Master's in Machine Learning - Applied Study
The master's application is intended for applicants who are not integrating the Master's in Machine Learning into their CMU bachelor's degree. CMU undergraduates are encouraged to consider the 5th-Year Master's in Machine Learning, but are welcome to apply to this 16-month program instead. The Master's in Machine Learning - Applied Study is only available in a stand-alone master's format and cannot be integrated into a bachelor's degree.
Curriculum
The curriculum for the Master's in Machine Learning - Applied Study requires 6 Core courses, 3 electives, an internship, and professional development. The coursework component is the same between different versions of the master's.
Refer to the Machine Learning Master's Curriculum for full information.
Typical Schedule
A typical schedule for a student in the program might be:
- Summer before year 1: Preparation for internship search
- Fall semester, year 1: 10-701 Intro to Machine Learning + 36-700 Statistics + an elective + professional development + internship search
- Spring semester, year 1: Two core courses + an elective + professional development + internship search
- Summer semester, year 1: Internship related to machine learning
- Fall semester, year 2: 10-718 Machine Learning in Practice + a core course + an elective + professional development + job search
Students engage each semester in professional development activities such as resume and interview prep workshops, practicing effective communication and teamwork skills, and networking. The required summer internship gives students an opportunity to work with real-world data in an industry setting, which presents different challenges than when completing coursework.
As the schedule shows, the MS in Machine Learning - Applied Study can be completed in three semesters by a motivated and well-prepared student.
Finances
The MS in Machine Learning - Applied Study program does not provide any financial support for this program and the student must pay tuition, student fees, and living expenses on their own.
Please see the financial information webpage for costs.
Apply
The Machine Learning Department uses the School of Computer Science (SCS) Graduate Online Application. You may apply for multiple programs at Carnegie Mellon and the Machine Learning Department's MS Admissions Committee will consider your application independently.
Applications are accepted only once a year. All students begin the program in August, having applied the previous December.
For application information, including application deadlines, please refer to the SCS Master's Admissions page and SCS Master's Admissions FAQ.
Frequently Asked Questions
What are the prerequisites? Do I need an undergraduate degree in Computer Science? What test scores do I need?
We welcome applicants from a variety of backgrounds and an undergraduate degree in Computer Science is not required.
Incoming students must have a strong background in computer science, including a solid understanding of complexity theory and good programming skills, as well as a good background in mathematics. Specifically, the first-year courses assume at least one year of college-level probability and statistics, as well as matrix algebra and multivariate calculus.
For our introductory ML course, there's a self-assessment test [PDF] which will give you some idea about the background we expect students to have (for the MS you're looking at the "modest requirements"). Generally, you need to have some reasonable programming skills, with experience in Matlab/R/scipy-numpy especially helpful, and Java and Python being more useful than C, and a solid math background, especially in probability/statistics, linear algebra, and matrix and tensor calculus.
The average scores of accepted applicants for the MS in Machine Learning - Applied Study for Fall 2023 were as follows:
Undergraduate Overall GPA: 3.9 / 4.0 or 9.7 / 10.0.
GRE Quantitative: 169 (94th percentile)
GRE Verbal: 162 (86th percentile)
GRE Analytical Writing: 4.3 (65th percentile)
TOEFL: 113
There was significant variation in all of these scores, and they are only a small portion of applicants' qualifications. We do take people with a range of backgrounds for the MS.
For information about our selectivity rate and other statistics, please refer to the comparison PDF of all master's programs offered by the School of Computer Science.
Are GRE scores required in 2025?
For applicants applying to the MS in Machine Learning - Applied Study program in Fall 2025 for a start date of August 2026, GRE scores are optional.
We do not require or expect applicants to take a GRE Subject Test.
Is it possible to complete the degree online?
No; at this time, we are not offering online or distance-learning classes. You must be physically present in Pittsburgh and able to attend classes on-campus to complete the program.
Is it possible to complete the degree part-time?
Yes, you can study part-time as long as you are able to attend the classes, which are generally held during the day on weekdays.
International students should be aware that student visas require that students complete the program full-time and finish the program by the end of their 3rd semester (in December).
Is it possible to apply or begin the program in Spring?
Can I transfer in from another university or from another program at CMU?
No; you may not simply transfer into our program. You must submit an application and be accepted into the program, following the same application procedure as other applicants. Furthermore, the program does not accept transfer credit from other universities, although in certain situations a specific course requirement may be waived and an additional elective may be taken in its place.
Current CMU undergraduates may be able to apply for the 5th-Year Master's in Machine Learning, which begins immediately after they have completed their bachelor's. However, note that the Master's in Machine Learning - Applied Study is not available as a 5th-Year Master's.
I already have a master's degree. Can I still apply?
How does the Master's in Machine Learning - Applied Study compare with other programs at CMU?
Carnegie Mellon has compiled a comparison of its Master's Programs in Data Science.
The School of Computer Science has also compiled a comparison of all master's programs offered by SCS, including a PDF comparing program outcomes, average applicant scores, and selectivity rates.
The Master's in Machine Learning - Applied Study is similar to the Master's in Machine Learning. The Applied Study degree is ideal for students who are interested in a career in industry with students regularly engaging in professional development outside the classroom and getting experience working with industry employers during the summer. In comparison, the Master's in Machine Learning allows students to spend more time on research within an academic environment.
Is this a STEM program?
Where are your graduates working?
When should I apply? When will I hear back?
Where can I find more information about the program?
For questions about the Machine Learning Master's Program that have not been answered on our webpages, please contact the Machine Learning Master's Programs Admissions Coordinator, Laura Winter. You can email her at any time at lwinter@cmu.edu.