or a measure of the statistical significance of sequence similarity (e.g. E values) [1].
However, these measures will result in wrong edges due to convergent evolution and/or domain
shuffling. Instead, I used a novel similarity score that avoids false positives due to insertion of
similar sequence fragments into unrelated sequences [45]. The range of this similarity score is (0,
1). For sequence pairs that do not have significant similarity, a pseudo-score of 0.001 was assigned
to facilitate the computation.

Test set construction To test the various methods, we required sets of proteins from the
same family. I constructed a list of sequences from eighteen known families using reports from
nomenclature committees † and articles from the literature. Types of evidence presented in
these articles include intron/exon structure, phylogenetics and synteny. As a result of this
process, I have a list of 1,137 proteins each known to be from one of the following families:
ACSL[7, 31], ADAM (a family of proteins containing A Disintegrin And Metalloproteinase do-
main) [34, 46, 53], DVL (Dishevelled protein family) [43, 51], Fox (Forkhead transcription
factor family) [21, 32], GATA (GATA binding proteins) [28, 37], Kinase [6, 16, 40, 44], Ki-
nesin [19, 25, 33], Laminin [10, 17], Myosin [13, 15, 39], Notch [23, 30, 49], PDE (Phosphodi-
esterases) [9], SEMA (Semaphorin) [38, 54], TNFR (Tumor Necrosis Factor Receptors) [26, 29],
TRAF (Tumor necrosis factor Receptor Associated Factors) [18], USP (Ubiquitin Specific Pro-
teases) [22, 52] and WNT[27, 42]. Our test families exhibit one of the four following graph
structures:

• Family members form a clique. Some family members have strong sequence similarity
(S(i, j) ≥ 0.4) to genes outside the family.

• Family members form a clique. All family members have weak sequence similarity (S(i, j) ≤
0.4) to genes outside the family.

∗http://us.expasy.org/sprot/
†http://www.gene.ucl.ac.uk/nomenclature/
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• Family members are in the same connected component, but do not form a clique.

• Family members are in more than one connected component.

The structure of all 18 families is summarized in Table 2.

Family size Similar Clique Connected Not connected

ACSL 5 4 W
DVL 3 31 W
Fox 30 95 W
GATA 6 8 W
SEMA 16 108 W
TRAF 6 110 W
Tbox 9 11 W
WNT 19 2 W

Kinesin 18 298 S
Laminin 11 380 S
Myosin 12 764 S
Notch 4 260 S

ADAM 26 139 X
FGF 20 0 X

Kinase 293 1196 X
PDE 15 9 X
TNFR 24 86 X
USP 18 42 X

Table 2: Graph structure of test families. Similar: number of sequences that are not in the
same family but have significant sequence similarity (S(i, j) > 0) to one or more family members.
W: Edges to sequences outside the family have weak edge weights (S(i, j) ≥ 0.4). S: Edges to
sequences outside the family have strong edge weights (S(i, j) < 0.4).

Basis for evaluation I evaluated classifier performance numerically using Area Under receiver
operating characteristic Curve (AUC) scores. The AUC score provides a single measure of classi-
fication accuracy, without considering the cutoff [47]. Suppose we are given two classes {a} and
{b} of size p and q, respectively. Let ai, i = 1, 2, ..., p and bj, j = 1, 2, ..., q, be the values assigned
to the members of {a} and {b} respectively. The AUC score is calculated as follows:

AUC =

∑p
i=1

∑q
j=1

X(ai, bj)

pq
,

where

X(ai, bj) =







1 if ai > bj

0.5 if ai = bj

0 if ai < bj

(5)
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AUC scores range from 0.5 to 1. A value of 1.0 indicates perfect separation of the two classes,
while random assignment of elements to the two classes would result in a score of roughly 0.5.
If we consider sensitivity and specificity to be equally important, a larger AUC score indicates a
better classifier.

For some applications, such as selecting targets for experimental biologists, AUC scores alone
are not sufficiently informative. Since it is expensive and time consuming to perform experiments
to study proteins in depth, experimental biologists tend to start with the top ranked prediction
and stop at the first false prediction. Therefore, for experimental biologists, the top ranked are
especially of interest and a method that ranks fewer family members after the first nonfamily
member is desirable. For this reason, I also considered the number of missed family members
(false negatives) observed after the first nonfamily member (false positive). Although the number
of false negatives provide some information, it doesn’t tell us whether or not proteins of lower
rank are separable.

Experiments performed I evaluated how the performance of semi-supervised learning method
changed with different parameters. Tested parameters include the hyperparameter, σ, in the
smoothing function, the number of labeled family members (LF), and the number of labeled
nonfamily members (LN).

The σ values I tried include 0.05, 0.1, 0.5, 1, 2, 10, and 100. These values cover a variety of
situations as regard to the relationship of S(i, j) and W (i, j) as shown in Fig. 1. When σ = 0.05,
the weight W (i, j) drops dramatically with the decrease of the similarity score, S(i, j). When the
similarity score S(i, j) is less than 0.8, the weight W (i, j) is close to zero. This implies that only
close data points have significant contribution to the label of the studied data point, while the
data points with similarity less than 0.8 have negligible contribution. In contrast, when σ = 100,
the weights for most data points are close to one. This indicates that almost all data points in
the graph have equal contribution, no matter how distant they are from the studied data point.

=100

=10

=1

=0.5

=0.2
=0.1

0.08
0.05

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

W

S

Figure 1: The effects of σ values on W (i, j), where W (i, j) is defined as exp((1 − S(i, j))/σ).

The LF values I tested vary from 10% to 70% of the family size, as shown in Table 3. The
LN values I tested include 100, 500 and 1000. This corresponds to approximately 1% to 10% of
the number of vertices outside the family. I tried 20 different samples for each LF, LN pair. In
each sample, the labeled family members are randomly selected from the family members and the
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labeled nonfamily members are randomly selected from sequences that do not have significant
matches to any sequence in that family. This is to ensure that the negative examples are true
negatives. For each sample, I experimented with different σ values to determine the impact of
smoothing on performance. For each combination of LF, LN, and σ, I calculated the average
AUC score and the average number of false negatives over 20 samples. In the following section,
I reported the maximum average AUC score and the minimum average false negatives over all
values of σ. In general, a wide range of σ values can achieve the best performance.

Family Size LF

ACSL 5 1, 3

ADAM 26 3, 5, 7, 9,15

DVL 3 1

FGF 20 3, 5, 7, 11, 15

Fox 30 3, 9, 15

GATA 6 1,3

Kinase 293 3, 7, 11, 15, 20, 50, 150

Kinesin 18 2, 6, 9

Laminin 11 1, 3, 5, 7

Myosin 12 2, 4, 6, 9

Notch 4 1, 2

PDE 15 2, 5, 7, 10

SEMA 16 2, 5, 8

TNFR 24 2, 4, 8, 12, 18

TRAF 9 1, 3

Tbox 6 2, 5

USP 18 2, 4, 6, 9,13

WNT 19 2, 9

Table 3: Family size and the number of labeled family members tested for each family.

5 Results and discussion

In this paper, I evaluated performance of the semi-supervised and the supervised learning meth-
ods using 18 hand curated families. Tables 4 and 5 summarize the best average AUC score and
the minimal average false negatives after the first false positive for each LF, LN pair. These
results suggest that the graph-based semi-supervised method can effectively identify protein fam-
ily members and the semi-supervised method has equal or better performance compared to the
supervised method. For 11 families, both semi-supervised and supervised methods have perfect
performance, i.e., the AUC score is equal to one and the number of false negatives is equal to
zero. For the remaining seven families, when LF is small, for each LF, LN pair, the AUC score of
the semi-supervised method is equal to or larger than that of the supervised method (Table 4).
For five of these seven families, the semi-supervised method also has fewer false negatives than
the supervised method (Table 5). All these suggest that generally the semi-supervised method
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has equal or better performance than the supervised method. Moreover, the semi-supervised
method is more suitable than the supervised method in selecting targets for experimental bi-
ologists. Detailed analysis shows that the performance of both semi-supervised and supervised
methods depend on the graph structure of test families. For almost all families that form a clique,
both methods have perfect performance. For families that do not form a clique, generally the
semi-supervised method outperforms the supervised method.

Smallest tested LF Largest tested LF

LN = 100 LN = 1000 LN = 100 LN = 1000

Super Semi Super Semi Super Semi Super Semi

Clique, strong

ACSL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DVL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fox 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GATA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SEMA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Tbox 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

TRAF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

WNT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Clique, weak

Kinesin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Laminin 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

Myosin 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Notch 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Connected

ADAM 0.9552 1.0000 0.9983 1.0000 1.0000 1.0000 1.0000 1.0000

FGF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Not Connected

Kinase 0.9525 0.9645 0.9749 0.9738 0.9664 0.9672 0.9802 0.9768

PDE 0.9292 0.9364 0.9640 0.9589 0.9561 0.9603 0.9793 0.9769

TNFR 0.9225 0.9420 0.9556 0.9526 0.9629 0.9671 0.9845 0.9866

USP 0.9781 0.9798 0.9912 0.9895 0.9854 0.9875 0.9906 0.9895

Table 4: The maximum average AUC score over all σ values tested, for each LF, LN pair. The
results given are averaged over 20 tests.

I also investigated the impact of different parameters for both semi-supervised and supervised
methods. Table 4 and 5 show that, for both methods, generally with the increase of LF and LN,
the AUC scores increase and the number of false negative decreases, indicating that performance
improves. The impact of σ varies for different families. For most families, the performance is not
very sensitive to σ. For some other families, the effect is more complex.

In the following sections, I use four families, one from each graphical type, to show the
performance of both supervised and semi-supervised methods and the impact of these parameters
in detail.
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The minimum number of false positives after the first negative

Smallest tested LF Largest tested LF

LN = 100 LN = 1000 LN = 100 LN = 1000

Super Semi Super Semi Super Semi Super Semi

Clique, strong

ACSL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DVL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fox 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GATA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SEMA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tbox 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TRAF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WNT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Clique, weak

Kinesin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Laminin 1.77 1.69 1.97 2.05 0.10 0.10 0.37 0.09

Myosin 0.00 0.50 0.00 0.15 0.00 0.00 0.00 0.00

Notch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Connected

ADAM 0.33 0.00 0.13 0.00 0.00 0.00 0.00 0.00

FGF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Not Connected

Kinase 117.00 135.97 126.48 137.17 87.17 100.73 79.00 118.90

PDE 2.90 2.50 2.47 2.33 0.53 0.60 0.40 0.55

TNFR 5.13 3.85 5.43 4.70 1.23 1.15 0.50 0.85

USP 1.00 0.95 0.80 0.75 0.23 0.20 0.27 0.25

Table 5: The minimum average number of false positives over all σ values tested, for each LF,
LN pair. The results given are averaged over 20 tests.

5.1 Fox

The Fox family is highly conserved. All family members are significantly similar to each other,
i.e., form a clique. In addition, several Fox proteins have weak raw similarity to some nonfamily
members. For both semi-supervised and supervised methods, the choice of LF, LN, and σ does
not affect the performance: perfect performance is obtained for all parameters tested. Fig. 3
shows three rankplots, where all sequences are ordered based on the predicted f(x) value, for the
semi-supervised method for one test sample with LF = 3, LN = 100, under different σ. In all
three plots, family members have greater f(x) values than nonfamily members, and a clear cutoff
can separate them.

The performance can be explained by the graph structure. In this study, the edge weights
are calculated using a smoothing function (Equation 1). Because family-family pairs have much
greater raw similarity scores than those of family-nonfamily pairs, when σ values range from 0.1
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to 10.0, the edge weights for family-family pairs are significantly greater than those of family-
nonfamily pairs (Fig. 2), and family members form a clique. In this case, family classification
is comparatively easy. Not too much information is needed from labeled data, which explains
why the performance is stable for different values of LF and LN. Note, if σ is extremely small
or large, e.g., σ > 10 or σ < 0.05, the nice graph property no longer hold. For example, if
σ is extremely small, the edge weights between some family-family pairs will be too weak. In
that case, the family no longer forms a clique. In contrast, if σ is too large, the edge weights
between family-family pairs and family-nonfamily pairs will not be distinguishable. Under these
two extreme cases, the performance of classification will not be perfect (data not shown here).
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Figure 2: In Fox, the histogram of (A) original similarity scores, (B) edge weights when σ = 0.1,
and (C) edge weights when σ = 10, respectively. Blue color represents the edges between family-
family and red color represent the edge weights between family-nonfamily pairs.
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Figure 3: The rank plots for Fox with LF = 3, LN = 100 when (A) σ = 0.1 (B)σ = 1.0 and (C)
σ = 10. Blue points represent family members and red points represent nonfamily members.

5.2 Notch

Similar to the Fox family, the Notch family is highly conserved and all family members form a
clique. Unlike the Fox family, Notch family members have strong similarity to some sequences
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outside the family. A large number of family-nonfamily pairs have similarity scores greater than
0.6.

The performance of the semi-supervised and supervised methods in Notch is also similar to
that of Fox. For all pairs of LF, LN tested, perfect performance is obtained for both semi-
supervised and supervised methods. However, the range of optimal σ values for the semi-
supervised method (0.05 ≤ σ ≤ 1.0) is smaller that of the Fox (0.05 ≤ σ ≤ 10.0). When
σ = 10, the performance for the semi-supervised method is not perfect.

The different performance of the semi-supervised method in Notch and Fox can be explained
by the large raw similarity scores between Notch sequences and sequences outside the family.
As shown in Fig. 4, when σ = 10, the weights for family-family pairs and family-nonfamily
pairs are quite similar. Because of label propagation in the semi-supervised method, the impact
of nonfamily members is substantial when the weight between family-nonfamily pairs increases,
leading to a misclassification. For FOX, this situation happens only when σ > 10.
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Figure 4: In Notch, the histogram of (A) original similarity scores, (B) edge weights when σ = 0.1,
and (C) edge weights when σ = 10, respectively. Blue color represents the edges between family-
family and red color represent the edge weights between family-nonfamily pairs.

5.3 ADAM

The ADAM family forms a single connected component, but does not form a clique. The fam-
ily size is 26. However, one ADAM sequence is significant similar to only eight other ADAM
sequences.

As shown in Fig. 5, the semi-supervised classification method always has perfect performance
for all pairs of LF, LN tested. In contrast, the supervised method does not have perfect per-
formance when the number of labeled family members is less than seven (27% of the family
size).

The reason that the semi-supervised method outperforms the supervised method when LF
is small is that the semi-supervised method exploits graph structure information, while the su-
pervised method does not. For the supervised method, perfect classification requires that every
unlabeled family member to be adjacent to at least one labeled family member. When LF is
small, some family members, such as the sequence which is similar to only 8 out of 26 ADAM
sequences, may not be adjacent to any labeled family members. However, when LF increases,
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the probability that a family sequence is not adjacent to any labeled family members decreases.
This explains why the supervised method has perfect performance when LF is large. For the
graph-based semi-supervised method, since labeled data can affect other data points through
label propagation, the direct connection between unlabeled family member and labeled family
members is not required. Therefore, the semi-supervised method has perfect performance when
LF is small.

0.992

0.996

1

73 5 159

A
U

C

Semi-supervised, LN = 1000

Supervised, LN =100

Supervised, LN =1000

Semi-supervised, LN = 100

ADAM

Number of labeled family sequences (LF)

Figure 5: In ADAM, the maximum average AUC scores for each LF, LN pair over all σ values
tested. The results are given averaged over 20 tests

5.4 TNFR

TNFR is characterised by low sequence similarity within the family. TNFR is a family that does
not form a single connected component. In our test set, there are 24 TNFR proteins. The largest
component contains 23 TNFR sequences and 5594 sequences outside the family. Among these 23
TNFR sequences, 20 TNFR sequences directly connect to other TNFR sequences. Three proteins
indirectly linked to these 20 proteins through nonfamily proteins. The remaining protein is in a
different component.

Neither the semi-supervised method nor the supervised method has perfect performance.
Figs. 6 and 7 show that for all values of LF and LN = 100, the semi-supervised method has
better performance than the supervised method, as indicated by the larger AUC score and fewer
of false negatives.

6 Discussion

In this paper, I applied Zhu and Lafferty’s graph-based semi-supervised learning algorithm [56]
to protein family classification. To my knowledge, this is the first application of the algorithm
to a problem in molecular biology. A different semi-supervised method was previously applied to
domain classification, one related but different biological problem [50].
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Figure 6: In TNFR, the maximum average AUC scores for each LF, LN pair over all σ values
tested. The results are given averaged over 20 tests

My empirical study shows that the semi-supervised learning method is effective in protein
family classification. The performance of the semi-supervised learning algorithm is better than
the corresponding supervised method when the number of labeled data is small. These results
suggest that the semi-supervised learning algorithm is a promising approach for gene annotation
and selecting target genes for experimental study.

The performance of the method was tested on a dataset of 18 well-studied families. Of these,
12 form cliques. Both supervised and semi-supervised learning performed well on these families.
The semi-supervised method outperforms the supervised method for all families that do not form
a clique except FGF where they have equal performance. This is due to the label propagation
properties of the semi-supervised learning algorithm. The semi-supervised method performs very
well on families that form a single connected component, less well on families that span more
than one connected component.

The semi-supervised method is most promising for families that do not form cliques. Cliques
represent two thirds of my test set. However, it may be that cliques are over represented in my
test set because these families are well studied: it is easy to identify families that are highly
conserved and therefore form a clique. It is possible that a much smaller fraction of families in
the protein universe form cliques.

The challenging problem for future work on semi-supervised protein family classification is
how to identify sequences that are not in the same connected component. There are two promising
approaches to this problem: we can either build the similarity graph using different similarity
scores that promote great connectivity or enhance the label propagation properties of the graph-
based semi-supervised method.

This study also contributes to expand applications of the semi-supervised method. The graph-
based semi-supervised learning method has been successfully applied in different areas, including
face recognition and text recognition. However, the protein family classification is substantially
different from previous applications in two aspects. First, the graph structure of the protein
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sequence similarity graph is quite different from the abstract model in previous applications. As
shown in Fig 2 [56], the abstract model in previous applications seem to have long tails, however,
for protein family classification, the graph is more like islands in the sea. Since graph-based
semi-supervised method is based on exploiting graph structures, it is valuable to investigate the
performance of the semi-supervised method in different types of graphs. Second, in this paper,
semi-supervised learning method is applied to an atypical binary classification problem. In protein
family classification, all proteins are classified into two groups, one group is composed of family
members, while the other group is composed of the remaining proteins. It is notable that the
second group is not homogeneous, i.e., all members in the second group do not own some common
features other than not the same family as the studies group. It is interesting to know that the
semi-supervised method can also work for this type of problem. The effectiveness of the semi-
supervised method in protein family classification encourage us to further exploit the application
of the semi-supervised methods.
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