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Abstract

In this thesis, I present novel statistical machine learning methods for answering public policy-
motivated questions about spatiotemporal datasets. Gaussian processes provide a coherent
Bayesian framework for analyzing spatiotemporal data, while kernel methods have deep roots
in spatial statistics and have more recently given rise to a variety of fresh perspectives on
classical statistical questions. Both have been quite successful and popular in machine learning
and beyond, yet run-time and storage complexity have been a limiting factor in their widespread
adoption. I present new approaches combining Gaussian processes and recent advances in
kernel methods, with a focus on scalable Bayesian inference to answer scientifically relevant
questions. These questions, drawn from the domain of public policy, include: how to define
valid measures of association between variables observed in space and time, how to create
accurate small area spatiotemporal forecasts which adequately reflect the uncertainty in these
forecasts, how to make causal inference in the presence of spatiotemporal structure, and how to
draw conclusions about individuals from aggregate-level data.
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Chapter 1

Introduction

The purpose of this thesis is to develop new statistical machine learning methods for spatiotem-
poral data. My goals are learning and scalable inference focused on drawing scientifically
relevant conclusions from spatiotemporal observational datasets.

Tom Mitchell’s by now classic definition of machine learning says, “A computer program is
said to learn from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E” (Mitchell,
1997). For me, statistical machine learning with a focus on valid scientific conclusions draws
on a view of the Bayesian statistical approach which emphasizes an iterative approach to model
checking, refinement, and continuous model expansion (Gelman and Shalizi, 2013). Drawing
inspiration also from Breiman’s classic “two paradigms” dichotomy between statistics and
machine learning (2001), I give the following provisional definition:

Statistical machine learning is a set of methods (probability models, inference techniques,
posterior checks) M, which when used appropriately by scientists, enables learning from
experience E with respect to scientific tasks T and performance measure P, if the performance of
the methods M on tasks T as measured by P enables the practitioners to derive new, statistically
characterized, scientific knowledge about experience E and to refine M.

Or, put more succinctly, models exist to tell us where they fail, and thus beget new models1.
In this thesis I explore these issues in the context of observational spatiotemporal datasets

and the attendant literature on time series and spatial statistics. Unlike classical statistics
(whether Bayesian or frequentist), with spatiotemporal data the basic assumption of independent
and identically distributed (iid) observations is immediately violated.

1I attribute this idea to Andrew Gelman, who traces it to Lakatos (1978). Lakatos writes, “Now, Newton’s
theory of gravitation, Einstein’s relativity theory, quantum mechanics, Marxism, Freudianism, are all research
programmes ... Each of them, at any stage of its development, has unsolved problems and undigested anomalies.
All theories, in this sense, are born refuted and die refuted.”
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This thesis focuses on space-time processes indexed by spatial locations sss ∈ D⊂Rd and
temporal labels t ∈ T ⊂R (see, e.g. Cressie (1993)):

{Z(sss, t) : sss ∈ D, t ∈ T} (1.1)

A space-time process is a stochastic process, that is, a family of random variables defined on
a probability space (Ω,F ,P). Following Brockwell and Davis (2013), notice that for a fixed
space-time location (sss, t), Z(sss, t) is a random variable, with all the usual statistical properties of
random variables. Formally we have that for fixed (sss, t), Z(sss, t)(·) is a function on ω ∈Ω. If we
are able to repeatedly draw samples at (sss, t) then we have returned to a classical iid statistical
framework. But as we will see below, we often only have a single observation at (sss, t), and
worse, it is the fundamental nature of spatiotemporal data that observations at nearby locations
in space and time are similar, thus violating the classical statistical assumption of independence.
This is the first major difficulty of spatiotemporal statistics.

If we instead fix ω , then Z(·, ·)(ω) is a function over space and time which we call the
realizations or sample paths of the process {Z(sss, t),s ∈ D, t ∈ T}. Just as a single observation
is a draw from a probability distribution, a set of spatiotemporal observations, indexed by
space and time, are a realization of a spatiotemporal process. But herein lies the second major
difficulty of spatiotemporal statistics: while in classical statistics we would obtain multiple,
identically distributed observations and use these to perform inference, in spatiotemporal
statistics a single set of spatiotemporal observations is the only realization we have of the
process. Our sample size is only n = 1!

Spatiotemporal datasets immediately challenge the hope that big data will obviate the work
of careful statistical modeling. Even in settings where datasets are seemingly exhaustive—
with complete coverage of all the users in a social network or hospital, for example—we see
that asking scientific questions like, “what will happen tomorrow?” (forecasting), “do these
patterns hold beyond this setting?” (generalizability), and “what will happen if we change
something about the system?” (causal inference) shows that there is much that we have not
and cannot observe. Modeling these questions, estimating our answers to these questions, and
characterizing the uncertainty in these estimates is the work of statistics, and statistical machine
learning has much to offer in the service of these goals. In this thesis, I focus on deriving valid
scientific conclusions from spatiotemporal datasets. The scientific conclusions I have in mind
include:

• valid measures of association between variables observed in space and time

• accurate small area spatiotemporal forecasting with valid uncertainty intervals
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• causal inference, either exploiting or adjusting for spatiotemporal structure

• ecological inference, that is, drawing conclusions about individuals from aggregate-level
data

In each case, the presence of spatiotemporal structure in the data both motivates and
complicates the scientific question. For example, measures of association are biased by the
presence of temporal confounding, but time structure allows for accurate spatiotemporal
forecasting. Ecological inference relies on variation at the level of the ecological unit, but the
spatial structure is usually ignored. Causal inference with observational data is a particularly
interesting case because it is hard for the same basic reason that spatiotemporal statistics is
hard, namely that the iid assumption does not hold, meaning that the data cannot be analyzed
as a random sample.

In addition to drawing on two manuscripts which are in preparation (Flaxman et al., 2013,
2015a), this thesis contains work from three publications:

• Flaxman, Neill, and Smola, “Gaussian processes for independence tests with non-iid data
in causal inference,” ACM Transactions on Intelligent Systems and Technology (TIST),
2015b.

• Flaxman, Wilson, Neill, Nickisch, and Smola, “Fast Kronecker inference in Gaussian Pro-
cesses with non-Gaussian likelihoods,” International Conference on Machine Learning
(ICML), 2015d.

• Flaxman, Wang, and Smola, “Ecological inference with distribution regression,” ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
2015c.

My thesis is structured as follows. Chapter 2 provides a background on kernel methods
and a catalog of useful kernels for spatiotemporal data, illustrated with Gaussian processes.
Chapter 3 takes a detailed look at the problems with classical space/time interaction tests
(Knox, Mantel) which are revealed by my new kernelized version of these tests. Chapter 4
describes Gaussian processes and argues for their use as a general purpose regression method
for dealing with spatiotemporal data, with a specific focus on scalable Bayesian inference,
highlighting my recent work which exploits structure in the kernel (covariance function) of
the GP (Flaxman et al., 2015b). Chapter 5 presents my new ecological inference through
distribution regression method, combining explicit feature space expansions of kernels for
scalability with GP logistic regression for inference (Flaxman et al., 2015c). Chapter 6 presents
my new conditional independence test (Flaxman et al., 2015b), especially useful for algorithmic
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causal inference. Chapter 7 revisits the GP models of Chapter 4 to highlight the potential for
a fully Bayesian approach to inference and hyperparameter learning through a hierarchical
specification (Flaxman et al., 2015a). Links to source code repositories, demos, and tutorials
can be found online at www.sethrf.com.

www.sethrf.com


Chapter 2

Kernel methods for spatiotemporal data

In this chapter I introduce kernel methods, with a focus on their use for learning with spa-
tiotemporal data. Tobler’s first law of geography, “Everything is related to everything else, but
near things are more related than distant things” (1970) provides the intuition for the use of
kernels in spatiotemporal learning. If we are to take Tobler’s law as motivating our modeling
assumptions, then we need a mathematical model quantifying the extent to which things are
related to one another over space and time. Kernels provide that model. The exponential kernel,
for example, has the following form:

k(t1, t2) = e−|t1−t2| (2.1)

Noting that this kernel is stationary (i.e. k(t1 +h, t2 +h) = k(t1, t2) for any shift h) we visualize
k(u) where u = t1− t2 in Figure 2.1. We can understand k as a function characterizing Tobler’s
law, where we imagine that t1 and t2 are spatial (or temporal) locations and k(·, ·) quantifies the
strength of the relationship between these two locations. As shown in Figure 2.1, everything
is indeed related to everything else, and moreover, near things are more related than distant
things.

2.1 Reproducing kernel Hilbert space

We have the following definition (Schölkopf and Smola, 2002; Wahba, 1990):

Definition 1 Given a set T , a positive semidefinite kernel k is a symmetric bivariate function
with the property that for any real a1, . . . ,an and t1, . . . , tn ∈ T :

n

∑
i, j=1

aia jk(ti, t j)≥ 0 (2.2)
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Fig. 2.1 Plot of the exponential kernel k(t1, t2) = k(u) = e−u.

Why is it so important that k be positive semidefinite? Following Wahba (1990), consider the
case that T = (1,2, . . . ,N). Construct the N×N Gram matrix K where Ki j = k(i, j) for i, j ∈ T .
We can now rewrite Eq. (2.2) in matrix form as:

aaa⊤Kaaa≥ 0, ∀aaa ∈Rn (2.3)

We recognize this constraint as saying that K is positive semidefinite, and as a result it is a valid
covariance matrix, meaning that the powerful machinery of classical statistics is now available
to us. (If we treat K as the covariance matrix for a Gaussian distribution, we have Gaussian
processes, as explained in subsequent chapters.) Let us consider the eigendecomposition of K,
writing K = QΛQ⊤ with Q orthogonal and Λ diagonal. Since K is positive semidefinite, the
entries of Λ are non-negative, so we can write: K = QΛ1/2Λ1/2Q⊤ = QΛ1/2(QΛ1/2)⊤ = ΦΦ⊤

for Φ := QΛ1/2. Denoting the ith column of Φ as Φi we have:

k(i, j) = Φ
⊤
i Φ j = ⟨Φi,Φ j⟩ (2.4)

Notice that Φi represents an element i ∈ T by a vector of features (a so-called “feature space
representation”), such that inner products between vectors Φi and Φ j exactly correspond to our
kernel k.

Returning to the case of general sets T , we can generalize this feature space representation
by defining a Hilbert space H using k where members of the Hilbert space are functions
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(Schölkopf and Smola, 2002):

f (·) =
m

∑
i=1

αik(ti, ·) (2.5)

for m ∈N , αi ∈R and ti ∈ T . If g(·) = ∑ j β jk(t j, ·) ∈H we define dot products as:

⟨ f ,g⟩ := ∑
i

∑
j

αiβ jk(xi,x j) (2.6)

Eq. (2.6) immediately implies the following properties:

⟨k(·, t), f ⟩= f (x) (2.7)

⟨k(ti, ·),k(t j, ·)⟩= k(ti, t j) (2.8)

The second property explains the term “reproducing” and we have the following definition
(Schölkopf and Smola, 2002):

Definition 2 For a set T and a Hilbert spaceH of functions f : T →R,H is a reproducing
kernel Hilbert space if there exists a kernel k with the reproducing property of Eq. (2.8) and
with the property thatH= span{k(t, ·)|t ∈ T } where A denotes the completion of the set A.

Just as we eigendecomposed K above, Mercer’s theorem tells us that if
∫ ∫

k2(s, t)dsdt < ∞

then we have:
k(s, t) = ∑

i
λiΦi(s)Φi(t) (2.9)

This gives us a feature space representation:

Φ : t→ (
√

λiΦi(t))i (2.10)

because we have:

⟨Φ(s),Φ(t)⟩= ⟨(
√

λiΦi(s))i,(
√

λiΦi(t))⟩ (2.11)

= ∑
i

λiΦi(s)Φi(t) (2.12)

= k(s, t) (2.13)

This feature space representation is called the Mercer map, and it is in general not the same
as the RKHS mapping φ(t) = k(t, ·). But since both correspond to the same kernel k(·, ·) and
this is usually what we ultimately care about, we identify reproducing kernel Hilbert spaces
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with the same kernel. We will return to the Mercer map representation in the next chapter on
Gaussian processes.

Below, I catalog useful kernels for spatiotemporal data, and give an overview of kernel
embeddings of probability distributions.

2.2 Kernels for spatiotemporal data

In this section I give an overview of some of the kernel choices which I have found to be
useful for spatiotemporal modeling. For an overview of useful kernels in machine learning
more generally, see Rasmussen and Williams (2006); Schölkopf and Smola (2002); Souza
(2010). For a very useful catalog explaining how to build complex kernels out of simpler ones
(e.g. addition and multiplication) see Genton (2002) and for work on automating this process
see Duvenaud et al. (2013).

For each kernel, I have plotted the covariance function with default hyperparameters for
illustration (e.g. signal variance 1 and length-scale 1), along with sample paths drawn from a
GP with covariance function given by the kernel. I have omitted examples of non-stationary
kernels, but see Paciorek and Schervish (2006) and references therein.
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2.3 Separable kernels for spatiotemporal data

In the case of spatiotemporal data where space locations are indexed by s (e.g. (x,y) state-plane
coordinates or latitude/longitude) and time labels are indexed by t, a natural way to build a
space/time kernel is to multiply a spatial and temporal kernel (additive models are considered
in Chapter 7):

k((s, t),(s′, t ′)) = ks(s,s′)kt(t, t ′) (2.14)

This specification is referred to as a “separable” kernel in the literature. It has computational
benefits for scaling up Gaussian process models, based on Kronecker algebra, which we exploit
in Chapters 4 and 7. The results that we need are below.

Note first that to calculate the Gram matrix K for Eq. (2.14), we calculate the smaller Gram
matrices Ks and Kt and then use the Kronecker product: K = Ks⊗Kt . This gives a hint of the
efficiency gains we can exploit. For Kronecker matrix vector multiplication, we use the identity
Steeb and Hardy (2011):

(B⊤⊗A)v = vec(AV B) (2.15)

where v = vec(V ) and the vec operator turns a matrix into a vector by stacking columns
vertically. Since a full n×n matrix is never formed, this approach is very efficient in terms
of space and time complexity, relying only on operations with the smaller matrices Ki and
the matrix V which only has n entries. Matrix-vector multiplication (

⊗
Kd)v reduces to D

matrix-matrix multiplications V K j where V is a matrix with n entries total, reshaped to be
n

D−1
D ×n

1
D . This matrix-matrix multiplication isO(n D−1

D n
1
D n

1
D ) =O(n D+1

D ) so the total run-time
is O(Dn

D+1
D ).

Another result we use is that given the eigendecompositions of Kd = QdΛdQT
d , we have:

K = (
⊗

Qd)(
⊗

Λd)(
⊗

QT
d ) (2.16)

A final, useful result concerns determinants:

det(K1⊗K2) = det(K1)
mdet(K2)

n (2.17)

where K1 is n×n and K2 is m×m.
Despite these attractive computational features, it is worth asking whether the assumption

of separability applies in practice. This question, and the search for nonseparable kernels,
has attracted attention in the literature (e.g. Cressie and Huang (1999); Gneiting (2002);
Gneiting et al. (2007); Mitchell et al. (2005)). Consider the two kernels visualized in Figure
2.2, a nonseparable version of one of Gneiting’s covariances on the left (β = 1) and the
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corresponding separable version (β = 0) on the right. Separability implies, e.g. that the temporal
autocorrelation structure for two locations a distance 1 unit apart is exactly proportional
to the temporal autocorrelation structure for two locations a distance 5 units apart. This
assumption is likely to be violated with real data, but whether or not this matters in practice is a
separate question. In the case of GPs, the kernel parameterizes the prior function class, but the
observations, especially if they are abundant, can outweight the prior. Thus, the assumption
of separability is not usually an overly restrictive assumption, unless space/time interaction is
explicitly what is being studied, as in Chapter 3.
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(a) Nonseparable Gneiting covariance (β = 1)
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(b) Separable Gneiting covariance (β = 0)

Fig. 2.2 Gneiting (2002) proposed classes of non-separable covariance functions. Plotted here
is: k(d, t) = σ2

a|t|+1 exp
(
− d

(a|t|+1)β/2

)
with the nonseparable β = 1 case on left and the separable

β = 0 case on the right. While the difference can be quite subtle visually, notice that in the
separable case on right, the lines are exactly proportional to each other.

2.4 Kernel embeddings of probability distributions

In this section, I overview work that has emerged in the machine learning literature in the
last two decades on applying kernel methods to classical statistical problems. Early examples
include kernel PCA (Schölkopf et al., 1997), kernel ICA (Bach and Jordan, 2003), and kernel
dimensionality reduction (Fukumizu et al., 2004). Going beyond merely applying the “kernel
trick” to create non-linear versions of existing methods, these approaches have statistical
guarantees and a mathematical foundation based on RKHS theory, especially the use of
covariance operators. Below, I explain the use of covariance operators in one of the most
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popular parts of this large literature, kernel methods for embedding probability distributions,
illustrated by testing for statistical independence.

Let us start by defining the kernel mean embedding operator. The intuition is that we
wish to extend the feature space representation of kernels introduced earlier from embedding
single elements to embedding probability distributions. Given a random variable x∼ P with
feature map φ(x) which projects x into an RKHSH, we want to have a formal way of defining
Ex[φ(x)]. The mean embedding operator is that formalism.

Define µP ∈H to have the following property:

Ex[ f ] = ⟨ f ,µP⟩H (2.18)

Following the presentation in Gretton et al. (2012), we have the following lemma for the
existence of µP:

Lemma 3 If k(·, ·) is measurable and Ex

[√
k(x,x)

]
< ∞ then µP ∈ H. Moreover, µP =

Ex [φ(x)].

Proof We will rely on the Riesz representation theorem [see references in Gretton et al. (2012)]
to prove the existence of µP. First we define the linear operator Tp f = Ex f and see that it is
bounded for all f because:

|Tp f |= |Ex f (x)| ≤ Ex| f (x)|= Ex|⟨ f ,φ(x)⟩H| ≤ Ex

[√
k(x,x)∥ f∥H

]
< ∞ (2.19)

Since Tp is a bounded linear operator, there must be an element inH which we denote µP with
the property:

Tp f = ⟨ f ,µP⟩H (2.20)

This completes the proof of the first claim. To see why µP = Ex[φ(x)] we consider:

µP(t) = ⟨µP,φ(t)⟩= Ex [φ(t)(x)] (2.21)

where the first step is by the Riesz representation theorem (recalling that k(t, ·) = φ(t)) and the
second step uses the result we just established. Finally, we treat t as an arbitrary input and use
φ(t)(x) = φ(x)(t) to obtain:

µP = Exφ(x) (2.22)

Mean embeddings are a very powerful tool as they give us a nonparametric representation of
a distribution as a (possibly infinite dimensional) vector, which we can use in any number of



2.5 Testing for independence with kernels 14

statistical methods. In Chapter 5 we will use the finite dimensional representation introduced in
the next section to approximate kernel mean embeddings for use in a regression setting.

For kernels which are universal and / or characteristic (Sriperumbudur et al., 2010), such
as the RBF kernel, the mean embedding operator is injective, so if we have samples from two
distributions x∼ P and y∼ Q then µP = µQ ⇐⇒ P = Q. This is the basis for the Maximum
Mean Discrepancy (MMD) test statistic (Gretton et al., 2012), which measures the difference
∥µP−µQ∥.

2.5 Testing for independence with kernels

We now turn to a related test statistic, the Hilbert-Schmidt Independence Criterion. Given
observations from a joint distribution P(X ,Y ), the Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al., 2008, 2005) is a statistical test for the null hypothesis of independence:
X ⊥⊥ Y . HSIC uses mean embeddings to compare the joint distribution to the product of the
marginals (which is an equivalent statement to X ⊥⊥ Y ). Let A represent the joint distribution
pX ,Y and let B represent the product of the marginal distributions pX pY . Then we wish
to test whether µA = µB. Usually a separable kernel is used to define the Hilbert space
HX ,Y =HX ⊗HY , i.e. given kernels k forHX and ℓ forHY , the kernel u for the product space
is given by:

u((x,y),(x′,y′)) = k(x,x′)ℓ(y,y′) (2.23)

Thus using mean embeddings, we have µA = µPQ and µB = µP⊗µQ.
We consider the following test statistic, which is equivalent to the square of MMD:

HSIC = ∥µPQ−µP⊗µQ∥2 =
∥∥Ex,y [k(x, ·)ℓ(y, ·)]−Ex [k(x, ·)Eyℓ(y, ·)]

∥∥2 (2.24)

By analogy to the mean embedding operator, and using similar arguments, we can define
the covariance operator ΣPQ:

⟨ f ,ΣPQg⟩= Cov( f (x),g(y)) = E[ f (x)g(y)]−E[ f (x)]E[g(y)] = µPQ−µP⊗µQ (2.25)

Thus HSIC can equivalently be written as ∥ΣPQ∥2.
An estimator can be immediately derived:

ĤSIC =
1
n2 ∑

i, j
k(xi,x j)ℓ(yi,y j)−

2
n3 ∑

i, j,q
k(xi,x j), ℓ(yi,yq)+

1
n4 ∑

i, j,q,r
k(xi,x j)ℓ(yq,yr) (2.26)
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This estimator can be written compactly in terms of Gram matrices K and L:

ĤSIC =
1
n2 tr(KHLH)

where Ki j = k(xi,x j), Li j = ℓ(yi,y j), and H = I− 1
n11T is a centering matrix.

The distribution of HSIC under the null can be obtained by randomization testing: given
pairs (xi,yi) we shuffle the y’s and recompute ĤSIC. Gretton et al. (2008) gives an asymptotic
result based on the Gamma distribution, and Zhang et al. (2011) gives a test based on the
eigenvalues of the kernel matrices.

2.6 Randomized feature expansions

While feature expansions for most popular kernels (and all the ones considered in Section 2.2)
are infinite dimensional, it is often possible to implement kernelized algorithms based on the
covariance (Gram) matrix containing k(xi,x j) for every pair of observations xi and x j. HSIC,
for example, relies only on matrices K and L, and as we will see in later chapters, the necessary
calculations for Gaussian processes are in terms of the covariance matrices. Nevertheless in the
large data setting, calculating, storing, and manipulating n×n matrices can be computationally
prohibitive.

In recent years, a number of approximate feature expansions have been proposed which
find a d-dimensional approximation φ̂(x) ∈ Rd of φ(x) for every x such that:

k(x,y) = ⟨φ(x),φ(y)⟩ ≈ ⟨φ̂(x), φ̂(y) (2.27)

Rahimi and Recht (2007) proposed random Fourier features, an approximation for stationary
kernels based on randomly sampling from the Fourier transform of the kernel function, relying
on Bochner’s theorem (also used in Section 4.8) which says that this spectral representation
fully represents the kernel. Le et al. (2013) proposed FastFood, a more computationally efficient
version of random Fourier features that we use in Chapter 5. Given an explicit d-dimensional
feature expansion, most kernelized algorithms can be made much more efficient. Bach (2015)
gives a comprehensive theoretical analysis of random features, making interesting connections
with quadrature.



Chapter 3

Kernel space/time interaction tests

3.1 Introduction

Knox (1964), Mantel (1967), and Diggle et al. (1995) all developed important and widely
used tests for space-time interaction with spatiotemporal point processes. While each of these
statistical tests has different features, a fundamental limitation of each is the requirement that
the user pre-specify a range of critical spatial and temporal distances of interest, i.e. a priori
knowledge must be used to decide what distances are considered “close” versus “far”, in
space and time. One of the motivating goals of this chapter is to relax this assumption while
not sacrificing statistical power. I take a new look at the assumptions underlying these tests,
showing how each can be understood as testing a particular null hypothesis, namely that the
probability distributions over interpoint distances and interpoint time intervals are independent.

In this framework, I focus on the development of a set of new space-time interaction
tests, based on the Hilbert Schmidt Independence Criterion (HSIC) (reviewed in Chapter 2) a
kernel-based test statistic for testing for independence between probability distributions. While
HSIC was originally proposed for independent, identically distributed (iid) data, I show how it
can be used with spatiotemporal point patterns. This new perspective allows us to fix a problem
with Mantel’s test and it also shows important failings, which have not been previously noted in
the literature, with previously proposed extensions of the classical tests to the case of bivariate
point patterns.

I assess the power of my new test experimentally in a simulated dataset, where it compares
favorably to existing methods for testing for space-time interaction, without requiring precise
specification of various parameters. Space-time interaction tests are most widely used in the
epidemiological literature focusing on the question of, e.g. the etiology of childhood leukemia
(Alexander et al., 1998). I demonstrate their use in the case of urban event data, asking whether
various types of crime and disorder have space/time clustering.
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Our Kernel Space-Time interaction test (KST) is a novel contribution which also gives a new
perspective on the classical Mantel test, provides an alternative to classical tests for space-time
interaction, and shows how kernel-embedding techniques can be used with spatiotemporal
point processes.

3.2 Classical Tests for Space-Time Interaction

Let P = {(si, ti), i = 1, . . . ,n} be a realization of a spatiotemporal point process with two spatial
dimensions (si ∈R2) and a time dimension. We can think of si ∈ A for a spatial region A and
ti ∈ T for a time window T . An illustration is shown in Figure 3.1.
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Fig. 3.1 Two different “infectious” Poisson cluster processes with parents shown as open circles
and children shown as filled circles. Children are displaced from parents in space and time
by iid draws from N(0,σ). The top row displays the case for σ = 0.05, the bottom row for
σ = 0.2. Visual inspection reveals space-time interaction in the first row while the second row
is more ambiguous. Tests for space-time interaction correctly reject the null hypothesis (of no
space-time interaction) in both cases, with p≤ 0.01.



3.2 Classical Tests for Space-Time Interaction 18

The unifying framework for understanding each test stated below is that of testing for
statistical independence, which was introduced in Section 2.5. For each test, we assess (using
more or less powerful tests) whether distributions related to the spatial and temporal locations
of the points are independent.

I start by stating the Knox test (Knox, 1964). Given P , we create a two-by-two contingency
table as follows: pick a threshold distance for “near in space” s0 and a threshold time interval
for “near in time” t0. Now, consider every pair of distinct points s,s′ ∈P . Let ds(p, p′) measure
the Euclidean distance between p and p′:

√
(x− x′)2 +(y− y′)2 and dt(p, p′) measure the

time interval: |t− t ′|. Then, we can fill in the table by asking for each pair of points whether
ds(p, p′)≤ s0 and whether dt(p, p′)≤ t0:

near in space far in space
near in time X n1

far in time n2 N− (X +n1 +n2)

If there are N = n(n− 1)/2 pairs of points, the test statistic is given by the difference
between the number of pairs that we observe to be near in both time and space, X , and the
number of pairs that we would expect to be near in both time and space if time and space are
independent: N X+n1

N
X+n2

N . Together this is: X− 1
N (X +n1)(X +n2). Since the null hypothesis

is that space and time are independent, we can empirically find the distribution of X under
the null by randomly permuting the time labels and recomputing the test statistic. Notice that
X +n1, the number of points that are close in time, is unchanged if the time labels are permuted.
The same is true of X +n2. This simplifies our calculations, and we need only consider the
distribution of the test statistic X under the null. Various asymptotic approximations to the null
distribution are discussed in Kulldorff and Hjalmars (1999).

The Knox test is very straightforward, but it clearly has limitations. Correctly specifying
the spatial and temporal ranges is not always easy, and considering a range of values leads to
problems of multiple hypothesis testing. As a toy example, Figure 3.2(a) shows how the power
of the Knox test depends critically on the choice of cutoffs. We generated synthetic data from a
point process with space-time clustering, using the setup discussed in Section 3.5.1, and varied
the spatial cutoff for the Knox test from 0 to 0.5. When the spatial cutoff is equal to about 0.1,
the test correctly rejects the null in almost every case (α is fixed at 0.05). But for smaller and
larger values of s0, the power decreases. For further intuition, consider the illustrative dataset
in Table 3.1. If the cutoff is set such that close in space is defined as ≤ 1 hour then every cell in
the table will equal 10 and the Knox test will fail to reject the null hypothesis of no space-time
interaction. But if the cutoff is set such that close in space is defined as ≤ 2 hours, the Knox
test will reject the hypothesis of independence (p = 0.01).
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Fig. 3.2 We generated synthetic data from a cluster point process with child points displaced
from their parents a distance ∼ N(0,σ = .05) in space and time. For α = 0.05, the Knox test
correctly rejects the null when the spatial cutoff is well chosen, but as the cutoff decreases
or increases, the power decreases. The temporal cutoff is fixed at 0.1 in every case. This
demonstrates that the power of the Knox test depends on correctly specifying cutoffs for “close
in space” and “close in time.” Similarly, the Mantel test’s power depends on correctly specifying
a transformation from distance to “similarity.” In Mantel’s original formulation, distances x
were transformed as f (x) = 1

x+ε
for some ε . On the right, the Mantel test correctly rejects

the null almost all the time when ε is well chosen, but as ε increases or decreases the power
decreases. The same transformation was used for space and time.

Another concern is that the Knox test is based solely on distances between points, ignoring
any other relevant features, like location in space and time. When Knox proposed his test, he
was quite explicit, stating that all of the information required for a test of space-interaction
is found in the interpoint time and space distances (Knox, 1964). But his claim ignores the
possibility of other types of inhomogeneities, as was pointed out at the time (Bartlett, 1964).

Next, we describe the Mantel test (Mantel, 1967). Given P , we create an n × n spatial
distance matrix DS with entries given by ds(pi, p j) for row i and column j and an n × n
temporal distance matrix DT with entries given by dt(pi, p j). As with the Knox test, we wish to
ask whether space and time, now represented by two matrices, are independent. We string out
the entries above the diagonal of each matrix as a vector with n(n−1)/2 entries, and calculate
the Pearson correlation between these vectors. Notice, however, that the usual significance
test for Pearson’s correlation is not valid, because the observations are not independent. To
derive the null distribution, we again turn to randomization testing, this time applying a given
permutation to the rows and columns of one of the matrices, so as to preserve the dependence
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close in space far in space
1 hour 10 10
2 hours 9 1
3 hours 1 9

Table 3.1 In this simple example, the detection of space-time interaction is sensitive to the
choice of temporal cutoff. When close in time is defined as ≤ 1 hour, the contingency table
reduces to a table with each cell equal to 10, consistent with independence. But when the
temporal cutoff is ≤ 2 hours, the null hypothesis of independence is rejected (p = 0.01) for the
resulting table.

structure among the entries. We are typically concerned about shorter time and spatial distances,
but the Mantel test could be significant due to (spurious) longer range features. Mantel 1967
proposed the reciprocal transformation for both spatial and temporal distances x, forming the
matrices of fs(ds(pi, p j)) and ft(dt(pi, p j)) where fs(x) = 1

x+εs
and ft(x) = 1

x+εt
. The Mantel

test is essentially a linear test of dependence, so we expect it to have the same shortcomings as
Pearson correlation, i.e. zero correlation implies no linear relationship, but it does not imply
independence.

Diggle et al. (1995) proposes a test with a similar flavor to the Knox test, but rather than
a single threshold value, it requires the specification of a range of values. First, we define
Ripley’s K function (also called the reduced second moment measure) for a single spatial point
process as the following:

K(s) =
1
λS

E [# of events occurring within a distance s of an arbitrary event] (3.1)

where λS is the intensity of the point process. An estimate of λS is given by λ̂S = N/A for N
points in a spatial region with area A.

Given spatial point locations p ∈R2 in a region with area A, the simplest way of estimating
K̂(s) is by averaging:

K̂(s) =
1
λS

n

∑
i=1

1
n−1 ∑

i ̸= j
I(ds(pi, p j)≤ s) (3.2)

=
A

n(n−1)∑
i

∑
i̸= j

I(ds(pi, p j)≤ s) (3.3)

This estimator assumes a known constant first order intensity λS. Ripley (1976) discusses
approaches to estimating both K and λS. This test also ignores the issue of edge corrections: at
the boundary of the spatial or temporal region, “missing” observations bias the estimate. This
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becomes an issue for small n or for s large compared to A. Corrections are given in (Ripley,
1982). The new test that we propose does not have this shortcoming.

Ripley’s K function has natural extensions to the purely temporal K(t) and space-time
K(s, t) cases, with similar estimators to the above. I remark that λ̂ST K̂(s0, t0) is equal to the
entry in the upper-left hand corner of the contingency table used in Knox’s test, and similarly
λ̂SK̂(s0) and λ̂T K̂(t0) are equal to the top row and left column, respectively.

Diggle et al. define residual space-time interaction at spatial scale s and time scale t as:

D(s, t) = K(s, t)−K(s)K(t)

Using this function, Diggle et al. define a test statistic calculated over a grid of pre-specified
spatial distances s1, . . . ,sk and time intervals t1, . . . , tl:

R = ∑
si

∑
t j

D(si, t j)

Under the null hypothesis of no space-time interaction, the expectation of R should be
constant (but not necessarily zero as claimed by Diggle et al. (1995), see Møller and Ghorbani
(2012)). The intuition is the same as for the previous tests: K(s, t) tells us how many points
we expect to see within a distance s and time t of an arbitrary point. As in the previous tests,
permutation testing by shuffling the time labels is used to obtain the null distribution of R. The
Diggle et al. test is meant to address the issue of multiple hypothesis testing that arises when
the Mantel or Knox test are applied repeatedly. However, it may lose power due to the fact that
it is measuring a statistic of interest over multiple thresholds: this statistic may be positive or
negative at different thresholds, and thus may cancel out, or it may be zero at many thresholds
and thus go undetected.

This completes our presentation of classical space-time interaction tests. Note that we have
not provided an exhaustive review. Other tests for point processes include Jacquez’s nearest
neighbor based method (Jacquez, 1996). Various improvements to the Knox test have been
proposed in (Baker, 1996; Kulldorff, 1997). There is also a parallel literature in geostatistics
and Gaussian processes on tests for the separability (defined in Section 2.2) of space-time
covariance functions (Fuentes, 2006; Gneiting et al., 2007).

Notice the commonalities among the tests: each is a hypothesis test with the same null
hypothesis, that the interpoint spatial and temporal distributions are independent. To see this,
note that the contingency table in the Knox test is used to ask whether binary indicator variables
for pairs of points (near in space, near in time) are independent. The Mantel test uses Pearson
correlation to test whether the interpoint space and interpoint time distributions are independent.
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Diggle et al.’s test asks whether there is a difference between the joint K function which counts
the number of points that are near in space and near in time and the product of the marginal K
functions counting the number of points that are near in space and the number of points that are
near in time.

3.3 Kernel Space-Time Interaction Tests

As an intermediate step towards using kernel embeddings to test for space-time interaction,
and because it sheds light on the classical version of the Mantel test, we define a kernelized
version of the Mantel test. The Mantel test was described in Section 3.2. I briefly restate it in a
more general form, following Legendre and Legendre (2012). The Mantel test measures the
correlation between a pair of dissimilarity (distance) matrices. Given a set of objects P, and
two different ways of measuring the dissimilarity between these objects, the null hypothesis is
that the two different types of measurements are independent. Given, e.g. two n×n matrices
of distances K and L where k(i, j) gives the Euclidean distance between objects i and j and
ℓ(i, j) gives some other dissimilarity measure, the Mantel test statistic is ∑i̸= j k(i, j)ℓ(i, j).
Interestingly, this is the first term in the estimator for HSIC, as shown in Equation (2.26). While
the Mantel test is usually presented in terms of distance matrices, it is valid for similarity
matrices as well. I propose considering a kernelized version of the Mantel test. Given objects
P = (p1, . . . , pn) and two kernels k and ℓ, we construct the Gram matrices K and L and ask, as
in the Mantel test, whether the two kernels are measuring independent properties of the objects
of P.

Once we have Gram matrices, we proceed exactly as with the Mantel test, defining the test
statistic T = ∑i̸= j k(i, j)ℓ(i, j), and obtaining significance levels by randomization testing. I call
this test the “kernelized Mantel test.” To my knowledge, it has not been explicitly considered in
the literature, but in fact, the reciprocal transformation considered by Mantel (Mantel, 1967)
( f (s) = 1

s+ε
) is an example of a Mercer kernel: k(x,x′) = 1

∥x−x′∥2+ε
(Micchelli, 1986) (as cited

in (Souza, 2010)).
With this approach as background, we are ready to define a new test for space-time

interaction based on kernel embeddings. In the spirit of the classical tests described in Section
3.2, the most straightforward approach to using HSIC would be to define new distributions
P = {ds(i, j) : i ̸= j} for the Euclidean distances between pairs of points and Q = {dt(i, j) :
i ̸= j} for the interpoint time intervals, and apply HSIC as a black box to test whether the
distributions P and Q are independent. However, this is not an attractive option computationally,
as it leads to O(n4) computations because HSIC considers pairs of observations, and in this
case observations are themselves pairs of points.
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I now consider an alternative, more computationally efficient approach which we term the
Kernel Space-Time (KST) test. To motivate this test, let us more closely inspect my kernelized
Mantel test, and in particular how it differs from the HSIC test statistic. Recall the HSIC
estimator of Section 2.5:

ĤSIC =
1
n2 ∑

i, j
k(xi,x j)ℓ(yi,y j)−

2
n3 ∑

i, j,q
k(xi,x j), ℓ(yi,yq)+

1
n4 ∑

i, j,q,r
k(xi,x j)ℓ(yq,yr)

The last term of the HSIC estimator, which estimates ∥µpµq∥2, is unchanged by randomization
testing, so the key difference is the cross-term, ⟨µpµq,µpq⟩. Recall our definition of the
covariance operator in Eq. (2.25). An equivalent definition is:

ΣPQ = Exy[(φ(x)−µp)⊗ (ψ(y)−µq)]

where φ is the feature embedding forHK and ψ is the feature embedding forHL. Thus, we see
that the cross-term in ∥ΣPQ∥2

HS arises because the feature vectors φ(x) and ψ(y) are centered
before being multiplied together (by analogy, we can write: Cov(P,Q) = E[(P−E[P])(Q−
E[Q])]). Returning to the Mantel test, this is the critical difference—the Mantel test measures
dependence by calculating the inner product between two matrices treated as vectors, where
these vectors are centered by subtracting the mean of their entries, that is, subtracting the mean
of the empirical distribution over pairwise distances.1. But this is not equivalent to the centering
done by HSIC: φ̃(x) = φ(x)−µp centers the feature embedding so that it has mean 0. From
this, the centered Gram matrices K̃ = HKH and L̃ = HLH where H = I− 1

n11T are calculated,
and then the covariance is measured as 1

n2 tr K̃L̃.
This suggests a simple fix for the Mantel test, which can even be applied to the classic

version. Given similarity, dissimilarity, or Gram matrices K and L, calculate K̃ and L̃ and then
apply the Mantel test: ∑i, j K̃i jL̃i j. Since this is proportional to 1

n2 tr(K̃L̃), my final “Kernelized
Space-Time” (KST) test takes the same form as HSIC2

1In fact, some formulations of the Mantel test actually calculate Pearson’s correlation: given matrices K and L,
string out the upper-triangle of K and L as vectors K⃗ and L⃗ and calculate:

⟨K⃗−µK⃗ , L⃗− µ⃗L⟩
∥σK⃗∥ · ∥σ⃗L∥

Note that using Pearson correlation instead of covariance does not change the significance level derived from
randomization testing. Nor does it change the fact that the centering occurs by subtracting the mean of the dot
products.

2Note that this same fix for the Mantel test has been independently proposed in the distance correlation
literature. For a full discussion, see Omelka and Hudecová (2013); Szekely et al. (2014).
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I now show an alternative and simple perspective on my new KST test. Given a probability
distribution over points in space A = {(s, t)}, with s ∈R2 and t ∈R and kernels k (for RKHS
HK) and ℓ (for RKHS HL), let k(a, ·) = k(s, ·) = φ(s) and ℓ(a, ·) = ℓ(t, ·) = ψ(t), so that k
embeds the spatial coordinates of A with feature map φ(s), ignoring the temporal coordinates,
and ℓ embeds the temporal coordinates of A with feature map ψ(t), ignoring the spatial
coordinates. The null hypothesis we wish to test is that for a random a∼ A:

H0 : k(a, ·)⊥⊥ ℓ(a, ·)

or equivalently:
H0 : φ(s)⊥⊥ ψ(t)

which exactly captures the hypothesis that space and time are independent. Hypothetically,
we could apply feature embeddings to this, considering embeddings of φ(a) and ψ(a) into a
different feature space and using HSIC, but since we are already in feature space, and assuming
we have chosen characteristic or universal kernels (see Section 2.4), we might consider simply
checking whether:

Ea[φ(s)ψ(t)] = Eaφ(s)Eaψ(t) (3.4)

The test statistic derived from this expression is exactly the KST test statistic I proposed above.
By the derivation of HSIC, Eq. (3.4) holds if and only if the underlying distributions which
we’ve embedded are independent. In this case, those underlying distributions are simply the
distribution of points in space and the distribution of points in time.

To recap, given the space-time coordinates of a set of points, we wish to test whether there
is space-time interaction. Using kernels, we represent these points through their similarity
to every other point, i.e. we represent these points using a kernel k(a, ·) = φ(s)—a measure
of the spatial distance between point s and any other point and by ℓ(a, ·) = ψ(t)—a measure
of the time interval between point a and every other point. Given these representations, we
proceed just as in the classical tests, asking whether the distribution over spatial distances φ(s))
is independent of the distribution over time intervals ψ(t). Note that if we want to stay as
close as possible to classical tests for space-time interaction, we could insist that k and ℓ be
stationary so that k(s,s′) = k(∥s− s′∥) and ℓ(t, t ′) = ℓ(|t− t ′|), but this additional assumption
is not necessary in our framework.
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3.4 Extending the Classical Tests to Bivariate Space-Time
Interaction

In this section, we present the standard approach to extending classical space/time interaction
tests to the bivariate case. These tests only work under certain restrictive assumptions, a fact
that has not been previously established in the literature. Our new kernel perspective helps
clarify these points.

Given P1 = {(s1
i , t

1
i ), i = 1, . . . ,n1} and P2 = {(s2

i , t
2
i ), i = 1, . . . ,n2}, we wish to know

whether there is significant space-time interaction between P1 and P2. The null hypothesis
is that there is no space-time interaction between the two processes. Notice that we are not
interested in whether there is purely spatial dependence between P1 and P2: any two processes
associated with, for example, an underlying population density will be spatially correlated.
Similarly, we are not interested in purely temporal dependence between the two processes,
e.g. due to seasonal trends. Instead, we wish to test whether seeing points of type 1 at a certain
location in space and time makes it more or less likely that we will see points of type 2 nearby
in space and time, once we have controlled for separable spatial and temporal correlations
between P1 and P2. Considering open circles as type 1 and closed circles as type 2, Fig. 3.1 is
an example of space-time interaction.

The Mantel, Knox, and Diggle et al. tests each focus on pairs of points. For the bivariate
extension for each, we consider all n1 ·n2 cross-pairs of points. For the Knox test, we create
the same contingency table, where each entry counts the number of cross-pairs that are near
in time and near in space, the number of cross-pairs that are near in time and far in space,
etc. For randomization testing, the standard approach in the literature is to permute the time
labels of only one of the point processes. For the Mantel test, we create an n1× n2 spatial
cross-distance matrix and an n1×n2 temporal cross-distance matrix, and the test statistic is the
same. The bivariate version of the Mantel test was explored in (Klauber, 1971). The Diggle et
al. extension is straightforward as well (Lynch and Moorcroft, 2008).

However, there is an underappreciated problem with these tests. They are only valid in the
case that one or both of the point processes does not have within-type space/time interaction.
The reason for this requirement is that if there is within-type space/time interaction in one
of the processes but but no cross-type space/time interaction, then we may incorrectly reject
the null, and incorrectly conclude that P1 and P2 are not independent. I demonstrate this by
counterexample below. The basic reason is that we cannot in general simulate from the correct
null hypothesis. When we try to do so by permuting the time labels, we have to be very careful.
If we permute the time labels of a process with within-type interaction in order to test for
cross-type interaction, the effect is that we destroy the within-type interaction, so the observed
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data will not have come from the null distribution that we simulate, and we will incorrectly
reject the null hypothesis. Since we can choose which type to permute the time labels of, these
tests remain valid if at least one type does not have within-type interaction, and we permute the
time labels of this type only.

The kernel perspective helps clarify these problems. LetP1 and P2 be two point patterns for
which we want to test whether there is cross-type space-time interaction. Consider kernel mean
embeddings for each type, µ1

P and µ2
P. We wish to ask whetherP1⊥⊥P2 and as before we might

hope to that kernel mean embeddings will allow us to test whether P(P1,P2) = P(P1)P(P2).
The problem is that if we consider the mean embedding corresponding to the LHS probability
distribution we have µP1,P2 while if we consider the mean embedding for the RHS probability
distribution we have µP1⊗µP2 . Theoretically, we can ask whether these are different. But in
practice, we have no way of estimating them because we do not have access to paired samples
of points of type 1 and type 2. When we calculate the bivariate Knox test, we consider all
pairs of points of type 1 and 2, just as we do when we calculate µP1,P2 . But then when we
consider estimating µP1⊗µP2 we simply estimate µP1 and µP2 separately, and then consider the
tensor product space, which contains every pair of points, again! In the Knox test, we simulate
from the null by permuting the time labels of e.g. type 2. But if we consider p1 = (s1, t1) and
p2 = (s2, t2) so that we have embeddings µs1,t1 and µs2,t2 , then permuting t2 turns µs2,t2 into
µs2 µt2 (just as it did in the univariate case). The result is that we are testing:

µs1,t1,s2,t2 = µs1,t1 µs2 µt2 (3.5)

Or equivalently:
µs2,t2 = µs2 µt2 (3.6)

But this is not what we want to test at all! If there was actually no within-type interaction, then
we would still not have a valid kernelized test, because we’d have:

µs1,t1,s2,t2 = µs1 µt1 µs2 µt2 (3.7)

And permuting t2 would have no effect.
In Figure 3.3 we show a multitype point process with no cross-type interaction. Type 1

(open circles) is a homogeneous Poisson process while type 2 is a Poisson cluster process
following the setup in Section 3.5.1. But the Knox test gives a significant p-value because of
type 2’s within-type interaction.

Interestingly, at least one instance of this last example will be correctly handled by the
classical tests. Let P1 be a homogeneous Poisson process and P2 be a copy of P1 with a
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Fig. 3.3 A multitype point process in which points of type 1 (open circles) are drawn from a
homogeneous Poisson process while points of type 2 (closed circles) are drawn from a Poisson
cluster process. The Knox and Mantel test incorrectly reject the null hypothesis of cross-type
independence due to type 2’s within-type interaction.

slight amount of random jitter added to each point in space and time. Then the classical tests,
which calculate distances in space and time between points of different types will have many
entries that for which the distance in space and the distance in time are both very close to
zero. But permuting t2 will eliminate these entries. The fact that the classical tests throw away
information, focusing only on the distances between the points (a second order measure), can
actually help, suggesting that one solution might be a return to the inefficient test proposed at
the beginning of Section 3.3 which relied on kernel embeddings for the interpoint distances.

I close with three remarks. First, the cases in which the classical bivariate extensions
fail are those for which there is within type interaction, and these can be readily diagnosed
using the univariate test. Second, a permutation-based approach might still be feasible, but
the permutation must be more structured so as to preserve within-type interaction. The same
issue arises in time series, where the block bootstrap (Kunsch, 1989) has been proposed. In
spatial statistics a much less well researched version of the block bootstrap resamples spatial
rectangles (Finkenstadt and Held, 2006). I thus propose permuting spatiotemporal cubes of
one of the two types of points as a way of testing whether µP1 = µP2 with the test statistic
∥µP1 µP2∥. Third, if we are willing to consider aggregating the point pattern to some kind of
grid—which can be very helpful computationally as discussed in Chapter 4—then we can fit a
Gaussian process model to the spatiotemporal count process and either use a multi-output GP
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with an appropriate parameter modeling cross-type interaction or use the methods for testing for
independence with spatiotemporally-observed data that I develop in Chapter 6 to test whether
the two processes are associated.

3.5 Experimental Evaluation

Below, I describe experimental evaluations of my new space-time test. First, using synthetic
data, I compare the performance of our test as compared to the classical tests. Second, I show
the applicability of our methods to urban event data: using publicly available data on calls
for service and crime incidents, I ask whether and which types of citizen complaints exhibit
space/time interaction.

3.5.1 Synthetic Data

My power analysis, inspired by the one in (Diggle et al., 1995) uses the following setup for a
Poisson cluster process: parent locations (x,y, t) are sampled on the unit cube. The number of
children for each parent is drawn iid ∼ Poisson(5). The location of each child is generated as a
random displacement from the parent’s location, in space and time, where each coordinate’s
offset is independently sampled from N(0,σ). This induces space-time interaction, and as σ

increases, the signal of this interaction becomes swamped by noise. Figure 3.1 shows two
examples, one with σ = 0.025 and the other with σ = 0.2. I consider 0 < σ ≤ .4.

I will consider the same set of tuning parameters ∆ = {0.05,0.10, . . . ,0.25} for each test.
For the Knox test, the spatial cutoff varies over ∆ while the temporal cutoff is fixed at 0.1. For
the Mantel test, I use the transformation considered earlier: 1

x+ε
for ε ∈ ∆. For the Diggle et al.

test, I follow (Diggle et al., 1995) and use a grid of side length varying over ∆ for the points at
which the K function is evaluated. The grid always has the same coarseness 0.01. For KST,
the bandwidth σ of the RBF kernel varies over ∆. For each method, each value of ∆, and each
value of σ , I draw 500 random point patterns and obtain p-values using randomization testing.
The power is shown in Figure 3.4 as the fraction of simulations which correctly rejected the
null hypothesis of independence between space and time at α = 5%. The four methods are
compared in Figure 4.6. For each method, the relevant parameter that was chosen was the
parameter with the highest power for σ = 0.15. When σ is small, all methods have equally
high power, but as σ increases, the power decreases at different rates. The KST method I
proposed has the highest power for σ > 0.1.
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3.5.2 Real Data

I obtained geocoded, date-stamped locations of crimes and calls for 311 from Chicago’s open
data portal3 covering 2010-2012. There were 37 different types in the dataset, including calls
to 311 about rats and graffiti, and crime reports about arson, homicide, and burglary. For
each type of crime or call type I calculated the KST test statistic using RBF kernels with
a bandwidth of 7 days and 1/4 mile. I implemented KST using the same approach as the
reference implementation of HSIC 4, with the Gamma approximation to derive the significance
level. This implementation does not scale to the size of our dataset, so when necessary I used
independent random thinning of our dataset to retain n = 10,000 observations. The 311 call
types (complaints) I considered were: vacant / abandoned building, alley light out, garbage
cart, street lights out, rodent, pot hole, abandoned vehicle, sanitation, tree debris, and tree
trim. All were significant at p < 0.001. The crime types I considered were: burglary, theft,
public peace, battery, assault, narcotics, criminal trespass, criminal damage, auto theft, other
offense, deceptive practice, weapons violation, liquor, robbery, offense with children, sexual
assault, homicide, stalking, arson, interference, kidnapping, prostitution, sex offense, gambling,
and intimidation. The only types that were not significant were battery, assault, other offense,
sexual assault, interference, and intimidation.

Recall that significant means that we reject the null hypothesis that the spatiotemporal distri-
bution can be explained by the product of underlying spatial or temporal distributions. Thus for
almost all of the types, the implication is either that there is actually an “infectious” component
to the process or something else is driving the process (e.g. individuals as perpretators or targets)
and whatever this is, it has an infectious component. The fact that most types of calls to 311
are infectious could be explained very simply by considering, e.g. potholes—multiple citizens
may report the same call, but our test has no way of knowing this and it would thus appear as
space/time interaction, or a natural process (weather) may be the cause, so if this is sufficiently
localized in space and time then it will lead to spatiotemporal clustering. The fact that most
types of crime have an infectious component agrees with work in the criminology literature on
crime as a contagious processes (Loftin, 1986). Thus it is very interesting to note that battery,
assault, and sexual assault were not significant under our test, meaning non-contagious. While
further research which would look at underlying causes and include covariates is of course
necessary, these preliminary results suggest that there may be something interesting to uncover
in the differences between assaults on the one hand, and most other crime types on the other
hand.

3data.cityofchicago.org
4http://www.gatsby.ucl.ac.uk/~gretton/indepTestFiles/indep.htm

data.cityofchicago.org
http://www.gatsby.ucl.ac.uk/~gretton/indepTestFiles/indep.htm
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3.6 Conclusion

In this chapter, I proposed a new method for address a long-standing question asked in various
disciplines including epidemiology, criminology, and environmental science, namely, given
a set of spatiotemporal locations of a particular type of event, can we say that they exhibit
space/time interaction? I highlighted the deficiences of the classical tests addressing this
question and proposed my new Kernel Space-Time interaction test. Along the way, I proposed
a principled fix to the often criticized Mantel test. My test is easy to implement either from
scratch or using existing code for the Hilbert-Schmidt Independence Criterion. My new kernel
perspective on space/time interaction illuminates further issues that lie ahead in this literature
as researchers ask important questions, like, do two point patterns exhibit cross-type space/time
interaction? Future work in this area could focus on kernel choice and kernel learning and on
scalable methods for very large datasets.

The framework of hypothesis testing is in many ways a limited one, as demonstrated by my
experiments on real data. Going beyond a single p-value, I would like to be able to characterize
the extent of the space/time interaction and ask whether its strength varies in space and / or
time. In subsequent chapters, the Bayesian modeling framework that I emphasize will provide
alternative methods for answering these types of questions. Through Gaussian process-based
modeling of spatiotemporal data, I will set aside the framework of null hypothesis significance
testing to enter the rich world of Bayesian modeling.
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Fig. 3.4 We compare the Knox, Mantel, Diggle et al., and newly-proposed KST tests on
synthetic data. On the y-axis, we show the power as the fraction of simulations in which the
test correctly rejected the null hypothesis of independence between space and time for α = 5%.
In the simulations, a cluster point process is generated where children points are offset from a
parent a distance ∼ N(0,σ) in each dimension. As σ grows, the problem becomes harder and
each method’s power decreases. For each method, we vary a tuning parameter: for Knox we
vary the definition of “near” in space, for Mantel we vary the ε in the reciprocal transformation,
for Diggle et al. we vary the grid size, and for KST we vary the bandwidth of the RBF kernel.
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Fig. 3.5 The four methods from Figure 3.4 are shown here for comparison. For each method,
the relevant parameter that was chosen was the parameter with the highest power for σ = 0.15.
When σ is small, all methods perform equally well, but as σ increases, we see differences. The
method I propose has the highest power for σ ≥ 0.1.



Chapter 4

Gaussian process models for
spatiotemporal learning and inference

Two neighboring samples are certainly not independent... The misunderstanding
of this fact and the rough transposition of classical statistics has sometimes led
to surprising misjudgments. Around the fifties, in mining exploration, it was
advised to draw lots to locate each drilling (i.e., to locate them exactly anywhere).
Miners of course went on still using traditional regular grid pattern sampling, and
geostatistics could later prove they were right Matheron (1963).

In this chapter, I introduce Gaussian process (GP) models and advocate their use as a
general purpose method for spatiotemporal data. In Section 4.2, I discuss the problem of
“pre-whitening” where a set of non-iid spatiotemporally referenced observations is transformed
in such a way so that the resulting residuals can be treated as iid, and analyzed with classical
statistical tools. A possible objection to GPs as a default method for spatiotemporal data is their
high run-time and memory complexity. In Section 4.3, I discuss ways of exploiting structure in
the covariance function of the GP to enable scaling to large datasets. I conclude in Section 4.10
with a discussion of recent results on the consistency of GPs and their convergence rates.

4.1 Definitions

A Gaussian process (GP) is a stochastic process over an index set X . It is entirely defined by a
mean function µ : X → R and a covariance function k : X ×X → R. These two functions are
chosen such as to jointly define a normal distribution whenever we draw f |X from a GP(µ,k)
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on a finite set of locations X := {x1, . . .xn}. More specifically, we have

f |X ∼N (µ(X),k(X ,X)) where µ(X)i = µ(xi) and [K(X ,X)]i j = k(xi,x j). (4.1)

By construction this means that µ(X) is an m dimensional vector, and k(X ,X) ∈ Rd×d is a
positive semidefinite matrix, as discussed in Section 2.1.

Note that this is a realization of a stochastic process at a finite set of locations as described in
Chapter 1, and we have not introduced a function defined over all inputs X . In fact, while there
are some kernels leading to smooth processes (Wahba, 1990), this is in general not the case. In
particular, quite often the realization f (x) is nonsmooth while its prior is smooth. A well-known
example is the Brownian Bridge. There is a subtle difference between functions and function
values in the construction of a GP. For any infinite-dimensional GP, i.e. where the rank of
k(X ,X) is unbounded, it is only possible to evaluate the GP pointwise. The technical challenge
is that distributions over infinite-dimensional objects are nontrivial to define. Evaluating a GP
on a finite number of locations sidesteps the entire problem.

As an illustration consider a Gaussian process with mean function µ = 0 and Gaussian

Radial Basis Function (RBF) kernel k(xi,x j) = e−∥xi−x j∥2
. These parameters give a GP from

which we can draw a realization. Since we want to know its value for a range of locations,
we draw f for a grid of points. By construction they are drawn from a multivariate Gaussian
distribution with mean µ = 0 and covariance K.

Three different draws are shown in Figure 4.1, where we have used a sufficiently dense grid
of points such that the function appears smooth. In a Bayesian framework, these are draws from
the prior distribution before seeing any data. How do we update our prior given observations
Z = (X ,Y )? We start by specifying the joint distribution over both observed outputs Y and
unobserved outputs Y ∗: [

Y Y ∗
]
∼N (µ (⃗x),K)

where we can calculate K(xi,x j) for any pair of x’s, observed or unobserved, i.e. :

K =

[
K(X ,X) K(X ,X∗)
K(X∗,X) K(X∗,X∗)

]

Since we’ve observed (X ,Y ), we can find the conditional distribution using the properties
of multivariate Gaussian distributions, see e.g. (Rasmussen and Williams, 2006):

Y ∗|Y ∼N (K(X∗,X)K(X ,X)−1Y,K(X∗,X∗)−K(X∗,X)K(X ,X)−1K(X ,X∗))
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Fig. 4.1 Three draws from a GP prior with mean 0 and Gaussian RBF covariance function.

We give an illustration in Figure 4.2, where the observations (−1,1),(0,0),(1,1) are shown
in black circles and 10 posterior function draws f ∗ are plotted. Notice that there is no uncertainty
at the observed points.

In some cases, like modeling computer simulations, this noise-free behavior might be
desirable, but for real data generated by nature we need to include an extra noise term. If we
believe our noise is iid, we can introduce a Gaussian observation error model, also known as
the likelihood function in GP regression. We have the following hierarchical specification,
introducing the following notation for a draw from a GP:

f ∼ GP(µ,k) (4.2)

Y | f ∼N ( f ,σ2I) (4.3)

Or equivalently, this says that once we have a draw f , each observed value Yi is an independent
draw from a Gaussian distribution centered at f (Xi) with variance σ2.

For a set of fixed locations X , this models is conjugate, so we can integrate out f and obtain
an equivalent prior distribution over Y :

Y |X ∼N (µ,K +σ
2I) (4.4)

What does this extra variance σ2 (called the “nugget” in geostatistics) do? In addition to
providing extra numerical stability in calculations involving the covariance matrix (and thus
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Fig. 4.2 Draws from a Gaussian process posterior with Gaussian RBF kernel after observations
at {(−1,1),(0,0),(1,1)}. Left: noise free observations. Right: noisy observations with
σ2 = 0.2. Notice the difference in terms of uncertainty at the locations of measurement and the
relative similarity otherwise.

being useful in practice), it has the effect of increasing the variance for observations, relative to
the cross-covariance between nearby observations. If we use the same K as before, we have the
following posterior:

Y ∗|Y ∼N (µ̄, K̄) (4.5)

where µ̄ = K(X∗,X)(K(X ,X)+σ
2I)−1Y

K̄ = K(X∗,X∗)−K(X∗,X)(K(X ,X)+σ
2I)−1K(X ,X∗)

Here K̄ is the well-known Schur complement of the joint covariance matrix over X and X ′. Note
that the noise term σ2 is only used for observed data Y . If we use this prior, we can draw 10
posterior functions as before. In Figure 4.2 (right) we have plotted these function draws. Notice
that there is now some uncertainty, controlled by the parameter σ2, at the observed points —
even if we were to observe y|x at the same location repeatedly, we would have no assurance
that the observations would be identical. But as discussed in Chapter 1, it is usually the case
that we only have one observation at any given space-time location, so it is very important
that we include a likelihood function to model the observation error which is always present in
real-world data.
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Gaussian likelihoods are particularly nice because they lead to conjugate models, meaning
the posterior of the Gaussian process is available in closed form as above. When GPs are used
for classification or regression with counts or proportions other likelihoods like Binomial and
Poisson are useful, as discussed in Section 4.4 and Section 5.4. However, these do not lead
to closed form posteriors so approximate Bayesian methods (or Monte Carlo sampling) are
necessary.

4.2 Pre-whitening spatiotemporal data

It is common for observational data to violate the typical assumption of independent and identi-
cally distributed (iid) observations. For instance, repeated measurements of neighborhoods or
individuals by their nature have a temporal structure. Environmental measurements often have
both temporal and spatial structure. This structure poses a particular problem when inferring
dependence between random variables. As a motivating example, consider two independently
generated autoregressive time series AR(1) on random variables X and Y according to the
model

xt = 0.9 · xt−1 + εx,t and yt = 0.8 · yt−1 + εy,t where εx,t ,εy,t ∼N (0,1).

That is, X and Y are independent time series, each of which is corrupted at each step by adding
normally distributed iid random variables. Despite the fact that X and Y are independent,
the Pearson correlation between X and Y may be large in magnitude, due to the underlying
autocorrelation structure of each time series, as shown in Figure 4.3.

While Fisher’s z-transformation can be used to derive the distribution of the Pearson
correlation statistic under linear independence, this assumes iid observations. But in the case
of X and Y , our observations are neither independent nor identically distributed. The general
guidance in the time series literature is to fit an appropriate autoregressive model to the data and
to obtain residuals from this model Box et al. (2008). The intuition is that this pre-whitening
should yield residuals which are iid, after which independence testing proceeds as usual. We
formalize this notion in the present chapter.

Given observations (X ,S) = {xi,si} where si is a location in space or time, we consider the
model:

f ∼ GP(0,K)

with observation model:
X = f (S)+ ε
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Fig. 4.3 Pairs of time series processes were generated 10,000 times, with n = 100 observations
for each. Each time, the Pearson correlation between the two processes was calculated.
When both pairs were white noise, i.e. iid ∼N (0,1), 95% of the correlations were between
-0.2 and 0.2. But when the two pairs were independently generated AR(1) processes, with
xt = 0.9xt−1 + εx,t and yt = 0.8yt−1 + εy,t , only 60% of the correlations were between -0.2 and
0.2. This is an example of the way that temporal autocorrelation can bias an independence test
(in this case, linear independence tested with Pearson correlation) that assumes iid data: many
more correlations are significant than we would expect by chance. A simple correction is to
first pre-whiten xt and yt by fitting an AR(1) model and obtaining residuals.

where ε ∼N (0,σ2). (Note that this is equivalent to the Gaussian likelihood observation model
introduced in the previous section. We have introduced ε as we explicitly care about the
residuals.) Thus we want an estimator:

f̂ = E[ f |(x1,s1), . . . ,(xn,sn)]

so that we can obtain residuals εxs = X− f̂ (S). Notice that because we are using GP regression,
all of our observations (x1,s1) . . . ,(xn,sn) are used to estimate f and we explicitly account for
the non-iid nature of our spatial or temporal observations by learning f . An intuitive way to
think about this is as smoothing. All of the observations play a role in our posterior prediction
of f at location a new or existing location s∗ as seen in the algebra: our posterior prediction at
location s∗ is given by E[ f (s∗)|s∗,X ,S] = K∗(K +σ2I)−1X . Note further that while for small
samples some residual dependence may remain, we have a consistent method so as our sample



4.3 Scaling to large-scale datasets 39

size increases this dependence will go to 0. We discuss consistency and convergence in Section
4.10.

Because we consider S to be an environmental variable, we make the assumption of
independent, additive noise. In other words, if S is a cause of X , we assume X = f (S)+ εxs

with S⊥⊥ εxs. Similarly, if S is a cause of Y , we assume Y = f (S)+ εys with S⊥⊥ εys. Notice
that we are not restricting ourselves to deterministic functions f . Any time series model, such
as an autoregressive time series, with additive errors fits these requirements. Thus we can use
εxs and εys in subsequent independence tests, continuing to assume independent, additive noise
for causes, and Markov and faithfulness, without worrying about bias due to an underlying
correlation structure. This pre-whitening process, which follows standard practice in the spatial
statistics and time series literature (e.g. Frisch and Waugh (1933); Haugh (1976)), is illustrated
in Figure 4.4 using the same setup described above, where X and Y are independent AR(1) time
series. We choose a particular realization with a large (but spurious) correlation of 0.61 between
X and Y and a correspondingly highly significant value from HSIC (p ≤ 7.7× 10−18) for
rejecting the null hypothesis of independence. We apply GP regression to X and Y separately
as shown in Figure 4.4 to estimate pre-whitened residuals εX and εY . These residuals have a
very low correlation of 0.01 and a correspondingly insignificant p-value from HSIC of 0.401.

The use of GPs for pre-whitening is very powerful because GPs are a consistent non-
parametric regression method, as discussed in Section 4.10. However, standard GP algorithms
are computational-time and memory intensive, and thus not scalable to large datasets. I address
this issue, especially in the context of spatiotemporal data, in the next section.

4.3 Scaling to large-scale datasets2

We are given a dataset D = (yyy,X) where yyy = {y1, . . . ,yn} are the outcome variables and X =

{x1, . . . ,xn} are the predictor variables. The outcomes could be real-valued, categorical, counts,
etc., and the predictors, for example, could be spatial locations, times, and other covariates.

1We note that the correct choice of kernel and method for obtaining residuals matters. This issue is discussed
in more detail in Section 2.2. We used a Gaussian RBF kernel and obtained residuals by smoothing. If we
had been more concerned with trying to exactly mimic the behavior of a classical autoregressive fit, we would
instead need to use the Ornstein-Uhlenbeck process, which is a GP with exponential kernel given by k(t, t ′) =

1
1−φ2 exp(log(φ)|t− t ′|) where φ = 0.9 for x and φ = 0.8 for y, and we would also have performed one-step-ahead
forecasting rather than smoothing in order to obtain the residuals. Ultimately, if the practitioner has domain
knowledge supporting the use of a particular class of models, such as AR(1), we would absolutely recommend
incorporating this knowledge, rather than relying on a generic choice like GP regression with a Gaussian RBF
kernel. We advocate GP regression as a generally applicable method, especially in cases for which there is little
domain expertise, and we further advocate carefully checking residuals for structure and refining one’s modeling
choices accordingly.

2This presentation follows that of Flaxman et al. (2015b).
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Fig. 4.4 X is a realization of an AR(1) process with xt = 0.9 · xt−1 + εx,t and Y is a realization
of an AR(1) process with yt = 0.8 · yt−1 + εy,t . X and Y are independent and εx,t ,εy,t ∼N (0,1).
As shown in Figure 4.3 it is likely that there will be a spurious correlation between X and Y . We
chose a specific realization, plotted as the black dots in the top left plot (for visual clarity, X +2
and Y − 2 are shown), in which the correlation is 0.61 with highly significant p-value from
HSIC ≤ 7.7×10−18 (top right plot). We used GP regression with an RBF covariance function
to obtain the fitted curves shown in red and blue in the top left. The residuals are shown in the
bottom left and compared in the bottom right: the correlation between the residuals is 0.01 with
insignificant p-value from HSIC = 0.40.

We assume the relationship between the predictors and outcomes is determined by a latent
Gaussian process f (x)∼ GP(m,kθ ), and a likelihood for the observation model p(y(x)| f (x)).
As introduced in Section 4.1, the GP is defined by its mean m and covariance function kθ
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(parametrized by θθθ ), such that any collection of function values fff = f (X)∼N (µµµ,K) has a
Gaussian distribution with mean µµµ i = m(xi) and covariance matrix Ki j = k(xi,x j|θθθ).

Our goal is to infer the predictive distribution p( f∗|yyy,x∗), for any test input x∗, which allows
us to sample from p(yyy∗|yyy,x∗) via the observation model p(y(x)| f (x)):

p( f∗|D,x∗,θθθ) =
∫

p( f∗|XXX ,x∗, fff ,θθθ)p( fff |D,θθθ)d fff (4.6)

We also wish to infer the marginal likelihood of the data, conditioned only on kernel hyperpa-
rameters θθθ ,

p(yyy|θθθ) =
∫

p(yyy| fff )p( fff |θθθ)d fff , (4.7)

so that we can optimize this likelihood, or use it to infer p(θθθ |yyy), for kernel learning. Having
an expression for the marginal likelihood is particularly useful for kernel learning, because it
allows one to bypass the extremely strong dependencies between fff and θθθ in trying to learn
θθθ . Unfortunately, for all but the Gaussian likelihood (used for standard GP regression), where
p(yyy| fff ) =N ( fff ,Σ), equations (7.13) and (4.7) are analytically intractable.

4.4 A motivating example: Cox Processes

In this section, we describe the log-Gaussian Cox Process (LGCP), a particularly important
spatial statistics model for point process data (Diggle et al., 2013; Møller et al., 1998). While
the LGCP is a general model, its use has been limited to small datasets. We focus on this model
because of its importance in spatial statistics and its suitability for the Kronecker methods we
propose. Note, however, that our methods are generally applicable to Gaussian process models
with non-Gaussian likelihoods, such as Gaussian process classification.

An LGCP is a Cox process (inhomogeneous Poisson process with stochastic intensity)
driven by a latent log intensity function logλ := f with a GP prior:

f (s)∼ GP(µ(s),kθ (·, ·)) . (4.8)

Conditional on a realization of the intensity function, the number of points in a given space-time
region S is:

yS|λ (s)∼ Poisson
(∫

s∈S
λ (s) ds

)
. (4.9)

Following a common approach in spatial statistics, we introduce a “computational grid” (Diggle
et al., 2013) on the observation window and represent each grid cell with its centroid, s1, . . . ,sn.
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Let the count of points inside grid cell i be yi. Thus our model is a Gaussian process with a
Poisson observation model and exponential link function:

yi| f (si)∼ Poisson(exp[ f (si)]) . (4.10)

4.5 Laplace Approximation

For fixed covariance hyperparameters θ , we wish to infer the distribution over the log-intensity
function f where p( f |Y,S,θ) ∝ p(Y | f )p( f |S,θ). Since our observation model p(Y | f ) is a
Poisson distribution, a closed form expression for p( f |Y,S,θ) is not available.

The Laplace approximation models the posterior distribution of the Gaussian process,
p( fff |yyy,X), as a Gaussian distribution, to provide analytic expressions for the predictive distribu-
tion and marginal likelihood in Eqs. (7.13) and (4.7). We follow the exposition in Rasmussen
and Williams (2006).

Laplace’s method uses a second order Taylor expansion to approximate the unnormalized
log posterior,

Ψ( fff ) := log p( fff |D) const
= log p(yyy| fff )+ log p( fff |X) , (4.11)

centered at the f̂ff which maximizes Ψ( fff ). We have:

∇Ψ( fff ) = ∇ log p(yyy| fff )−K−1( fff −µµµ) (4.12)

∇∇Ψ( fff ) = ∇∇ log p(yyy| fff )−K−1 (4.13)

W := −∇∇ log p(yyy| fff ) is an n× n diagonal matrix since the likelihood p(yyy| fff ) factorizes as

∏i p(yi| fi).
We use Newton’s method to find f̂ff . The Newton update is

fff new← fff old− (∇∇Ψ)−1
∇Ψ . (4.14)

This optimization procedure naively requires O(n3) time and O(n2) storage; standard practice
is to compute a Cholesky decomposition of ∇∇Ψ to solve (∇∇Ψ)−1∇Ψ.

Given f̂ff , the Laplace approximation for p( fff |yyy) is given by a Gaussian:

p( fff |yyy)≈N ( fff | f̂ff ,(K−1 +W )−1) . (4.15)
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Substituting the approximate posterior of Eq. (4.15) into Eq. (7.13), and defining A =W−1+K,
we find the approximate predictive distribution is (Rasmussen and Williams, 2006, p. 44):

p( f∗|D,x∗,θθθ)≈N (kkk⊤∗ ∇ log p(yyy| f̂ff ),k∗∗− kkk⊤∗ A−1kkk∗) (4.16)

where kkk∗=[k(x∗,x1), ..,k(x∗,xn)]
⊤ and k∗∗=k(x∗,x∗).

This completes what we refer to as inference with a Gaussian process. We have so far
assumed a fixed set of hyperparameters θθθ . For learning, we train these hyperparameters through
marginal likelihood optimization. The Laplace approximate marginal likelihood is:

log p(yyy|X ,θθθ) = log
∫

exp[Ψ( fff )]d fff (4.17)

≈ log p(yyy| f̂ff )− 1
2

ααα
⊤K−1

ααα− 1
2

log |I +KW | , (4.18)

where ααα := K−1( f̂ff −µµµ). Standard practice is to find the θ̂θθ which maximizes the approximate
marginal likelihood of Eq. (4.18), and then condition on θ̂θθ in Eq. (4.16) to perform inference
and make predictions.

Learning and inference require solving linear systems and determinants with n× n ma-
trices. This takes O(n3) time and O(n2) storage, using standard approaches, e.g., Cholesky
decomposition (Rasmussen and Williams, 2006).

4.6 Kronecker Methods

Kronecker approaches have recently been exploited in various GP settings (e.g., Bonilla et al.,
2007; Finley et al., 2009; Riihimäki and Vehtari, 2014; Stegle et al., 2011). We briefly review
Kronecker methods for efficient GPs, following Saatçi (2011), Gilboa et al. (2013), and Wilson
et al. (2014), extending these methods to non-Gaussian likelihoods in the next section.

The key assumptions enabling the use of Kronecker methods is that the GP kernel is formed
by a product of kernels across input dimensions and the inputs are on a Cartesian product
grid (multidimensional lattice), x ∈ X = X1×·· ·×XD. (This grid need not be regular and the
Xi can have different cardinalities.) Given these two assumptions, the covariance matrix K
decomposes as a Kronecker product of covariance matrices K = K1⊗·· ·⊗KD.

Saatçi (2011) shows that the computationally expensive steps in GP regression can be
accelerated by exploiting Kronecker structure. Inference and learning require solving linear
systems K−1v and computing log-determinants log |K|. Typical approaches require O(n3)

time and O(n2) space. Using Kronecker methods, these operations only require O(Dn
D+1

D )

operations and O(Dn
2
D ) storage, for n datapoints and D input dimensions. In Section 2.3 we



4.7 Kronecker Methods for Non-Gaussian Likelihoods 44

presented the key Kronecker algebra results, including efficient matrix-vector multiplication
and eigendecomposition.

Wilson et al. (2014) extend these efficient methods to partial grids, by augmenting the
data with imaginary observations to form a complete grid, and then ignoring the effects of
the imaginary observations using a special noise model in combination with linear conjugate
gradients. Partial grids are common, and can be caused by, e.g., government boundaries, which
interfere with grid structure.

4.7 Kronecker Methods for Non-Gaussian Likelihoods

We introduce our efficient Kronecker approach for Gaussian processes inference (Section 4.7.2)
and learning (Section 4.7.3) with non-Gaussian likelihoods, after introducing some notation
and transformations for numerical conditioning.

4.7.1 Numerical Conditioning

For numerical stability, we use the following transformations: B = I +W 1/2KW 1/2, Q =

W 1/2B−1W 1/2, bbb = W ( fff − µµµ)+∇ log p(yyy| f ), and aaa = bbb−QKbbb. Now (K−1 +W )−1 = K−
KQK, from the matrix inversion lemma, and the Newton update in Eq. (4.14) becomes:

fff new← Kaaa (4.19)

The predictive distribution in Eq. (4.16) becomes:

p( f∗|D,x∗,θθθ)≈N (kkk⊤∗ ∇ log p(yyy| f̂ff ),k∗∗− kkk⊤∗ Qkkk∗) (4.20)

4.7.2 Inference

Existing Kronecker methods for Gaussian likelihoods do not immediately apply to non-
Gaussian likelihoods because we are no longer working solely with the covariance matrix K.
We use linear conjugate gradients (LCG), an iterative method for solving linear systems which
only involves matrix-vector products, to efficiently calculate the key steps of the inference algo-
rithm in Section 4.5. Our full algorithm is shown in Algorithm 1. The Newton update step in
Eq. (4.19) requires costly matrix-vector multiplications and inversions of B= (I+W 1/2KW 1/2).
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We replace Eq. (4.19) with the following two steps:

Bzzz =W−1/2bbb (4.21)

ααα
new =W 1/2z (4.22)

For numerical stability, we follow (Rasmussen and Williams, 2006, p. 46) and apply our
Newton updates to ααα rather than fff . The variable bbb = W ( fff − µµµ)+∇ log p(yyy| fff ) can still be
computed efficiently because W is diagonal, and Eq. (4.21) can be solved efficiently for zzz using
LCG because matrix-vector products with B are efficient due to the diagonal and Kronecker
structure.

The number of iterations required for convergence of LCG to within machine precision is
in practice independent of n (the number of columns in B), and depends on the conditioning
of B. Solving Eq. (4.21) requires O(Dn

D+1
D ) operations and O(Dn

2
D ) storage, which is the

cost of matrix vector products with the Kronecker matrix K. No modifications are necessary
to calculate the predictive distribution in Eq. (4.20). We can thus efficiently evaluate the
approximate predictive distribution in O(mDn

D+1
D ) where m≪ n is the number of Newton

steps. For partial grids, we apply the extensions in Wilson et al. (2014) without modification.

4.7.3 Hyperparameter learning

To evaluate the marginal likelihood in Eq. (4.18), we must compute log |I +KW |. Fiedler
(1971) showed that for Hermitian positive semidefinite matrices U and V :

∏
i
(ui + vi)≤ |U +V | ≤∏

i
(ui + vn−i+1) (4.23)

where u1 ≤ u2 ≤ . . .≤ un and v1 ≤ . . .≤ vn are the eigenvalues of U and V . To apply this bound
let e1 ≤ e2 ≤ . . .≤ en be the eigenvalues of K and w1 ≤ w2 ≤ . . .≤ wn be the eigenvalues of
W . Then we use that the eigenvalues of W−1 are w−1

n ≤ w−1
n−1 ≤ . . .≤ w−1

1 :

log |I +KW | = log(|K +W−1||W |)
≤ log∏

i
(ei +w−1

i )∏
i

wi (4.24)

= ∑
i

log(1+ eiwi)
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Putting this together with Equation (4.18) we have our bound on the Laplace approximation’s
log-marginal likelihood:

log p(yyy|X ,θθθ)≥ log p(yyy| f̂ff )− 1
2

α̂αα
⊤K−1

α̂αα− 1
2 ∑

i
log(1+ eiwi) (4.25)

We chose the lower bound as we use non-linear conjugate gradients for our learning approach
to find the best θ̂θθ to maximize the approximate marginal likelihood. We approximate the
necessary gradients using finite differences.

4.7.4 Evaluation of our Learning Approach

The bound we used on the Laplace approximation’s log-marginal likelihood has been shown
to be the closest possible bound on |U +V | in terms of the eigenvalues of Hermitian positive
semidefinite U and V (Fiedler, 1971), and has been used for heteroscedastic regression (Gilboa
et al., 2014). However, its most appealing quality is computational efficiency. We efficiently
find the eigendecomposition of K using standard Kronecker methods, where we calculate the
eigenvalues of K1, . . . ,KD, each in time O(n 3

D ). We immediately know the eigenvalues of W
because it is diagonal. Putting this together, the time complexity of computing this bound is
O(Dn

3
D ). The log-determinant is recalculated many times during hyperparameter learning, so

its time complexity is quite important to scalable methods.3

As shown in Figure 4.5a, as the sample size increases the lower bound on the negative
log marginal likelihood approaches the negative log marginal likelihood calculated with the
true log determinant. This result makes perfect sense for our Bayesian model, because the
log-determinant is a complexity penalty term defined by our prior, which becomes less influ-
ential with increasing datasizes compared to the data dependent model fit term, leading to an
approximation ratio converging to 1.

Next, we compare the accuracy and run-time of our bound to a recently proposed (Groot
et al., 2014) log-det approximation relying on a low-rank decomposition of K. In Figure 4.5b
we generated synthetic data on an

√
n×
√

n grid and calculated the approximation ratio by
dividing the approximate value log |I +KW | by the true value log |I +KW | calculated with the
full matrix. Our bound always has an approximation ratio between 1 and 2, and it gets slightly
worse as the number of observations increases. This contrasts with the low-rank approximation.

3An alternative would be to try to exactly compute the eigenvalues of I +KW using LCG. But this would
require performing at least n matrix-vector products, which could be computationally expensive. Note that this
was not an issue in computing the Laplace predictive distribution, because LCG solves linear systems to within
machine precision for J≪ n iterations. Our approach, with the Fiedler bound, provides an approximation to the
Laplace marginal likelihood, and a lower bound which we can optimize, at the cost of a single eigendecomposition
of K, which is in fact more efficient than a single matrix vector product Bvvv.
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Fig. 4.5 We evaluate our bounds on the log determinant in Eq. (4.24) and the Laplace marginal
likelihood in Eq. (4.25), compared to exact values and low rank approximations. In a), the
approximation ratio is calculated as our bound (Fiedler) on the negative marginal likelihood
divided by the Laplace negative marginal likelihood. In b) and d), the approximation ratios
are calculated as a given approximation for the log-determinant divided by the exact log-
determinant. In c) we compare the runtime of the various methods.

When the rank r is close to
√

n the approximation ratio is reasonable, but quickly deteriorates
as the sample size increases.

In Figure 4.5c we compare the running times of these methods, switching to a 3-dimensional
grid. The exact method quickly becomes impractical. For a million observations, a rank-5
approximation takes 6 seconds, a rank-15 approximation takes 600 seconds, while our bound
takes only 0.24 seconds. While we cannot compare to the true log-determinant, our bound
is provably an upper bound, so the ratio between the low rank approximation and ours is a
lower-bound on the true approximation ratio. Here the low-rank approximation ratio is at least
2.8 for the rank-15 approximation and at least 30 for the rank-5 approximation.
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Finally, we know theoretically that Fiedler’s bound is exact when the diagonal matrix W
is equal to spherical noise σ2I, which is the case for a Gaussian observation model.4 Since
the Gaussian distribution is a good approximation to the Poisson distribution in the case of a
large mean parameter, we evaluated our log-determinant bound while varying the prior mean µµµ

of fff from 0 to 10. As shown in Figure 4.5d, for larger values of µµµ , our bound becomes more
accurate. There is no reason to expect the same behavior from a low-rank approximation, and
in fact the rank-20 approximation becomes worse as the mean of λ increases.

4.7.5 Algorithm Details and Analysis

For inference, our approach makes no further approximations in computing the Laplace
predictive distribution, since LCG converges to within machine precision. Thus, unlike inducing
points methods like FITC or approximate methods like Nyström, our approach to inference
gives the same answer as if we used standard Cholesky methods.

Pseudocode for our algorithm is shown in Algorithm 1. Given K1, . . . ,KD where each
matrix is n1/D×n1/D, line 2 takes O(Dn2/D). Line 5 repeatedly applies Equation (2.15), and
matrix-vector multiplication (

⊗
Kd)v reduces to D matrix-matrix multiplications V K j where

V is a matrix with n entries total, reshaped to be n
D−1

D ×n
1
D . This matrix-matrix multiplication

is O(n D−1
D n

1
D n

1
D ) =O(n D+1

D ) so the total run-time is O(Dn
D+1

D ). Line 7 is elementwise vector
multiplication which is O(n). Line 8 is calculated with LCG as discussed in Section 4.7
and takes O(Dn

D+1
D ). Lines 4 through 12 comprise the Newton update. Newton’s method

typically takes a very small number of iterations m≪ n to converge, so the overall run-time
is O(mDn

D+1
D ). Line 13 requires D eigendecompositions of matrices K1, . . . ,KD which takes

time O(Dn
3
D ) as discussed in Section 4.7.4. Line 14 is elementwise vector multiplication and

addition so it is O(n). Overall, the runtime is O(Dn
D+1

D ). There is no speedup for D = 1, and
for D > 1 this is nearly linear time. This is much faster than the standard Cholesky approach
which requires O(n3) time. The memory requirements are given by the total number of entries
in K1, . . .Kp: O(Dn

2
D ). This is smaller than the storage required for the n observations, so it is

not a major factor. But it is worth noting because it is much less memory than required by the
standard Cholesky approach of O(n2) space.

4The entries of W are equal to the second derivative of the likelihood of the observation model, so in the case
of the Poisson observation model with exponential link function, Wii =−∇∇ log p(yyy| fff ) = exp[ f̂ff i].
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ALGORITHM 1: Kronecker GP Inference and Learning
1: Input: θθθ ,µµµ,K, p(yyy| fff ),yyy
2: Construct K1, . . . ,KD

3: ααα ← 0
4: repeat
5: fff ← KKKααα +µµµ { Eq. (2.15)}
6: W ←−∇∇ log p(yyy| fff ){Diagonal}
7: bbb←W ( fff −µµµ)+∇p(yyy| fff )
8: Solve Bzzz =W−

1
2 bbb with CG # Eq. (4.21)

9: ∆ααα ←W
1
2 zzz−ααα {Eq. (4.22)}

10: ξ̂ ← argminξ Ψ(ααα +ξ ∆ααα) {Line Search}
11: ααα ← ααα + ξ̂ ∆ααα {Update}
12: until convergence of Ψ

13: eee = eig(K) {exploit Kronecker structure}
14: Z← ααα⊤( fff −µµµ)/2+∑i log(1+ eeeiWi)/2− log p(yyy| fff )
15: Output: fff ,ααα,Z

4.8 Model Specification

We propose to combine our fast Kronecker methods for non-Gaussian likelihoods, discussed in
Section 4.7, with Cox processes, which we introduced in Section 4.4. We will use this model
for crime rate forecasting in Section 7.4.

With large sample sizes but little prior information to guide the choice of appropriate
covariance functions, we turn to a class of recently proposed expressive covariance functions
called Spectral Mixture (SM) kernels (Wilson and Adams, 2013b). These kernels model the
spectral density given by the Fourier transform of a stationary kernel (k = k(τ) = k(x− x′))
as a scale-location mixture of Gaussians. Since mixtures of Gaussians are dense in the set of
all distribution functions and Bochner’s theorem shows a deterministic relationship between
spectral densities and stationary covariances, SM kernels can approximate any stationary
covariance function to arbitrary precision. For 1D inputs z, and τ = z− z′, an SM kernel with
Q components has the form

k(τ) =
Q

∑
q=1

wq exp(−2π
2
τ

2vq)cos(2πτµq) . (4.26)

wq is the weight, 1/µq is the period, and 1/√vq is the length-scale associated with component
q. In the spectral domain, µq and vq are the mean and variance of the Gaussian for component
q. Wilson et al. (2014) showed that a combination of Kronecker methods and spectral mixture
kernels distinctly enables structure discovery on large multidimensional datasets – structure
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discovery that is not possible using other popular scalable approaches, due to the limiting
approximations in these alternatives.

For our space-time data, in which locations s are labeled with coordinates (x,y, t), we
specify the following separable form for our covariance function kθ :

kθ ((x,y, t),(x′,y′, t ′)) = kx(x,x′)ky(y,y′)kt(t, t ′)

where kx and ky are Matérn-5/2 kernels for space and kt is a spectral mixture kernel with
Q = 20 components for time. We used Matérn-5/2 kernels because the spatial dimensions in
this application vary smoothly, and the Matérn kernel is a popular choice for spatial data Stein
(1999).

We also consider the negative binomial likelihood as an alternative to the Poisson likeli-
hood. This is a common alternative choice for count data Hilbe (2011), especially in cases of
overdispersion and we find that it has computational benefits. The GLM formulation of the
negative binomial distribution has mean m and variance m+ m2

r . It approaches the Poisson
distribution as r→ ∞.

4.9 Experiments

We evaluate our methods on synthetic and real data, focusing on runtime and accuracy for
inference and hyperparameter learning. Our methods are implemented in GPML (Rasmussen
and Nickisch, 2010) and they are available with tutorials online5. We apply our methods to
spatiotemporal crime rate forecasting, comparing with FITC, SSGPR (Lázaro-Gredilla et al.,
2010), low rank Kronecker methods (Groot et al., 2014), and Kronecker methods with a
Gaussian observation model.

4.9.1 Synthetic Data

To demonstrate the vast improvements in scalability offered by our method we simulated a
realization from a GP on a grid of size n×n×n with covariance function given by the product of
three SM kernels. For each realization f (si), we then drew yi ∼ NegativeBinomial(exp( f (si)+

1). Using this as training data, we ran non-linear conjugate gradients to learn the hyperparame-
ters that maximized the lower bound on the approximate marginal likelihood in equation (4.25),
using the same product of SM kernels. We initialized our hyperparameters by taking the true
hyperparameter values and adding random noise. We compared our new Kronecker methods to

5www.gaussianprocess.org/gpml/code

www.gaussianprocess.org/gpml/code
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(b) Accuracy

Fig. 4.6 Run-time and accuracy (mean squared error) of optimizing the hyperparameters of
a GP with the Laplace approximation, comparing our new Kronecker inference methods to
standard GP inference, FITC, and Kronecker with low rank. The standard method has cubic
running time. Each experiment was run with 5-fold crossvalidation but error bars are not
shown for legibility. There is no significant difference between the standard and Kronecker
methods in terms of accuracy. For grids of size 10×10×10 observations and greater, FITC
has significantly lower accuracy than Kronecker and standard methods.

standard methods and FITC with varying numbers of inducing points. In each case, we used
the Laplace approximation. We used 5-fold crossvalidation, relearning the hyperparameters
for each fold and making predictions for the latent function values fff i on the 20% of data that
was held out. The average MSE and running times for each method on each dataset are shown
in Figure 4.6. We also calculated the log-likelihood of our posterior predictions for varying
numbers of observations n for FITC-100, as shown in Table 4.3 in the Appendix. Our method
achieved significantly higher predictive log-likelihood than FITC-100 for n≥ 1000.

In our final synthetic test, we simulated 100 million observations from a GP on an 8
dimensional grid, possibly the largest dataset that has ever been modeled with a Gaussian
process. This is particularly exceptional given the non-Gaussian likelihood. In this case, we
had a simple covariance structure given by a squared exponential (RBF) kernel with different
length-scales per dimension. We successfully evaluated the marginal likelihood in 27 minutes.

4.9.2 Crime Rate Forecasting in Chicago

The City of Chicago makes geocoded, date-stamped crime report data publicly available
through its data portal6. For our application, we chose crimes coded as “assault” which includes
all “unlawful attacks” with a weapon or otherwise. Assault has a marked seasonal pattern,
peaking in the summer. We used a decade of data from January 1, 2004 to December 31, 2013,
consisting of 233,088 reported incidents of assault. We trained our model on data from the

6http://data.cityofchicago.org
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first 8 years of the dataset (2004-2011), and made forecasts for each week of 2012 and 2013.
Forecasting this far into the future goes well beyond what is currently believed to be possible
by practitioners.

LGCPs have been most widely applied in the 2-dimensional case, and we fit spatial LGCPs
to the training data, discretizing our data into a 288×446 grid for a total of 128,448 observations.
Posterior inference and learned hyperparameter are shown in Section 4.9.3 of the Appendix.

For our spatiotemporal forecasting, we used Spectral Mixture (SM) kernels for the time
dimension, as discussed in Section 4.8. Specifically, we consider Q = 20 mixture components.
For hyperparameter learning, our spatial grid was 17×26, corresponding to 1 mile by 1 mile
grid cells, and our temporal grid was one cell per week, for a total of 416 weeks. Thus, our
dataset of 233,088 assaults was discretized to a grid of size 183,872. Both of these sample
sizes far exceed the state-of-the-art in fitting LGCPs, and indeed in fitting most GP regression
problems without extreme simplifying assumptions or approximations.

To find a good starting set of hyperparameters, we used the hyperparameter initialization
procedure in Wilson et al. (2014) with a Gaussian observation model. We also rescaled counts
by the maximum count at that location, log-transformed, and then centered so that they would
have mean 0. We ran non-linear conjugate gradient descent for 200 iterations. Using the
hyperparameters learned from this stage, we switched to the count data and a negative binomial
likelihood. We then ran non-linear conjugate gradient descent for another 200 iterations to
relearn the hyperparameters and also the variance of the negative binomial.

The spatial hyperparameters that we learned are σ2 = 0.2231, λ1 = 0.11 and λ2 = 0.02.
This means that at this high resolution, with so much temporal data, there was little smoothing
in space, with nearby locations allowed to be very different. Yet due to the multiplicative
structure of our covariance function, our posterior inference is able to “borrow strength” such
that locations with few observations follow a globally-learned time trend. We learned 60
temporal hyperparameters, and the spectral mixture components with the highest weights are
shown in Figure 4.8, visualized in the covariance and frequency domains. We also show what
posterior time series predictions would be if only a particular spectral component had been
used, roughly giving an idea of the “explanatory” power of separate spectral components. We
interpret the components, by decreasing weight, as follows: component 1 has a period and
length-scale larger than the observation window thus picking up a decreasing trend over time.
Components 2 (with period 1 month) and 4 pick up very-short-scale time variation, enabling
the model to fit the observed data well. Component 3 picks up the yearly periodic trend (the
spike in the spectral domain is at 0.02 = 1

52.1). Component 5 picks up a periodic trend with
length longer than a year – 97 weeks, a feature for which we do not have any explanation. The
exact hyperparameters are in Table 4.2 in the Appendix.
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Fig. 4.7 Local area posterior forecasts of assault one year into the future with the actual locations
of assaults shown as black dots. The model was fit to data from January 2004 to December
2011, and the forecasts were made for the first week of June 2012 (left) and December 2012
(right).

After learning the hyperparameters, we made predictions for the entire 8 years of training
data and 2 years of forecasts. In Figure 4.10 in the Appendix we show the time series of
assaults for 9 neighborhoods with our predictions, forecasts, and uncertainty intervals. Next, we
rediscretized our original point pattern to a grid of size 51×78 (n = 1.6 million observations)
and made spatial predictions 6 months and 1 year into the future, as shown in Figure 4.7, which
also includes the observed point pattern of crimes. Visually, our forecasts are quite accurate. The
accuracy and runtime of our method and competitors is shown in Table 4.1. The near 0 RMSE
for predictions at the training data locations (i.e. the training error) for Kronecker Gaussian SM-
20 indicates overfitting, while our model, Kronecker NegBinom SM-20, has a more reasonable
RMSE of 0.79, out-performing the other models. The forecasting RMSE of our model was
not significantly different than SSGPR or Kronecker Gaussian, while it outperformed FITC.
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But RMSE does not take forecasting intervals (posterior uncertainty) into account. Kronecker
Gaussian and SSGPR had overly precise posterior estimates. Forecast log-likelihood is the
probability of the out-of-sample data (marginalizing out the model parameters), so we can use
it to directly compare the models, where higher likelihoods are better. The Kronecker Gaussian
approach has the lowest forecast log-likelihood. FITC was not overconfident, but its posterior
forecasts were essentially constant. Our model has the highest forecast log-likelihood, showing
a balance between a good fit and correct forecasting intervals. Kronecker Gaussian methods
showed the fastest run-times due to the availability of a closed form posterior. FITC was very
slow, even though we only used 100 inducing points.

KronNB SM-
20

KronNB SM-
20 Low Rank

KronGauss
SM-20

FITC-100 NB
SM-20

SSGPR-200

Training
RMSE

0.79 1.13 10−11 2.14 1.45

Forecast RMSE 1.26 1.24 1.28 1.77 1.26
Forecast log-
likelihood

-33,916 -172,879 -352,320 -42,897 -82,781

Run-time 2.8 hours 9 hours 22 min. 4.5 hours 2.8 hours

Table 4.1 Kron NB SM-20 (our method) uses Kronecker inference with a negative binomial
observation model and an SM kernel with 20 components. KronNB SM-20 Low Rank uses a
rank 5 approximation. KronGauss SM-20 uses a Gaussian observation model. FITC 100 uses
the same observation model and kernel as KronNB SM-20 with 100 inducing points and FITC
inference. SSGPR-200 uses a Gaussian observation model and 200 spectral points. Carrying
forward the empirical mean and variance has a forecast RMSE of 1.84 and log-likelihood of
-306,430.

q Weight Period Length-scale
1 52.72 10813.9 133280.2
2 5.48 4.0 1.1
3 0.33 52.1 27700.8
4 0.05 22.0 1.6
5 0.02 97.4 7359.1

Table 4.2 The top five spectral mixture components learned for the temporal kernel in the LGCP
fit to 8 years of assault data. The components are visualized in Figure 4.8 where component q
corresponds to the row of the table.

4.9.3 A two-dimensional LGCP

We used a product of Matérn-5/2 kernels: kx(d) with length-scale λx and variance σ2 and
ky(d) with length-scale λy and variance fixed at 1: k((x,y),(x′,y′)) = kx(|x− x′|)ky(|y− y′|).
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Fig. 4.8 The five spectral mixture components with highest weights learned by our model
are shown as a covariance (top) and spectral density (middle). In the bottom row, time series
predictions were made on the dataset (ignoring space) using only that component. Red indicates
out-of-sample forecasts.

We discretized our data into a 288×446 grid for a total of 128,448 observations. Locations
outside of the boundaries of Chicago – about 56% of the full grid—were treated as missing.
In Figure 4.9 we show the location of assaults represented by dots, along with a map of our
posterior intensity, log-intensity, and variance of the number of assaults. It is clear that our
approach is smoothing the data. The hyperparameters that we learn are σ2 = 5.34, λx = 2.23,
and λy = 2.24, i.e., length-scales for moving north-south and east-west were found to be nearly
identical for these data; by assuming Kronecker structure our learning happens in a fashion
analogous to Automatic Relevance Determination Neal (1996).
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N Standard Kronecker FITC-100
125 -62.12 -61.52 -61.20
343 -157.47 -157.80 -159.21
1000 -445.48 -443.87 -455.84
1728 -739.56 -740.31 -756.95
8000 -3333.10 -3333.66 -3486.20

Table 4.3 Predictive log-likelihoods are shown corresponding to the experiment in Figure 4.6. A
higher log-likelihood indicates a better fit. The differences between the standard and Kronecker
results were not significant but the difference between FITC-100 and the others was significant
(two-sample paired t-test, p≤ .05) for n≥ 1000.

4.10 Conclusion

We conclude this chapter by mentioning the literature on the consistency of GPs and its
relevance to our pre-whitening procedure and our working scaling up GPs. Choi and Schervish
(2007) demonstrate almost sure convergence for GP regression under mild conditions while Van
Der Vaart and Van Zanten (2011) provide convergence rates for GP regression. The take-away is
that given sufficient data, GP regression will uncover the true latent surface underlying the data.
GP regression is thus a very interesting method because it is consistent and non-parametric.
The promise of non-parametric methods is that their complexity grows with the size of the
dataset and the promise of a consistent method is that it will converge with sufficient sample
sizes. With plentiful data the challenge becomes to find efficient inference methods to realize
this promise in practice. For the spatiotemporal models we considered above, our scalable
methods (and previous scalable Kronecker methods for Gaussian observation models) enable
routine GP inference and learning with very large datasets.

I prove convergence of the pre-whitening procedure using the result in Van Der Vaart and
Van Zanten (2011), that there is some sequence rn→ 0 for sample size n such that f̂ converges
to f with:

E f ∥ f̂ − f∥2
2 ≤ r2

n (4.27)

where the convergence rate of rn depends on our choice of kernel, but under a variety of
conditions given in Van Der Vaart and Van Zanten (2011) we are guaranteed that it decreases to
0 in n. Since residuals are given by the vector f̂ − f , we would like a bound on the covariance
off the diagonal, i.e. Cov(( f̂ − f )i,( f̂ − f ) j), for all i and j. This is bounded above by the
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covariance on the diagonal:

Cov(( f̂ − f )i,( f̂ − f ) j) (4.28)

≤Var(( f̂ − f )i) (4.29)

≤ E[( f̂ − f )2
i ]−E[( f̂ − f )i]

2 (4.30)

≤ E[( f̂ − f )2
i ] (4.31)

≤ r2
n (4.32)

The last step follows because the sum of the squared residuals are ≤ r2
n by Eq. (4.27), so

any particular squared residual is also ≤ r2
n.
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(a) Point pattern of assaults (b) Posterior Intensity

(c) Posterior Latent Log-Intensity (d) Posterior Variance

Fig. 4.9 We fit a log Gaussian Cox Process to the point pattern of reported incidents of assault
in Chicago (a) and made posterior estimates of the intensity surface (b). The latent log-intensity
surface is visualized in (c) and the posterior variance is visualized in (d).
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Fig. 4.10 We show the time series of weekly assaults in the nine neighborhoods with the most
assaults in Chicago. The blue line shows our posterior prediction (training data, first 8 years of
data) and forecast (out-of-sample, last 2 years of data, to the right of the vertical bar). Observed
counts are shown as dots. 95% posterior intervals are shown in gray.



Chapter 5

Ecological inference1

In this chapter, I present a new solution to the “ecological inference” problem, of learning
individual-level associations from aggregate data. This problem has a long history and has
attracted much attention, debate, claims that it is unsolvable, and purported solutions. Unlike
other ecological inference techniques, my method makes use of unlabeled individual-level
data by embedding the distribution over these predictors into Hilbert space using the kernel
mean embeddings introduced in Section 2.4. and recent learning theory results for distribution
regression. Unlike previous approaches, my novel approach to distribution regression exploits
the connection between Gaussian process regression and kernel ridge regression, giving a
coherent, Bayesian approach to learning and inference and a convenient way to include spatial
information in the specification of the model. My approach is highly scalable as it relies on
FastFood, a randomized explicit feature representation for kernel embeddings introduced in
Section 2.6.

I apply my approach to the challenging political science problem of modeling the voting
behavior of demographic groups based on aggregate voting data. We consider the 2012 US
Presidential election, and ask: what was the probability that members of various demographic
groups supported Barack Obama, and how did this vary spatially across the country? My results
match standard survey-based exit polling data for the small number of states for which it is
available, and serve to fill in the large gaps in this data, at a much higher degree of granularity.

5.1 Introduction

I start by giving an example of the ecological inference problem. The name ecological refers
to the idea of ecological correlations (Robinson, 1950), that is correlations between variables

1This chapter is drawn from Flaxman et al. (2015c)
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observed for a group of individuals, as opposed to individual correlations, where the individuals
are the unit of analysis. The ecological inference problem has much in common with the
“modifiable areal unit problem” (Openshaw, 1984) and Simpson’s paradox. Simply put, it
is the problem of inferring individual correlations from ecological correlations. One way to
understand the reason it is called a “problem” is to consider a two-by-two contingency table,
with unknown entries inside the table, and known marginals. As shown in the contingency
table below, we might know that a certain electoral district’s voting population is 43% men
and 57% women and that in the last election, the outcome was 63% in favor of the Democratic
candidate and 37% in favor of the Republican candidate. These percentages correspond to the
numbers of individuals shown below:

Democrat Republican
Men ? ? 1,500

Women ? ? 2,000
2,200 1,300

Is it possible to infer the joint and thus conditional probabilities, for example can we ask,
what was the Democratic candidate’s vote share among women voters? It is clear that only
very loose bounds can be placed on these probabilities without any more information. Based
on the fact that rows and columns must sum to their marginals, we know, e.g. that the number
of Democrats who are men is between 0 and 1,500. These types of deterministic bounds have
been around since the 1950’s, under the name the method of bounds (Duncan and B, 1953).

What if we are given a set of electoral districts, where for each we know the marginals of
the two-by-two contingency table, but none of the inner entries? Then, thinking statistically,
we might be tempted to run a regression, predicting the electoral outcomes based on the gender
breakdowns of the districts. But this approach, formalized as Goodman’s method (Goodman,
1959) a few years after the method of bounds was proposed, can easily lead us astray—there
is not even a guarantee that outcomes be bounded between 0 and 1, and it ignores potentially
useful information provided by deterministic bounds.

The ecological inference problem has a long history of solutions, counter-solutions, and
it is often taught with a note of grave caution and stark warnings that ecological inference
is to be avoided at all costs, usually in favor of individual-level surveys. As with Simpson’s
paradox, it should come as no surprise that correlations at one level of aggregation can and do
flip signs at other levels of aggregation. But abandoning all attempts at ecological inference in
favor of surveys is not feasible or appropriate in many circumstances—relevant respondents
are no longer alive to answer historical questions of interest; subjects are reluctant to answer
questions about sensitive topics like drug usage or cheating—meaning social scientists have
been hard-pressed and even discouraged from studying many interesting and important ques-
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tions. Ecological inference problems appear in demography, sociology, geography, and political
science, and—as discussed in King (1997)—landmark legislation in the US such as the Voting
Rights Act requires a solution to the ecological inference problem to understand racial voting
patterns2.

This problem has attracted a variety of approaches over the years as summarized in King
(1997), which also proposes a Bayesian statistical modeling framework incorporating the
method of bounds (thus uniting the deterministic and probabilistic approaches). King (1997)
sparked a renewed interest in ecological inference, much of which is summarized in King et al.
(2004). A parametric Bayesian approach to this setting was proposed in Jackson et al. (2006)
and a semiparametric approach was proposed in Prentice and Sheppard (1995).

My method differs from existing methods in four ways. First, it uses more information
than is typically considered in a standard ecological regression setting: I assume that we
have access to representative unlabeled individual-level data. In the voting example, this
means having a sample of individual-level census records (“microdata”) about each electoral
district. Second, my method incorporates spatial variation. Spatial data is a common feature
of ecological regressions Third, while my method may be applied to the difficult ecological
inference problem of making individual level predictions from aggregate data, I propose that
it is most well-suited to a related ecological problem, common in political science: inferring
the unobserved behavior of subgroups of a population based on the aggregate behavior of the
groups of which they are part. For my application, this means inferring the voting behavior of
men and women separately by electoral district, given aggregate voting information by district.
Finally, my work is nonparametric. Kernel embeddings are used to capture all moments
of the probability distribution over covariates, and Gaussian process regression is used to
non-parametrically model the dependence between predictors and labels.

A related line of work, “learning from label proportions” (Kueck and de Freitas, 2005;
Patrini et al., 2014; Quadrianto et al., 2009), has the individual-level goal in mind, and aims to
build a classifier for individual instances based only on group level label proportions. While in
principle, this approach could be used in my setting, since we are only interested in subgroup
level predictions the extra task of estimating individual level predictions is probably not worth
the effort considering we are working with n = 10 million individuals. Note that there is
also a relevant parallel literature on data privacy and de-anonymization, e.g. Narayanan and
Shmatikov (2009).

2Long-standing solutions have proved quite inadequate: in one court case involving the Voting Rights Act,
a qualified expert testified, based on Goodman’s method, that the percentage of blacks who were registered to
vote in a certain electoral district exceeded 100% (King, 1997). This evidently false claim was apparently made
earnestly.
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My method is based on recent advances in distribution regression (Gärtner et al., 2002;
Szabo et al., 2015), which I generalize to address the ecological inference case. Previous
work on distribution regression has relied on kernel ridge regression, but I use Gaussian
process regression instead, thus enabling me to incorporate spatial variation, learn kernel
hyperparameters, and provide posterior uncertainty intervals, all in a fully Bayesian setting.
For scalability (my experiments use n = 10 million individuals), I use a randomized explicit
feature representation (“FastFood”) (Le et al., 2013) rather than the kernel trick.

I provide the necessary background on distribution regression in Section 5.2. I formalize
the ecological inference problem in Section 5.3 and propose my method in Section 5.4. I apply
it to the case of the 2012 US presidential election in Section 7.4, comparing my results to
survey-based exit polls.

5.2 Background: distribution regression

In this section, I present distribution regression, the task of learning a classifier or a regression
function that maps probability distributions to labels. The problem is fundamentally challenging
because we only observe the probability distributions through groups of samples from these
distributions. Specifically, our dataset is structured as follows:(

{x j
1}

N1
j=1,y1

)
,
(
{x j

2}
N2
j=1,y2

)
, . . .
(
{x j

n}
Nn
j=1,yn

)
(5.1)

where group i has a single real-valued label yi and Ni individual observations (e.g. demographic
covariates for Ni individuals) denoted x j

i ∈ Rd .
To admit a theoretical analysis, it is assumed that the probability distributions themselves

are drawn randomly from some unknown meta distribution of probability distributions. The
intuition behind why distribution regression is possible is that if each group of samples are iid
draws from a distribution which is itself an iid drawn from the meta distribution, then we will
be able to learn.

Recently, this “two-stage sampled” structure was analyzed, showing that a ridge regression
estimator is consistent (Szabo et al., 2015) with polynomial rate of convergence for almost any
meta-distribution of distributions that are sufficiently smooth. We use the obvious empirical
estimator of the kernel mean embedding introduced in Section 2.4:

µ̂X =
1
N ∑

j
φ(x j) (5.2)
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The basic approach to distribution regression is as follows: use this kernel mean estimator for
each group separately to estimate:

µ̂1 =
1

N1

N1

∑
j=1

φ(x j
1), . . . , µ̂n =

1
Nn

Nn

∑
j=1

φ(x j
n) (5.3)

Next, use kernel ridge regression (Saunders et al., 1998) to learn a function f :

y = f (µ̂)+ ε (5.4)

where the objective is to minimize the L2 loss subject to a “ridge” complexity penalty weighted
by a positive constant λ :

f̂ = arg min f∈H f ∑
i
[yi− f (µ̂i)]

2 +λ∥ f∥2
H f

(5.5)

In Szabo et al. (2015) a variety of kernels for f corresponding to the Hilbert spaceH f are
considered. We follow the simplest choice of the linear kernel k(µ̂i, µ̂ j) = ⟨µ̂i, µ̂ j⟩, motivated
by the fact that we are already working in Hilbert space. (Thus, we could equivalently say
that we are simply using ridge regression!) Following the standard derivation of kernel ridge
regression (Saunders et al., 1998), we can find the function f in closed form for a new test
group µ∗:

f (µ∗) = k∗(K +λ I)−1[y1, . . . ,yn]
T (5.6)

where k∗ = [⟨µ̂1,µ∗⟩, . . . ,⟨µ̂n,µ∗⟩] and Kab = ⟨µ̂a, µ̂b⟩.
Naively implementing distribution regression using the kernel trick is not scalable in

the setting I consider: to compute just one entry in K requires computing Kab = ⟨µ̂a, µ̂b⟩ =
1

NaNb
∑ j1 j2 k(x j1

a ,x j2
b ). This computation is O(N2) (where we assume for simplicity Ni = N, ∀i)

so computing K is O(n2N2). In my application, N ≈ 104, so I need a much more scalable
approach. Since we ultimately only need to work with the mean embeddings µi rather than the
individual observations x j

i , we use the explicit feature representation introduced in Section 2.6
to drastically reduce our computational costs.

Gaussian process regression was presented in Chapter 4. I review the well-known connec-
tion between the posterior mean in GP regression and the kernel ridge regression estimator
of Equation (5.6). If we wish to make a prediction at a new location s∗, the standard predic-
tive equations for GP regression (Rasmussen and Williams, 2006), derived by conditioning a
multivariate Gaussian distribution, tell us that:

y∗ | s∗,X ,y∼N (k∗(K +σ
2I)−1y,k∗∗− k∗(K +σ

2I)−1k∗⊤) (5.7)
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We can immediately see the connection between the kernel ridge regression estimator in
Equation (5.6) and the posterior mean of the GP in Equation (5.7). (A superficial difference is
that in Equation (5.6) our predictors are µ̂i while in Equation (5.7) they are generic locations
si, but this difference will go away in Section 5.4 when I propose using GP regression for
distribution regression.) The predictive mean of GP regression is exactly equal to the kernel
ridge regression estimator, with σ2 corresponding to λ . In ridge regression, a larger penalty λ

leads to a smoother fit (equivalently, less overfitting), while in GP regression a larger σ2 favors
a smoother GP posterior because it implies more measurement error. For a full discussion of
the connections see (Cristianini and Shawe-Taylor, 2000, Sections 6.2.2-6.2.3).

5.3 Ecological Inference

In this section I state the ecological inference problem that I intend to solve. I use the motivating
example of inferring Barack Obama’s vote share by demographic subgroup (e.g. men versus
women) in the 2012 US presidential election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these provide the labels in our problem.
Predictors are in the form of demographic covariates about individuals (e.g. from a survey with
individual level data like the census). The challenge is that the labels are aggregate, so it is
impossible to know which candidate was selected by any particular individual. This explains
the terminology: “ecological correlations” are correlations between variables which are only
available as aggregates at the group level (Robinson, 1950)

We use the same notation as in Section 5.2. Let x j
i ∈ Rd be a vector of covariates for

individual i in region j. Let w j
i be survey weights3. Let yi be labels in the form of two-

dimensional vectors (ki,ni) where ki is the number of votes received by Obama out of ni total
votes in region i. Then our dataset is:(

{x j
1}

N1
j=1,y1

)
,
(
{x j

2}
N2
j=1,y2

)
, . . . ,

(
{x j

n}
Nn
j=1,yn

)
(5.8)

We will typically have a rich set of covariates available, in addition to the demographic variables
we are interested in stratifying on, so the x j

i will be high-dimensional vectors denoting gender,
age, income, education, etc.

Our task is to learn a function f from a demographic subgroup (which could be everyone)
within region i to the probability that this demographic subgroup supported Obama, i.e. the
number of votes this group gave Obama divided by the total number of votes in this group.

3Covariates usually come from a survey based on a random sample of individuals. Typically, surveys are
reported with survey weights w j

i for each individual to correct for oversampling and non-response, which must be
taken into account for any valid inference (e.g. summary statistics, regression coefficients, standard errors, etc.).
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5.4 My method

In this section I propose my new ecological inference method. Our approach is illustrated in a
schematic in Figure 5.1 and formally stated in Algorithm 2.
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Fig. 5.1 Illustration of my approach. Labels y1,y2 and y3 are available at the group level
giving Obama’s vote share in regions 1, 2, and 3. Covariates are available at the individual
level giving the demographic characteristics of a sample of individuals in regions 1, 2, and 3.
We project the individuals from each group into feature space using a feature map φ(x) and
take the mean by group to find high-dimensional vectors µ1,µ2 and µ3, e.g. µ1 =

1
3(φ(x

1
1)+

φ(x2
1)+φ(x3

1)). Now my problem is reduced to supervised learning, where we want to learn a
function f : µ → y. Once we have learned f I make subgroup predictions for men and women
in region 3 by calculating mean embeddings for the men µm

3 = 1
2(φ(x

3
3)+φ(x4

3)) and women
µw

3 = 1
3(φ(x

1
3)+φ(x2

3)+φ(x5
3)) and then calculating f (µm

3 ) and f (µw
3 ). For a more rigorous

description of my algorithm see Algorithm 2.

Recall the two-stage distribution regression approach introduced in Section 5.2. My method
has a similar approach. To begin, I use FastFood as introduced in Section 2.6 with an RBF
kernel to produce an explicit feature map φ and calculate the mean embeddings4, one for each

4 Distribution regression with explicit random features was previously considered in Oliva et al. (2014) using
Rahimi and Recht (2008) to speed up an earlier distribution regression method based on kernel density estimation
(Poczos et al., 2013). This approach has comparable statistical guarantees to distribution regression using RKHS-
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ALGORITHM 2: Ecological inference algorithm

1: Input:
(
{(x j

1,w
j
1)}

N1
j=1,s1,y1

)
, . . . ,

(
{(x j

n,w
j
n)}Nn

j=1,sn,yn

)
for i = 1 . . .n do

2: Calculate µ̂i using Eq. (5.9) with FastFood.
3: Calculate µm

i using Eq. (5.13) with FastFood.
end

4: Learn hyperparameters θ̂ = (σ2
x ,σ

2
s , ℓ) of the GP model specified by Eqs. (5.10)–(5.11)

with observations yi at locations (µ̂1,s1), . . . ,(µ̂n,sn) using gradient descent and the
Laplace approximation.

5: Make posterior predictions using θ̂ at locations (µm
1 ,s1), . . . ,(µ

m
n ,sn) using the Laplace

approximation.
6: Output: Posterior means and variances for ym

1 , . . . ,y
m
n

region i, of Equation (5.3) with survey weights:

µ̂1 =
∑ j w j

1φ(x j
1)

∑ j w j
1

, . . . , µ̂n =
∑ j w j

nφ(x j
n)

∑ j w j
n

(5.9)

Next, instead of kernel ridge regression, I use GP regression. Recall that unlike in distribution
regression our labels yi are given by vote counts (ki,ni). We use a Binomial likelihood as the
observation model in GP regression (this is sometimes known as a logistic Gaussian process
(Riihimäki and Vehtari, 2014)). We transform each component of the latent real-valued vector f
by the logistic link function σ(f) = 1

1+e−f and we use the following observation model as our
likelihood function:

ki| f (xi)∼ Binomial(ni,σ( f (xi))) (5.10)

where we use the formulation for the Binomial distribution of ni trials and probability of success
σ( f (xi)). This is the generalized linear model (GLM) specification for binary data, combining
a Binomial distribution with logistic link function (Dobson, 2002, Ch. 7).

The predictors in our GP are the mean embeddings µ̂1, . . . , µ̂n. We also include spatial
information in the form of 2-dimensional spatial coordinates si giving the centroid of region i.
Putting these predictors together I adopt an additive covariance structure:

f∼ GP(0,σ2
x ⟨µ̂i, µ̂ j⟩+ ks(si,s j)) (5.11)

Where I have used a linear kernel between mean embeddings weighted by a variance parameter
σ2

x . Since the mean embeddings are already in feature space using the FastFood approximation

mean embeddings but inferior empirical performance (Szabo et al., 2015). As far as I am aware, using FastFood
kernel mean embeddings for distribution regression is a novel approach.
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to the RBF kernel, we are approximately using the RBF kernel. For the spatial coordinates I
use the Matérn covariance function which is a popular choice in spatial statistics (Handcock
and Stein, 1993), with ν = 3/2, length-scale ℓ and variance parameter σ2

s :

k(s,s′) = σ
2
s

(
1+
∥s− s′∥

√
3

ℓ

)
exp

(
−∥s− s′∥

√
3

ℓ

)
(5.12)

Various other kernel choices for space might improve performance, e.g. the SM kernel intro-
duced in Chapter 2 or a kernel which allowed for discontinuities across state boundaries (this
could also be captured by putting fixed state-level effects in the mean function).

By adding together the linear kernel between mean embeddings and the spatial covariance
function, we allow for a smoothly varying surface over space and demographics. The intuition
is that this additive covariance encourages predictions for regions which are nearby in space
and have similar demographic compositions to be similar; predictions for regions which are far
away or have different demographics are allowed to be less similar. GP regression with a spatial
covariance function is equivalent to the spatial statistics technique of kriging—we are effectively
smoothly interpolating y values over a very high dimensional space of predictors. Another way
to think about additivity is that we are accounting for a spatially autocorrelated error structure
in the predictions we get from the covariates alone. (We also considered a multiplicative
structure, which had slightly worse performance. Note that an additive covariance structure
with logistic link function actually corresponds to a multiplicative effect, just as in standard
logistic regression.)

Equations (5.10)-(5.11) complete my hierarchical model specification. For non-Gaussian
observation models like Equation (5.10), the posterior prediction in Equation (5.7) is no longer
available in closed form due to non-conjugacy. We follow the standard approach for GP
classification and logistic Gaussian processes and use the Laplace approximation (Riihimäki
and Vehtari, 2014; Williams and Barber, 1998) as in Section 4.5. The Laplace approximation
gives an approximate posterior distribution for f, from which we can calculate a posterior
distribution over the ki of Equation (5.10) as explained in detail in (Rasmussen and Williams,
2006, Section 3.4.2). The Laplace approximation also allows us to calculate the marginal
likelihood, which is the probability of the observed data, integrating out f, which we maximize
to learn σ2

x ,σ
2
s , and ℓ with gradient ascent.

Once I have learned the best set of hyperparameters for my model I can make predictions
for any demographic subgroup of interest. To predict the fraction of men who voted for Obama,
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I create new mean embedding vectors by gender and region, modifying Equation (5.9):

µ̂m
i =

∑ jm w j
1φ(x j

1)

∑ jm w j
1

, ∀i (5.13)

where jm are the indices of the observations of men in region i and µ̂m
i is the mean embedding

of the covariates for the men in region i. I then make posterior predictions using the Laplace
approximation as above at these new gender-region predictors. Notice that for a new µ∗ this
requires calculating k∗ = [k1∗,k2∗, . . . ,kn∗] of Equation (5.7) where ki∗ = σ2

x ⟨µ̂i,µ∗⟩+ ks(si,s∗)
using Equation (5.11). Thus new predictions will be similar to existing predictions in regions
with similar covariates and they will be similar to existing predictions at the same (and nearby)
locations.

My algorithm is stated in Algorithm 2. I now analyze its complexity. Lines 2–2 are
calculated by streaming through the data for individuals. For each individual, calculating the
FastFood feature transformation φ(x j

i ) takes O(p logd) where x j
i ∈ Rd and φ(x j

i ) ∈ Rp. To
save memory, there’s no need to store each φ(x j

i ). I simply update the weighted average µ̂i by
adding wi

jφ(x
j
i ) to it. Notice that the demographic subgroup considered in line 2 is simply a

subset of the observations calculated in line 2, so there is no added cost to calculate the µm
i or

indeed a set of µ
m1
i , . . . ,µ

mq
i for q different demographic subgroups of interest. Overall, if we

have N individuals the for loop takes time O(N p logd). Usually p≪ N and d≪ N so this is
practically linear and trivially parallelizable.

On line 2 to learn the hyperparameters in the GP regression requires calculations involving
the covariance matrix K ∈ Rn×n. Each entry in K requires computing a dot product ⟨µ̂i, µ̂ j⟩
which takes O(p) and it requires computing the Matérn kernel for the spatial locations, which
is a fast arithmetic calculation. Once we have K, the Laplace approximation is usually im-
plemented with Cholesky decompositions for numerical reasons. The runtime of computing
the marginal likelihood and relevant gradients is O(n3) (Rasmussen and Williams, 2006), and
gradient ascent usually takes less than a hundred steps to converge. Posterior predictions
on line 2 require calculating k∗ ∈ R1×n for each µm

i so this is O(n2). Reusing the Cholesky
decompositions above means predictions can be made in O(n2). GP regression requires O(n2)

storage. Overall, we expect n≪ N, so my algorithm is practically O(N), with little extra
computational cost arising from the GP regression as compared to the work of streaming
through all the observations. The N observations do not need to be stored in memory, so the
overall memory complexity is only O(n2).
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5.5 Experiments

In this section, I describe my experimental evaluation, using data from the 2012 US Presidential
election, and compare my results to survey-based exit polls, which are only available for the
18 states for which large enough samples were obtained. Our method enables us to fill in the
full picture, with much finer-grained spatial estimation and results for a much richer variety
of demographic variables. This demonstration shows the applicability of my new method to
a large body of political science literature (see, e.g. Gelman et al. (2008)) on voting patterns
by demographics and geography. Because voting behavior is unobservable and due to the
ecological inference problem, previous work has been mostly based on exit polls or opinion
polls.

I obtained vote totals for the 2012 US Presidential Election at the county level5. Most
voters chose to either re-elect President Barack Obama or vote for the Republican party
candidate, Mitt Romney. A small fraction of voters (< 2% across the country) chose a third
party candidate. Separately, I obtained data from the US Census, specifically the 2006-
2010 American Community Survey’s Public Use Microdata Sample (PUMS). The American
Community Survey is an ongoing survey that supplements the decennial US census and provides
demographically representatives individual-level observations. PUMS data is coded by public
use microdata areas (PUMAs), contiguous geographic regions of at least 100,000 people, nested
within states. I used the 5-year PUMS file (rather than a 1-year or 3-year sample) because it
contains a larger sample and thus there is less censoring for privacy reasons. To merge the
PUMS data with the 2012 election results, I created a mapping between counties and PUMAs6,
merging individual-level census data and aggregating vote totals as necessary to create larger
geographic regions for which the census data and electoral data coincided. The mapping
between PUMAs and counties is many-to-many, so I was effectively finding the connected
components. Since counties and PUMAs do not cross state borders, none of the geographic
regions I created cross state borders. An example is shown in Figure 5.2.

In total, I ended up with 837 geographic regions ranging from Orleans Parish in New
Orleans, which voted 91% for Barack Obama to Davis County, a suburb of Salt Lake City, Utah
which voted 84% for Mitt Romney. For the census data, I excluded individuals under the age
of 18 (voting age in the US) and non-citizens (only citizens can vote in presidential elections).
There were a total of 10,787,907 individual-level observations, or in other words, almost 11
million people included in the survey. The mean number of people per geographic region was
12,812 with standard deviation 21,939.

5https://github.com/huffpostdata/election-2012-results
6using the PUMA 2000 codes and the tool at http://mcdc.missouri.edu/websas/geocorr12.html
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There were 223 variables in the census data, including both categorical variables such as
race, occupation, and educational attainment and real valued variables such as income in past 12
months (in dollars) and travel time to work (in minutes). We divided the real-valued variables
by their standard deviation to put them all on the same scale. For the categorical variables with
D categories, I converted them into D dimensional 0/1 indicator variables, i.e. for the variable
“when last worked” with categories 1 = “within the past 12 months,” 2 = “1-5 years ago,” and 3
= “over 5 years ago or never worked” I mapped 1 to [1 0 0]T , 2 to [0 1 0] and 3 to [0 0 1].

Putting together the indicator variables and real-valued variables, I ended up with 3,251
variables total. For every single individual-level observation, I used FastFood with an RBF
kernel to generate a 4,096-dimensional feature representation. Using Equation (5.9) I calculated
the weighted mean embedding for each region. The result was a set of 837 vectors which were
4,096-dimensional.

We treated the vote totals for Obama and Romney as is, discarded the remaining third party
votes as the exit polls I use for validation did not report third party votes. Thus for each region,
I had a positive integer valued 2-dimensional label giving the number of votes for Obama and
the total number of votes.

We focused on the ecological inference problem of predicting Obama’s vote share by the
following demographic groups: women, men, income ≤ US$50,000 per year, income between
$50,000 and $100,000 per year, income ≥ 100,000 per year, ages 18-29, 30-44, 45-64, and
64 plus. For each region, I used the strategy outlined above, restricting our census sample to
only those observations matching the subgroup of interest and creating new mean embedding

predictors as in Equation (5.13), µ
subgroup
i . We made predictions for each region-demographic

pair.
All of my models were fit using the GPstuff package with scaled conjugate gradient

optimization and the Laplace approximation (Vanhatalo et al., 2013). Since n≪ N, the time
required to fit the GP model and make predictions is much less than the time required to
preprocess the data to create the mean embeddings at the beginning of Algorithm 2.

5.6 Results

I learned the following hyperparameters for my GP: σ2
s = 0.18, ℓ= 7.92, and σ2

x = 4.56. The
σ2 parameters can be roughly interpreted as the “fraction of variance explained” so the fact
that σ2

x is much larger than σ2
s means that the demographic covariates encoded in the mean

embedding are much more important to the model than the spatial coordinates. The length-scale
for the Matérn kernel is a little more than half the median distance between locations, which
indicates that it is performing a reasonable degree of smoothing. I used 10-fold crossvalidation
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(a) (b)

Fig. 5.2 Election outcomes were available for the 67 counties in Florida shown in (a). Demo-
graphic data from the American Community Survey was available for 127 public use microdata
areas (PUMAs) in Florida, which sometimes overlapped parts of multiple counties and some-
times contained multiple counties. We merged counties and PUMAs as described in text to
create a set of disjoint regions with the result of 37 electoral regions as shown in (b).

to evaluate my model and ensure that it was not overfitting, an important consideration as
generalization performance is critical. The root mean squared error of the model was 2.5 and
the mean log predictive density was -1.9. Predictive density is a useful measure because it takes
posterior uncertainty intervals into account. For comparison, predicting the national average of
Obama receiving 51.1% of the vote in every location has a root mean squared error of 8.3. As a
sensitivity analysis, I also considered a multiplicative model, for which the performance was
comparable.

To validate my models, I compared to the 2012 exit polls, conducted by Edison Research
for a consortium of news organizations. National results were based on interviews with voters
in 350 randomly chosen precincts, and state results in 18 states were based on interviews in 11
to 50 random precincts. In these interviews, conducted as voters left polling stations, voters
were asked who they voted for and a variety of demographic questions about themselves. Bias
due to factors such as unrepresentativeness of the sampled precincts and inadequate coverage
of early or absentee voters could be an issue (Barreto et al., 2006). The national results had
a margin of error (corresponding to a 95% confidence interval) of 4 percentage points7 and
the state results had a margin of error of between 4 and 5 percentage points (New York Times,

7This presumably corresponds to a sample size of only n = 600 individuals, since the usual margin of error

reported by news organizations is 1.96
√

.52

n−1
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2012). For comparing to the 18 state-level exit polls, I aggregated my geographic regions by
state, weighting by subgroup population.

As a preview of the results by gender, income, and age, and to get an idea of the power of
my method, Figure 5.3 shows four maps visualizing Obama’s support among women and men.
In Figures 5.3a–5.3b, I show the results from the exit polls, at the state level, for only 18 states.
In Figures 5.3c–5.3d I fill in the missing picture, providing estimates for 837 different regions.

(a) Exit poll results for women (b) Exit poll results for men

(c) Ecological regression results for women (d) Ecological regression results for men

Fig. 5.3 Support for Obama among women (a) and men (b) in the 18 states for which exit
polling was done; due to cost, no representative data was collected for the majority of states
or for regions smaller than states. Support for Obama among women (c) and men (d) in 837
different regions as inferred using my ecological regression method.

5.6.1 Gender

Voting by gender is shown in Figure 5.4, where I compare my results to the exit poll results. The
fit is quite good, with correlations equal to 0.96 for men and 0.94 for women. The inference that
I am most interested in is the gender gap—i.e. how much larger was Obama’s vote share among
women than among men? In Figure 5.5 I show a histogram of the gender gap by geographic
region. The weighted average for the entire country is that women supported Obama by 6.2
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percentage points more than men (95% CI 5.2, 7.3). This matches the exit polls which showed
a 7 percentage point gap (95% CI -1.1, 15).
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Fig. 5.4 My model’s ecological predictions (y-axis) of the probability of voting for Obama by
gender compared to estimates obtained from an exit poll (x-axis). The blue line shows a 95%
confidence interval around the 45◦ line, corresponding to uncertainty due to exit poll’s margin
of error of 4 percentage points.

5.6.2 Income

Voting by income is shown in Figure 5.6, where I compare my results to the exit poll results. In
this plot, I have included both 95% uncertainty intervals and indicated the 95% margin of error
from the exit poll. For low incomes (≤ $50,000) the correlation is 0.85, for medium incomes
(between $50,000 and $100,000) the correlation is 0.90, and for high incomes (≥ $100,000)
the correlation is 0.67. Compared to my gender predictions, it is clear that my model is not
performing as well in terms of its mean predictions. On the other hand, it is clear that my
model’s uncertainty intervals are doing what they are designed to do: the large uncertainties
in the posterior predictions for the high income group accurately reflect how much we should
believe our posterior (recall that in the Bayesian paradigm these are “credibility intervals”
rather than frequentist confidence intervals). To explore the reasons my predictions are less
accurate, I considered the assumptions underlying distribution regression. In the two-stage
analysis of Szabo et al. (2015), distributions are drawn from a meta distribution. When I make
a prediction for a test distribution, if the test distribution is in a low density region of the meta
distribution then I should not expect a reliable prediction. To test this assumption, I calculated
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Fig. 5.5 Gender gap is calculated as Obama support among women minus Obama support
among men.

k∗ in Equation (5.7) separately for each observation for low, medium, and high incomes as
k∗ provides a measure of the similarity between a test distribution and the distributions used
to fit the model. The distribution of the values of k∗ are shown in Figure 5.7, where they are
compared to the entries in K, i.e. the “in-sample” regions for which I know the labels. While
the distributions for low and medium income are quite close to the overall distribution, the
distribution for high income is quite far. This is a useful diagnostic for distribution regression
in general and ecological inference in particular. It might be possible to correct for this type of
bias, as in the covariate shift literature (Gretton et al., 2009).

5.6.3 Age

Voting by age is shown in Figure 5.8. The correlations are 0.60 (ages 18-29), 0.90 (30-44),
0.92 (45-64), and 0.90 (65 years or older). We do not include posterior uncertainty intervals for
clarity, but as in the previous section, these seem to be properly calibrated: the average variance
is 0.10 for ages 18-29, 0.06 for ages 30-44, 0.05 for ages 45-64, and 0.13 for ages 64 years or
older.

In Table 5.1, I compare my national estimates to estimates from the nationally representative
exit poll. With the exception of the youngest age group, where I significantly overestimate
Obama’s support, my predictions are quite accurate, with my posterior predictions matching
the exit polls to within just a few percentage points. Our results are weighted based on the
percent of the population, rather than the percent of the voting age population. For example,
22% of residents in the US are aged 18-29, but only 19% of voters (according to the exit polls)
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(a) Income ≤ $50,000
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(b) Income between $50,000 and
$100,000
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(c) Income ≥ $100,000

Fig. 5.6 My model’s ecological predictions (y-axis) of the probability of voting for Obama by
income compared to estimates obtained from an exit poll (x-axis). The blue line shows a 95%
confidence interval around the 45◦ line, corresponding to uncertainty due to exit poll’s margin
of error of 4 percentage points. The gray error bars are 95% uncertainty intervals around my
posterior prediction.

were aged 18-29. This means that my mean embedding vectors are slightly biased, an issue
that I intend to address in future work.

Age group Ecological infer-
ence

% of residents Exit poll [95%
CI]

% of voters

18-29 70 22 60 [56, 64] 19
30-44 52 24 52 [48, 56] 27
45-64 45 35 47 [43, 51] 38
65+ 43 18 44 [40, 48] 16

Table 5.1 For the US, I compare my ecological inference to nationally representative exit polls.

5.7 Conclusion

In this chapter, I developed a new method to address the long-standing ecological inference
problem. Our method makes use of information often left unused in standard ecological
regression, that of unlabeled, individual-level data. I formulated a novel and scalable Gaussian
process distribution regression method which naturally incorporates spatial information and
enables Bayesian inference. Our model generated posterior predictions and uncertainty intervals
and where the predictions were less accurate, the uncertainty intervals were larger.

My Bayesian version of distribution regression points the way towards a coherent approach
to kernel learning for distribution regression, although scalability is an issue. My approach
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Fig. 5.7 I calculated the vector k∗ of Equation (5.7) by income (low, medium, high) for each
region and compared the distribution of the values of k∗ to the distribution of the values of K
(“all incomes”).

also highlights the potential for GLM approaches to distribution regression—my Gaussian
process regression framework could be immediately extended to continuous, categorical, or
multivariate output settings and to including other structure in the input space, such as graph or
temporal constraints.

My new method could be used in to trying to answer a variety of social science and
public policy questions, especially to answer questions for which carrying out population-
representative surveys is impossible or in settings in which the goal is to combine together two
different group-level surveys. I used my method in an important political science setting, that of
understanding voting patterns by demographic group. I were thus able to move towards filling
an important gap in the political science literature about the 2012 US presidential election due
to the lack of representative exit polls covering all 50 US states. My model’s predictions were
quite accurate, despite the fact that I did not actually use all of the information at my disposal; I
could have trained my model using exit polling data, where available, and I expect that this
approach would have made my predictions even more accurate.



5.7 Conclusion 78

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

30%

50%

70%

30% 50% 70%

Exit poll

E
co

lo
gi

ca
l r

eg
re

ss
io

n

(a) 18-29 year olds

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

30%

50%

70%

30% 50% 70%

Exit poll

E
co

lo
gi

ca
l r

eg
re

ss
io

n

(b) 30-44 year olds
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(c) 45-64 year olds
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(d) 65 years or older

Fig. 5.8 My model’s ecological predictions (y-axis) of the probability of voting for Obama by
age compared to estimates obtained from an exit poll (x-axis).



Chapter 6

Algorithmic causal inference for
spatiotemporal data1

6.1 Introduction

Many algorithmic approaches to causal inference rely on statistical tests of independence
between variables. The most popular default methods are the Fisher z-score, Pearson correlation
(and partial correlation), and more recently the Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2008). More generally, the entire framework of graphical models for causal
inference (Pearl, 2009) relies crucially on assumptions about d-separation in graphs, and testing
these assumptions with observational data requires applying a valid conditional independence
test.

In Section 4.2, we gave a motivating example in which tests of independence (equivalently,
association) spuriously reported large correlations when used on non-iid data, due to the
underlying autocorrelation structure (see Figure 4.3). Causal inference tools such as the PC
algorithm (Spirtes et al., 2001) rely not just on independence testing but also on conditional
independence testing, asking whether X ⊥⊥ Y | Z. It is not clear a priori what effect non-iid
data will have in this case. If the true model is that X ⊥⊥ Y | Z, underlying autocorrelation
affecting both X and Y might lead us to believe that X ̸⊥⊥Y | Z.

Example 1 Consider the graphical model below: It illustrates the problem of confounding
due to non-iid data. T represents time. Shaded nodes X, Y , and Z are observed, and T may be

1This chapter is drawn from Flaxman et al. (2015b).
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either observed or unobserved.

Z T

X Y

The true causal relationship is that X ⊥⊥ Y | Z. However, if T is unobserved, it acts as a latent
confounding variable, meaning that a spurious edge may be inferred between X and Y, i.e.
a conditional independence test rejects the hypothesis X ⊥⊥ Y | Z. Once T is observed and
controlled for, a conditional independence test will correctly conclude that X ⊥⊥ Y | Z.

We are not the first to point out that every scientific observation was generated at some specific
point in time (Cressie and Wikle, 2011). But in most cases, this information is discarded for
convenience. In Section 7.4, we consider a spatial dataset and a temporal dataset each of which
is usually analyzed as if the data were iid. We perform tests (Moran’s I for spatial data (Moran,
1950) and partial autocorrelation for time series data) which conclusively reject the hypothesis
that the observations are iid, and show how causal inference algorithms yield more reasonable
results after controlling for the underlying spatial and temporal autocorrelation. Our framework
also opens up the possibility of causal inference with structured data, and we develop a novel
approach to Gaussian process regression and independence testing which we apply to textual
data to determine which language is a translation of another for pairs of texts.

We propose a simple framework for using Gaussian process regression to reduce questions
about conditional independence with non-iid data to questions about unconditional indepen-
dence with iid data, which can be answered with HSIC. Mechanically, our approach is similar
to that taken in recent papers on bivariate causal orientation (Peters et al., 2014), in which
it is termed Regression with Subsequent Independence Test (RESIT), but the motivation is
different. The most similar approach to ours is the conditional independence tests proposed by
Moneta et al. (2011), which are specifically designed for time series data modeled by a vector
autoregression (VAR) model, and thus not directly applicable to, e.g. spatial data. Insofar as
our method combines kernel-based independence tests with the PC algorithm, it is similar to
the Kernel PC algorithm proposed by Tillman et al. (2009), but our conditional independence
tests are different. The strategy we propose is straightforward, generally applicable wherever
Gaussian processes can be used, and it works for both pre-whitening non-iid data and for testing
conditional independence.
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6.2 Contributions

6.2.1 Approach

The centerpiece of the approach is to use regression to remove dependence: on space, time, or a
set of conditioning variables. We assume that we have random variables (X ,Y,Z), observed at
locations S (in time, space, or on a network). Conditional independence testing then proceeds
in the following three steps:

1. We first use separate Gaussian process (GP) regressions of X |S, Y |S and Z|S to obtain
residuals

rx = x− Ê[x|s] and ry = y− Ê[y|s] and rz = z− Ê[z|s], (6.1)

thus pre-whitening each variable and eliminating its dependence on S.

2. Next, we again use GP regression to obtain residuals

εxz = rx− Ê[rx|rz] and εyz = ry− Ê[ry|rz] (6.2)

from regressing both rx and ry on rz separately.

3. Finally, we use HSIC to test for independence:

εxz ⊥⊥ εyz. (6.3)

At a mechanical level, in each step we use Gaussian process regression to obtain residuals for
which we have controlled for variation—in the case of the dependence structure of the data, we
are controlling for, say, temporal variation. In the case of conditional independence, we are
controlling for the variation due to variable Z.

Strategies like the above are standard practice in statistical modeling. In econometrics, this
approach is justified by the Frisch-Waugh-Lovell theorem (Frisch and Waugh, 1933) (which
was originally stated in a time series context), which proves that in the case of linear regression,
partial correlations can be calculated by finding the correlations between residuals. In the spatial
statistics and time series literature, pre-whitening by fitting models and obtaining residuals,
removing trends, and taking first differences are all standard approaches (Box et al., 2008).
However, to our knowledge, a full formulation of this strategy, combining a non-parametric
regression and independence test, has not been stated explicitly before. Moreover, beyond the
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case of linear models with Gaussian noise, the conditions under which it holds are not known.
In Section 7.2, we state precise conditions under which our test is valid.

We believe that our method can serve as a default template when testing for conditional
independence with non-iid data. It is equally useful as a simple method for testing for condi-
tional independence even when observations are iid, in which case the pre-whitening step can
be skipped. We highlight a few reasons for relying on GP regression for pre-whitening and
conditioning, rather than using parametric tests or relying solely on kernel-based tests:

1. Gaussian processes provide a principled Bayesian approach. Yet, for regression their con-
venient analytic form means that hyperparameters can be learned much more efficiently
than in many other fully Bayesian models since we can integrate out additive noise. This
provides considerable computational savings and increased numerical accuracy.

2. A variety of packages already exist to fit Gaussian process regression (Kalaitzis et al.,
2013; Karatzoglou et al., 2004; Rasmussen and Nickisch, 2010; Vanhatalo et al., 2013),
which perform inference using either optimization methods, grid search, or sampling
(MCMC) strategies.2

3. In the case of time series and especially spatial data, the Gaussian process framework
is a long-standing, proven method, typically referred to as “kriging” in geostatistics
(Salkauskas, 1982). In applied fields where it has been used, practitioners are adept at
designing appropriate covariance functions (Mercer kernels) adapted to their problem
domains. For instance, the Matérn kernel is a popular choice.

With spatiotemporal data, much recent work has focused on designing classes of sophis-
ticated non-separable and non-stationary covariance functions for capturing complex
dependencies (Gneiting et al., 2007). These covariance functions could be directly
imported into the kernel-based statistical tests, but their use requires model-checking
and diagnostics. Recent work suggests that complicated time series dynamics can be
automatically fit through combinations of covariances (Duvenaud et al., 2013; Wilson
and Adams, 2013a).

4. By design, Gaussian processes allow for easy graphical model-checking: diagnostic plots
can be inspected to check for autocorrelation and overfitting.

5. Our new GP formulation for structured inputs and outputs, as introduced in Section 6.2.7,
opens up the possibility of conditional independence and causal inference with structured
data such as text, images, and anything else on which a Mercer kernel can be defined.

2See also http://www.gaussianprocess.org/#code for more details.

http://www.gaussianprocess.org/#code
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6. In the case of real-valued data, our formulation allows for testing conditional indepen-
dence without first discretizing the conditioning set. This is useful because discretization
is fraught with information loss—we may lose the relevant time scale or we might even
introduce dependence due to the quantization level inherent in binning.

6.2.2 Related Work

We are only aware of one general test (Zhang et al., 2008) for unconditional independence with
non-iid data. It requires precisely specifying the dependence structure of the data as a graphical
model, and then decomposing this model into cliques, exploiting the connection between the
exponential family of distributions and kernels over graphical models. The analysis is by no
means simple—for instance, it has not been extended to a lattice structure; this is unfortunate
because assuming that points are on a lattice is a basic starting point in the spatial statistics
literature.

In the case of conditional independence, several tests have been proposed, including a
test based on characteristic functions (Su and White, 2007), the Normalized Conditional
Cross-Covariance Operator (NOCCO) (Fukumizu et al., 2007), Kernel-based Conditional
Independence (KCI) (Zhang et al., 2011), a scale invariant measure (Reddi and Póczos, 2013),
a scalable method called conditional correlation independence (CCI) (Ramsey, 2014), and a
permutation-based conditional independence test (Doran et al., 2014). However, these tests
will all be biased for non-iid data, just like the unconditional tests. While CCI does not address
the non-iid case, for conditional independence it takes an approach with a similar flavor to
our method, and makes similar asymptotic claims. However, CCI is based on a finite basis
expansion, so consistency only holds in the limit as the number of basis functions goes to infinity
along with the number of samples, whereas we use a consistent non-parametric regression
method, so consistency holds in the large-sample limit.

A few works focus specifically on the time series domain, but it is not clear if they
can be generalized to spatial or continuous / partially observed time series data. Moneta
et al. (2011) proposed a conditional independence test, appropriate for time series data that
can be modeled as a vector autoregressive (VAR) process, based on calculating divergence
between density estimates using smoothing kernels. Besserve et al. (2013) proposed a powerful
kernel cross-spectral density operator for characterizing independence between time series and
Chwialkowski and Gretton (2014) explored the behavior of HSIC for random processes (e.g.,
time series data), showing a new consistent estimate of the p-value for non-iid data, but neither
of these works address the conditional independence case.

Even with iid data, these tests have not found widespread application. Closed form dis-
tributions under the null are not available, except in the cases of KCI and the test in Su and
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White (2007), so permutation testing is required. Valid permutation testing of X ⊥⊥ Y | Z
must preserve the marginal structure X ⊥⊥ Z and Y ⊥⊥ Z. Assuming that Z is categorical, for
each value of Z one can consider permuting X . But when Z is real-valued, discretization is
necessary first. Clustering is a common approach, as in Tillman et al. (2009). By contrast,
our regression-based approach naturally handles categorical, real-valued, and even structured
(image or text) data.

6.2.3 Causal Inference Methods

We focus on two classes of causal inference methods: constraint-based causal structure learning
algorithms exemplified by the PC algorithm and bivariate causal orientation methods, i.e. the
additive non-Gaussian (ANG) framework (Hoyer et al., 2008) and the Continuous Additive
Noise Model (CANM) framework (Peters et al., 2014).

The PC algorithm learns an equivalence class of partially directed acyclic graphs (PDAGs)
which are consistent with the conditional independencies entailed by the data, as tested with
statistical tests for conditional independence. After learning this “skeleton,” the algorithm
finds V-structures, also known as colliders, of the form A→ B← C which are consistent
with the learned conditional independencies and orients edges accordingly. For example, a
V structure A→ B←C would be implied by A⊥⊥C and A ̸⊥⊥C | B. Finally, the algorithm
orients any other edges it can to be consistent with the edges it has already oriented, so long as
these orientations do not introduce any new V structures or cycles. Once a PDAG is learned,
independence relations can be read off the graph using the rules of d-separation. For a detailed
discussion of the PC algorithm see Spirtes et al. (2001) and for causal DAGs and d-separation
see Pearl (2009).

The bivariate causal orientation methods compare two models, a forward model: Y =

f1(X)+ε1 and a backwards model: X = f2(Y )+ε2. After fitting non-parametric regressions to
obtain residuals ε̂1 and ε̂2, an independence test such as HSIC is used to test whether ε̂1 ⊥⊥ X
and ε̂2 ⊥⊥ Y . If, for example, ε̂1 ⊥⊥ X but ε̂2 ̸⊥⊥ Y we reject the backward model and retain the
forward model, X → Y . For a detailed discussion see Peters et al. (2014).

6.2.4 Testing Conditional Independence by Regression and Unconditional
Independence

We start by assuming both faithfulness and the Markov condition, the same assumptions made
for the PC algorithm:
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Faithfulness There exists a causal DAG G and a probability distribution over random variables
X ,Y,Z such that if X ⊥⊥ Y | Z then X and Y are d-separated by Z in graph G

Markov If X and Y are d-separated by Z in G, then X ⊥⊥ Y | Z.

Second, we assume that we have access to a conditional regression estimator to remove the
dependence on Z from X and Y . More specifically, we assume that this can be done in an
additive fashion:

Consistent Regressors We assume that we have consistent non-parametric regressors m̂x(Z)
and m̂y(Z) that converge to E[X |Z] and E[Y |Z] respectively, such as Gaussian process
regression.

Additive Noise Model If Z is the cause of X or Y , we assume an additive independent noise
model. That is, if Z causes X (respectively Y ) then X = f (Z)+ ε where Z ⊥⊥ ε . Notice
that we are not assuming in this case that Y ⊥⊥ ε , or that the noise is always additive. For
example, if the true structure is X ← Z←Y then we assume X = f (Z)+ε but we do not
assume Y = g(Z)+ ε2 or Z = g(Y )+ ε2.

Finally, we assume that we have a valid method for testing unconditional independence between
random variables, such as HSIC. Given these assumptions, our method can be summarized in
the following simple algorithm:

1. Obtain residuals εxz = X− m̂x(Z) and εyz = Y − m̂y(Z)

2. Test whether εxz ⊥⊥ εyz.

We claim that εxz ⊥⊥ εyz ⇐⇒ X ⊥⊥ Y | Z.
We remark upon the assumptions underlying our method. As explained in Section 4.10,

Choi and Schervish (2007) demonstrate almost sure convergence for GP regression under
mild conditions while Van Der Vaart and Van Zanten (2011) provide convergence rates for
GP regression. Additive noise models underlie many standard regression techniques such as
linear regression, kernel ridge regression, GP regression, and generalized additive models.
Furthermore, it is straightforward to test this assumption in our framework: if we assume
that X = f (Z)+ ε we can check this assumption by using GP regression to regress X on Z to
estimate ε̂ . Then we use HSIC to check whether ε̂ ⊥⊥ Z.

As previously discussed in Section 4.2, an application of our method to synthetic data is
illustrated in Figure 4.4 in the case where Z represents time.
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Z Z Z

A X Y B X Y B X ε Y B

Case 1. V-structure Case 2. No edge between X and Z Case 3. Z is a cause of X

Fig. 6.1 Three cases of dependence between (X ,Y,Z), corresponding to the cases in the proof
of Theorem 4 that X ⊥⊥ Y | Z if and only if X −E[X |Z] ⊥⊥ Y −E[Y |Z]. We define auxiliary
variables A := X−E[X |Z] and B :=Y −E[Y |Z] which are uniquely determined by their parents.
Case 1: we have a V-structure X→ Z←Y , so we see that X ̸⊥⊥Y |Z⇒X−E[X |Z ]̸⊥⊥Y−E[Y |Z]
because A and B are d-connected. Case 2: If there is no edge between X and Z, any path from
X to B must go through Y . Case 3: Z and ε cause X , so the only possible path from ε to B is
through Y.

Theorem 4 Given structural assumptions of faithfulness and the Markov assumptions, and
assuming that we have consistent regressors with an additive noise model, whenever Z is a
cause of X or Y , it follows that

X ⊥⊥ Y | Z if and only if X−E[X |Z]⊥⊥ Y −E[Y |Z].

Proof We consider three cases for the structure of the causal graph G corresponding to the joint
distribution of X , Y , and Z below. For each, we prove both the forward and reverse directions
of the theorem. The associated graphical models are given in Figure 6.1. Our three cases are
exhaustive due to symmetry (i.e. given three variables, we might need to switch the variables
called X and Y ) and the fact that they cover all possible dependencies in a DAG between X and
(Y,Z), and all possible dependencies between Z and Y .

Case 1 Assume that we have a graph G with V-structure as in Figure 6.1

X → Z← Y.

This immediately implies X ̸⊥⊥Y | Z, so we do not need to prove anything for the forward
direction. We prove the reverse direction by contradiction. Thus we assume

X−E[X |Z]⊥⊥ Y −E[Y |Z] but X ̸⊥⊥ Y | Z.

and specifically this is because we have the V-structure X → Z ← Y . Adding a new set of
variables A := X−E[X |Z] with parents X and Z and B := Y −E[Y |Z] with parents Y and Z to
the DAG, as shown in Figure 6.1 does not change the model since these random variables are
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entirely determined by (X ,Z) and (Y,Z) respectively. Now we see that the path A← Z→ B d-
connects A and B. By the faithfulness assumption it follows that A ̸⊥⊥B, which is a contradiction.

Case 2 If there is no edge between Z and X or between Z and Y or both, the test reduces to
that of testing unconditional independence between X and Y . Without loss of generality let us
assume there is no edge between X and Z. E[X |Z] is a constant, call it c, so X−E[X |Z] = X−c.
As before, add the auxiliary variable B := Y −E[Y |Z] with parents Y and Z to the DAG as in
the Figure 6.1, Case 2. Then we are testing whether X− c⊥⊥ B. Since c is constant, this holds
if and only if X ⊥⊥ B. Finally, X ⊥⊥ B if and only if X ⊥⊥ Y : if X and Y are d-connected by a
path p, then we can add the edge from Y to B to the path p to make X and B d-connected. If
instead X and Y are d-separated, then so are X and B because any path from X to B must go
through Y .

Case 3 Z is a cause of X or Y or both, so assume without loss of generality that Z is a cause
of X . Then by assumption we can write X = f (Z)+ ε with Z ⊥⊥ ε where ε = X−E[X |Z] and
check ε ⊥⊥ Y −E[Y |Z]. Once again, we add a variable B := Y −E[Y |Z] with parents Y and
Z to the DAG as shown in Figure 6.1, Case 3. Now we prove X ⊥⊥ Y | Z ⇐⇒ ε ⊥⊥ B by
considering two subcases.

Subcase 1 If there is an edge in either direction between ε and Y in Figure 6.1, Case 3 then
X and Y are d-connected by the path X ← ε −Y and ε and B are d-connected by the path
ε −Y → B, so we conclude X ̸⊥⊥Y | Z and ε ̸⊥⊥B by faithfulness. Thus we have proved the
forward and reverse directions for this subcase.

Subcase 2 If there is no edge between ε and Y in Figure 6.1, then ε and B are d-separated,
since X is a collider in the path ε → X ← Z→ B, which is thus blocked. Moreover X and Y
are d-separated given Z, since Z blocks the path X ← Z−Y . By the Markov assumption, this
implies X ⊥⊥ Y | Z and ε ⊥⊥ B. This proves the forward and reverse directions for this subcase.

6.2.5 Testing Conditional Independence with GP Regression and HSIC

Based on the above general framework, we propose the use of Gaussian process (GP) regression,
which is almost surely consistent assuming Gaussian errors Choi and Schervish (2007) with
good rates of convergence Van Der Vaart and Van Zanten (2011), and the Hilbert-Schmidt
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Independence Criterion (HSIC) for testing for independence3. Neither of these choices is
crucial—we picked GP regression because of its long history in spatial statistics and widespread
use as a convenient non-parametric regression method. We picked HSIC because it is equal
to 0 if and only if the distributions under consideration are independent, whenever the kernel
is characteristic. But in cases where domain knowledge could be used to guide the choice
of independence test or pre-whitening method, these will of course be preferable to generic
choices4.

In the following we assume without loss of generality that X (and Y ) is embedded in
a vector space. That is, we assume that regression on X is well defined. Hence, given
observations (X ,Y,Z) = {xi,yi,zi} we use GP regression to fit the models X = f (Z)+ ε1 and
Y = g(Z)+ ε2. This requires specifying (possibly different) covariance functions over Z. If
k(z,z′) is a covariance function (Mercer kernel) over Z then we could sample directly from the
GP prior, where we follow general practice and set the mean to 0:

f ∼ GP(0,k)

Let K be the Gram matrix where Ki j = k(zi,z j). Conditional on the observations (X ,Z) our
data follows a multivariate Gaussian distribution. For a new location

x∗ | X ,Z,z∗ ∼N (K∗(K +σ
2I)−1X ,K∗∗−K∗(K +σ

2I)−1(K∗)T )

where K∗ = [k(z∗,z1), . . . ,k(z∗,zn)] and the σ2 term is added because we assume that our
observations are noisy, as discussed above.

We are not actually interested in observations at new locations, but in making point pre-
dictions at the existing locations. In other words we use the Gaussian process as a smoother.
Hence we replace K∗ by K and find a vector of mean predictions: X̂ = K(K +σ2I)−1X . The
residuals are:

εxz = X− X̂ = X−K(K +σ
2I)−1X = (I +σ

−2K)−1X (6.4)

Using a possibly different kernel, say l with kernel matrix L, we obtain residuals from smoothing
Y via εyz = Y − Ŷ = (I +σ−2L)−1Y in exactly the same way.

3Since GP regression is a.s. consistent, it is possible that our estimated residuals will not converge to their true
values on a set of measure 0, but in the worst case all that this could do is bias our estimate of HSIC on a set of
measure 0, so the standard estimate of HSIC will still be consistent.

4Note that guarantees about consistency and convergence for GP regression apply in the large sample limit. It
is entirely possible that for misspecified models and / or small samples, generic methods like GP regression will
fail to remove all dependence.
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Now, as proved above, εxz ⊥⊥ εyz if and only if X ⊥⊥Y | Z. To test the hypothesis εxz ⊥⊥ εyz

we use HSIC, which requires specifying kernels on the residuals, say p̃ and q̃ on εxz and εyz

respectively. This leads to the kernel matrices P and Q. The associated HSIC test statistic is
1
n2 tr(PHQH) for the centering matrix H = I− 1

n11T .

6.2.6 Pre-whitening with GPs for causal inference

Our pre-whitening algorithm was presented in Section 4.2. In the case of the PC algorithm,
an alternative approach would be to always include S in the conditioning set when testing for
conditional independence. With enough data, this should be equivalent to the two-stage process
we proposed. But because we believe that there is the potential for an important autocorrelation
structure which we need to worry about, we think it is better to explicitly adjust for it in
every variable first. This approach saves on computational time and modeling complexity:
for moderately sized datasets, we can use a fully Bayesian analysis and carefully inspect the
results of our pre-whitening step for each variable. By contrast, the PC algorithm could entail
many conditional independence tests, so we need these to be automatic and relatively fast.
Many conditional independence tests also rely on categorical conditioning sets, which are often
obtained by first discretizing; this approach will be very difficult since observations are usually
not repeated in space or time.

Finally, for the two-variable causal orientation task, e.g. as addressed by the RESIT frame-
work, space or time would need to be included as part of the regression and again as part of the
independence test, turning what was a simple univariate regression followed by unconditional
independence test into two more complicated steps, a multivariate regression followed by
conditional independence test.

6.2.7 Gaussian processes for Structured Data

Since Gaussian processes depend on defining a kernel between observations, they can be used
for highly structured data such as images and text. Given domains X ,Y we can define a joint
GP over both domains, that is, using a kernel k : (X ×Y)× (X ×Y)→ R such that random
variables f , indexed by (x,y) ∈ X ×Y are drawn from a multivariate Gaussian distribution
with covariance matrix given by k, as evaluated on the index set and with mean function
µ : (X ×Y)→ R as evaluated on the index set.

A special but particularly interesting case arises whenever the kernel function k is given by
a product over kernels on X and Y respectively, i.e. whenever

k((x,y),(x′,y′)) = kx(x,x′)ky(y,y′).
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Such a situation occurs, e.g. in multivariate GP regression where Y = {1, . . . ,d}, i.e. where Y
denotes the coordinate index of the regression problem and where ky denotes the correlation
between the coordinate-wise regressions. Likewise, when Y is the domain of images or
documents, we therefore end up modeling the similarity between structured objects in Y using
their covariates in X .

We now exploit the duality discussed by Williams (1998) between feature space representa-
tions and GPs to introduce estimates of feature functions on Y . That is, we will adhere to the
GP treatment for the covariate-dependent part of the kernel via kx(x,x′) and use a feature space
representation for the label-dependent part l(y,y′) = ⟨ψ(y),ψ(y′)⟩. The main motivation is that
this will allow us to reason about feature space embeddings of distributions and of conditional
probability distributions efficiently.

Before we do so, recall scalar GP regression as introduced in Chapter 4. There one assumes
that the random variable f , as indexed by x ∈ X follows a normal distribution with covariance
function k and mean function µ . The idea is to extend the predictive distribution Y ∗|Y,X ,X∗,
as captured by Equation 4.5. We now extend this to vector valued functions and subsequently
to general index sets. In the standard treatment, we assume that:

f (X), f (X∗) | X ,x∗ ∼N (0,K)

where Ki j = k(xi,x j)+δi jσ
2. So conditioning we find:

f (X∗) | Y,X ,x∗ =N (K(x∗,X)(K +σ
2I)−1y,K(x∗,x∗)−K(x∗,x)(K +σ

2I)−1K(x,x∗))

What if f (X) isn’t in R, such as Y ∈ Rd or whenever Y is a string or an image? We
begin with Y = {1, . . . ,d}, thus we could view the scalar case as Y = {1} and therefore with
estimates in RY =R1. In general, the challenge is to deal with possible normalization problems
of distributions over infinite-dimensional objects. The trick is to consider evaluating the GP on
Y only on relevant points y ∈ Y rather than considering a possibly infinite dimensional set of
evaluations.

For computational convenience of derivation we adopt the argument of Williams (1998), i.e.
that f (y) = ⟨v,ψ(y)⟩ is a linear function in the space of the features ψ(y), where v∼N (0,1)
and therefore f ∼ GP(0, l). It is understood that the kernel satisfies l(y,y′) = ⟨ψ(y),ψ(y′)⟩.
This is entirely consistent whenever ψ is finite-dimensional. For the purpose of evaluation on
a finite number of terms, we can always assume that ψ denotes the Cholesky factors of the
covariance matrix L.

We now assume that we are given features ψ(y1), . . .ψ(yn), which are drawn from a
Gaussian process with kernel k and mean 0. That is, we assume that this holds for any
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one-dimensional projection of ψ(y) onto a unit-vector. Using Equation (4.5) we have that

ψ(Y ∗) | Y ∼N (µ̄, K̄) (6.5)

where µ̄ = K(X∗,X)(K(X ,X)+σ
2I)−1

ψ(Y )

K̄ = K(X∗,X∗)−K(X∗,X)(K(X ,X)+σ
2I)−1K(X ,X∗)

In it we used the shorthand ψ(Y )= (ψ(y1), . . .ψ(yn)) and analogously ψ(Y ∗)= (ψ(y∗1), . . . ,ψ(y∗n∗)),
whenever Y ∗ is a set. For instance, whenever Y = {1, . . .d} and ψ(y) = ey, this simply decom-
poses into d decoupled Gaussian processes. More generally, we can evaluate by taking inner
products with test functions ψ(y). At this point the evaluation reduces to kernel computations
l(y,y′).

As before, we employ the GP not for prediction but for smoothing only, i.e. we are mostly
interested in the residuals ψ̂i−ψ(yi) at locations xi rather than the predictions ψ̂i themselves.
Since we will ultimately use HSIC, we do not need to explicitly compute the residuals; rather
we need to compute the Gram matrix R of the residuals with

Ri j = Eψ̂

[〈
ψ̂i−ψ(yi), ψ̂ j−ψ(y j)

〉]
(6.6)

= Cov
ψ̂

[〈
ψ̂i, ψ̂ j

〉]
+
〈
Eψ̂ [ψ̂i]+ψ(yi),Eψ̂

[
ψ̂ j
]
−ψ(y j)

〉
The second line follows from the fact that Cov(A,B) = E[AB]−E[A][B]. To evaluate this
expression we use the fact that the covariance is given in Equation (6.5). Its contribution to the
entire matrix R is

K−K(K +σ
2I)−1K = K(I +σ

−2K)−1. (6.7)

where we used the Woodbury matrix identity5. Next we use the fact that

Eψ̂ [(ψ̂1, . . . ψ̂n)]−ψ(Y ) = K(K +σ
2
I)−1

ψ(Y )−ψ(Y ) =−(I +σ
−2K)−1

ψ(Y ) (6.8)

Again using the Woodbury matrix identity. Taking inner products and plugging this back into
Equation (6.6) we obtain

R = K(I +σ
−2K)−1 +(I +σ

−2K)−1L(I +σ
−2K)−1 (6.9)

Note that R decomposes into two parts: first the contribution of the residuals due to smoothing
in K. This converges to σ2I for small σ2, i.e. whenever we assume that there is little additive

5(A+B)−1 = A−1−A−1(B−1 +A−1)−1A−1
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noise associated with y|x the contribution to the residuals matrix is very small off-diagonal and
equal to σ2 on the diagonal. Secondly, we have an appropriately smoothed term between K
and L. Again, this vanishes for small additive noise but it also vanishes whenever K and L are
coherent.

Once we have access to R, we can use HSIC to test independence: ĤSIC(R,X)= 1
n2 trRHKH.

If we choose characteristic kernels for K (possibly a different K relative to the one used in the
GP regression) and L then we do not need to consider doing either a further embedding of the
residuals, or solving the pre-image problem and applying a different embedding. The reason is
that what we care about testing is the independence between the residuals and X . Although we
do not have access to the residuals, calculating HSIC only requires access to the Gram matrices
corresponding to the feature space representation of the residuals and X. This is exactly what
we have in the form of R and K respectively.

6.3 Experiments

6.3.1 Spatial data

The Boston Housing dataset, originally investigated in Harrison Jr and Rubinfeld (1978) has
been widely used in statistics and machine learning. In the original paper, data was collected
in 1970 and used in an analysis of the willingness of Boston area residents to pay for better
air quality, based on an economic model and regression analysis. As discussed in Pace and
Gilley (1997), it is usually analyzed without taking into consideration the fact that the data are
spatially observed.

There is significant spatial clustering in every single variable in the dataset, as revealed by
Moran’s I test (using a similarity matrix calculated as the reciprocals of the spatial distances
between observations, p-values for each variable were significant, thus rejecting the null
hypothesis of no spatial clustering) and confirmed by HSIC, which was used to test for
independence between the locations in space (using an RBF kernel) and each variable separately.
In addition to adding spatial coordinates to each observation, Pace and Gilley (1997) also
corrected a few errors in the original dataset.

The variables in the dataset are crime rate (crim), proportion of residential land zoned for
lots over 25,000 sq. ft (zn), proportion of non-retail business acres per town (indus), indicator
variable for whether tract bounds the Charles River (chas), nitric oxides concentration (nox),
average number of rooms per dwelling (rm), proportion of owner-occupied units built prior
to 1940 (age), weighted average of distances to five Boston employment centers (dis), index
of accessibility to radial highways (rad), full-value property-tax rate (tax), pupil-teacher ratio
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Fig. 6.2 Boston Housing data. Left: the PC algorithm was run on the data without pre-whitening
(the data exhibits spatial autocorrelation), using GP/HSIC for conditional independence tests.
The outcome variable of interest, median house value (medv) is caused by the number of rooms
(rm) and the parent teacher ratio (ptratio), and it is a cause of the percentage of lower status
people in the population (lstat). Other edge orientations seem dubious: nitric oxide concen-
tration (nox), a measure of pollution causes industrial business activitity (indus), residential
land zoned for large lots (zn), distance to employment centers (dis), and crime (crim). The
substantive question in the original paper (Harrison Jr and Rubinfeld, 1978) was about the
effect of pollution (nox) on house value (medv), but in the graph shown, there is no direct
causal effect of pollution on house value. Right: after pre-whitening the data to remove spatial
autocorrelation, the PC algorithm was run on it. The resulting causal graph has many fewer
edges than the graph on the left. The outcome variable of interest, median house value (medv)
is caused by percentange of lower status people in the population (lstat), number of rooms
(rm), whether the tract bounds the Charles River (chas), and nitric oxide concentration (nox), a
measure of pollution and the predictor variable of interest in the original paper (Harrison Jr and
Rubinfeld, 1978). The graph shows that nitric oxide concentration (nox) is caused by industrial
business activity (indus) (the opposite was found in the graph on the left), which is reasonable,
but also by crime (crim) which seems unlikely.

by town (ptratio), polynomial transformation of proportion of blacks by town (b), percentage
of lower status people in the population (lstat), and median value of owner-occupied homes
(medv). The usual task with this dataset is to predict the median value of owner-occupied
homes.

In the original analysis (Harrison Jr and Rubinfeld, 1978), the authors carefully state their
prior, theoretical beliefs about the statistical (but not necessarily causal) relationship between
each of the predictors in the dataset and the dependent variable. They included two “structural”
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variables which they expect to be related to home value, number of rooms and proportion of
owner units built prior to 1940, eight neighborhood variables, two accessibility (in terms of
transportation) variables, and two air pollution variables. Zhang et al. (2011) demonstrated KCI
with the PC algorithm on this data. For the variable of interest, median value of house (medv),
they found that number of rooms (rm), percentage of lower status people in the population
(lstat), proportion of owner-occupied units built prior to 1940 (age), and crime rate (crim) are
all parents of house value, with directed edges implying that these variables all cause house
value.

We used the corrected dataset given in Pace and Gilley (1997). We ran the PC algorithm as
implemented in the R package pcalg (Kalisch et al., 2012) using our new GP/HSIC approach
for conditional independence with α = 0.001. The results are shown in Figure 6.2. Throughout,
we use the Gamma approximation to calculate p-values from HSIC. In this case, the outcome
variable of interest, median house value, is caused by the number of rooms and parent teacher
ratio and it is a cause of the percentage of lower status people in the population. There is no
direct causal effect of pollution on house value.

Next, we pre-whitened each variable using the spatial coordinates with a GP regression in
which the hyperparameters of the squared exponential (RBF) covariance function are learned by
maximizing the marginali likelihood using gradient descent (the default in GPStuff (Vanhatalo
et al., 2013)). Using this new dataset, we ran the PC algorithm again with α = 0.001, as shown
in Figure 6.2 (right). The resulting causal graph has many fewer edges. The percentage of
lower status people in the population and number of rooms cause house value, as in Zhang et al.
(2011). In addition, an indicator variable for whether the house is near the Charles River (which
was not considered in Zhang et al. (2011)) also causes house value. Unlike the original graph
in Figure 6.2 (left), we find that nitric oxide concentration, an indicator of air pollution, is a
direct cause of house value, which addresses the original hypothesis explored by the authors in
Harrison Jr and Rubinfeld (1978). Furthermore, nitric oxide concentration is now found to be
caused by industrial business activity, rather than the converse when using unwhitened data.
But we see that nitric oxide concentration is also apparently caused by crime, which seems
unlikely.

6.3.2 Time series data

We consider the ozone dataset used in Breiman and Friedman (1985). This daily data clearly
exhibits temporal autocorrelation, with 330 observations made over the course of 358 days. In
Figure 6.3 (left) we show the results of the PC algorithm run on the data as is, with conditional
independence tests using GP regression for conditioning and HSIC for independence testing.
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Fig. 6.3 Left: We used the PC algorithm with a dataset of environmental observations related
to ozone in Upland, CA without first pre-whitening the time series data. The inferred causal
CPDAG says that the temperature at the temperature inversion in the atmosphere (InvTmp)
directly causes ozone, which causes visibility (Vis). Right: We pre-whitened the data using GP
regression. Then we used the PC algorithm with the same dataset as previously. Ozone is still a
cause of visibility (Vis), but no variables in the dataset were found to be a cause of ozone.

We set α = .05 and used the standard version of the PC algorithm implemented in pcalg
(Kalisch et al., 2012). We used the Gamma approximation to calculate p-values for HSIC.

The ozone variable is directly caused by the temperature at the temperature inversion in the
atmosphere (InvTmp) and is a cause of visibility. In Figure 6.3 (right) contains the results of
the PC algorithm run on the data after each variable has first been pre-whitened. To pre-whiten,
we used GP regression with an exponential covariance function for time (which is analogous to
an autoregressive fit), learning the hyperparameters from the data by maximizing the marginal
likelihood with gradient descent. Now we see that the ozone variable has no parents, and is
still a cause of visibility. Wind is no longer connected to any nodes, and two edges that were
directed are no longer directed.

Next, we turn to the causal orientation (RESIT) framework for edge orientation, and
consider one of the pairs of data6 that our replication of Peters et al. (2014) showed was
misoriented using the same method considered in that paper, Gaussian process regression
followed by HSIC, comparing a forward and backward model. Pair 51 consists of daily ozone
and temperature data from Switzerland, where the ground truth is that temperature causes ozone.
As shown in Figure 6.4, there is an underlying time trend, and a partial autocorrelation plot

6http://webdav.tuebingen.mpg.de/cause-effect
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Fig. 6.4 Ozone and temperature data from Switzerland. A partial autocorrelation plot reveals
significant temporal autocorrelation in both the ozone and temperature data. Before pre-
whitening, bivariate causal orientation suggests incorrectly that ozone causes temperature.
After pre-whitening, bivariate causal orientation correctly concludes that temperature causes
ozone.

reveals temporal autocorrelation. Considering the data as is, the p-value of the forward model
(“ozone causes temperature”) is 0.002 and the p-value of the backwards model (“temperature
causes ozone”) is 4×10−7. Thus, the causal orientation method fails, incorrectly predicting
the forward model because it fits better. After pre-whitening, the p-values change. The forward
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model is still 0.002 but the backwards model is 0.34. The backwards model thus fits better and
the edge is correctly oriented.

6.3.3 Textual Data

We consider a novel causal orientation problem: given pairs of translated sentences in two
languages X and Y , determine whether X “causes” Y (meaning that the sentence in language
Y was translated from the sentence in language X) or vice versa. We use the OpenOffice
documentation corpus (Tiedemann, 2009) which consists of sentence-aligned documentation
in English, French, Spanish, Swedish, German, and Japanese. We use our Gaussian process
formulation for structured data to calculate residuals, and then we test whether these residuals
are independent of the predictor, as in the RESIT framework. We use a spectrum kernel (also
called a string kernel, the default in Karatzoglou et al. (2004)) which matches substrings of
length m = 3.

The corpus is relatively large with 30,000-40,000 observations, so we use a bootstrap
approach: for a pair of languages X , Y , we take a small sample (n = 400) and calculate a Gram
matrix for the residuals R for the forward model X causes Y for half the sample (n = 200). Then
we use HSIC to test whether R is independent of X on the other half of the sample (n = 200).
We do the same for the reverse direction. We repeat this process 500 times with different
subsets of the data, and report the fraction of times that we predict the forward direction based
on comparing the p-values of the forward and reverse directions. (Larger p-values indicate
better fits, so we accept the direction with the larger p-value.)

The results are in Figure 6.5. The OpenOffice documentation was originally written in
German for its predecessor, StarOffice. When it was purchased by Sun Microsystems, the
documentation was translated into English. Subsequently, translations were made from English
to other languages, and new additions to the documentation were made in English7. Thus we
consider English to be the “cause” of every other language except German. The algorithm
correctly orients forward edges from English to every other language except German. The
algorithm also orients forward edges from German to every language, which makes sense since
German is a cause (though not direct) of every other language.

6.4 Conclusion

We proposed a simple, unified framework for coherently addressing the problem of algorithmic
causal inference with non-iid observations, e.g., when data points are distributed in space and

7Uwe Fischer, personal communication, 9 July 2014.
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time, and demonstrated its use on two real datasets. When using the PC algorithm or any other
method based on independence tests, non-iid data presents a problem, and we showed how a
pre-whitening step, using Gaussian process regression, can address this problem. We further
showed how this same idea, of obtaining residuals from a GP regression, can be used to turn an
unconditional independence test like HSIC into a conditional independence test.

We also showed that highly structured data, like text, can be considered in a causal frame-
work, again using GP regression. In this case, we presented a novel formulation of a GP for
structured inputs and outputs. The key derivation was that of the Gram matrix of the residuals,
because once this is calculated, we can use HSIC to test independence.

HSIC is but one of the many measures of statistical independence which have been proposed.
It might be fruitful to consider other measures instead, such as mutual information or distance
correlation (Székely et al., 2009) or to determine whether the consistency results in Kpotufe
et al. (2014) hold for our method. We do believe that Gaussian process regression is the most
flexible and general tool for the purposes of pre-whitening non-iid data, due to its long-standing
use in the spatial statistics and time series literature. In future work, we intend to look more
deeply at the connections between GP regression and kernel-based measures of independence.
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Fig. 6.5 Causal orientation with text: given pairs of sentences in two languages, the task is to
determine which language is a translation of the other. We used a bootstrapping approach to
repeatedly apply a causal orientation algorithm based on Gaussian processes for structured data
and HSIC for independence testing to determine which language “causes” the other language.
Shown are the fraction of times that the algorithm selected the forward causal direction, along
with 95% confidence intervals. The top line, for example, means that in comparing German
and Spanish, the algorithm concluded that German caused Spanish 77% of the time. The
sentences come from OpenOffice documentation, portions of which were originally written in
German and translated into English. After this one time translation, which occurred when Sun
Microsystems bought what was then StarOffice, new documentation was written in English and
English became the source language for translations into Spanish, Swedish, French, Japanese,
and back into German. The algorithm thus correctly orients edges such that German and English
are the cause of every other language. The algorithm definitively concludes that German causes
English.



Chapter 7

Scalable, fully Bayesian spatiotemporal
inference

In the previous chapters, I advocated the use of Gaussian process-based models as a general
purpose method for spatiotemporal data, demonstrating their flexibility and utility in a variety
of settings. Throughout, I mainly addressed the problem of hyperparameter learning by
maximizing the marginal likelihood of the model, integrating out the latent GP (approximately,
if necessary). In this chapter, I take a fully Bayesian approach to hyperparameter learning,
placing priors on the kernel hyperparameters. The advantages of this approach are that the
posterior uncertainty intervals should be more accurate, and the inference should be more
robust to multimodality or likelihood surfaces with many local optima. The disadvantage is
computational: by placing priors on hyperparameters we end up with non-conjugate models, so
we need to turn to Monte Carlo sampling schemes for posterior inference. The central modeling
choice with GPs is the specification of a kernel, and although a palette of kernel choices are
available as catalogued in Section 2.2, it can be very hard to estimate a kernel from data, even
with scientific knowledge. Prior distributions on kernel hyperparameters can help by more
accurately capturing our uncertainty about the kernel.

In this chapter I address the computational challenges that stand in the way of a fully
Bayesian approach to Gaussian process modeling. My approach works in the case of separable
kernels and grid-structured inputs, which together induce structure in the design matrix. My
approach is applicable to any Markov Chain Monte Carlo (MCMC) scheme for Bayesian
inference, and I demonstrate its use within Hamiltonian Monte Carlo as implemented in
the probabilistic programming language Stan. My implementation is much faster and uses
much less memory than standard approaches, thus opening up many new avenues for scalable
Bayesian modeling on orders of magnitude larger datasets (see Figure 7.1). By placing priors
on kernel hyperparameters, our model becomes more general than standard GP regression or
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classification. To demonstrate, we show how to efficiently learn structured kernels (e.g. those
with a multiplicative structure) and non-parametric priors over categorical variables. I propose
a clustering through factor analysis method, address the limitation of separable structure, show
how to automatically handle missing observations (i.e. for incomplete grids), and extend our
methods for non-Gaussian observation models.

Efficiency gains from structured covariance functions within GP models have been exploited
previously with MCMC (e.g. Finley et al. (2009)). There is much recent work on approximate
methods for Gaussian processes and kernels (e.g. Hensman et al. (2013); Lázaro-Gredilla
et al. (2010); Rue et al. (2009); Yang et al. (2015)). My work builds on previous work
exploiting structured kernels and especially Kronecker methods for GP learning and inference
(e.g. Flaxman et al. (2015d); Gilboa et al. (2013); Groot et al. (2014); Riihimäki and Vehtari
(2014); Saatçi (2011); Stegle et al. (2011); Wilson et al. (2014)).

In Section 7.1 I provide background on MCMC, GPs, and Kronecker inference. In Section
7.2 I develop our scalable learning and inference methods. In Section 7.3 we demonstrate the
novel modeling approaches that our methods enable. In Section 7.4 I compare our model’s
performance on synthetic data to standard implementations of elliptical slice sampling and
HMC, and we demonstrate our novel modeling approaches on a real dataset. Implementations
in Stan are provided in the Section 7.6.

7.1 Background

7.1.1 Markov Chain Monte Carlo sampling

Markov Chain Monte Carlo sampling schemes are methods for numerical inference in Bayesian
models in which random samples are iteratively generated, where the limiting distribution of the
samples is the posterior over the parameters in the model. For non-conjugate models, MCMC
is the default inference method. In the hierarchical GP models I consider, with priors over
kernel hyperparameters, the posterior is not a Gaussian process, which is why I use MCMC. A
critical subroutine, executed each time a new draw is generated, is the evaluation of the log of
the probability density of the posterior at the current values of the parameters, which can be
very costly in a GP model as described below.

Another reason that MCMC inference for GP models is challenging is that the parameters
in Gaussian process models are tightly correlated, so off-the-shelf methods like Metropolis-
Hastings and Gibbs sampling, which are known to have slow convergence in the case of
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correlated parameters, have not proved effective1. Early work by Neal focused on Hamiltonian
Monte Carlo (HMC) Neal (1996), a method drawn from the physics literature that uses gradient
information to make sampling more efficient. More recent work has focused on variants of
slice sampling, especially elliptical slice sampling Agarwal and Gelfand (2005); Murray and
Adams (2010); Murray et al. (2010) which provides a variant on Metropolis-Hastings without
tuning parameters by adaptively selecting the step size. My methods could be used in either of
these schemes; to demonstrate the modeling advantages that our approach enables, I implement
them using a probabilistic programming language (Stan), which uses HMC.

7.1.2 Gaussian processes

Given observations (X ,Y )= {(x1,y1), . . . ,(xn,yn)}, let kθθθ (·, ·) be a kernel with hyperparameters
θθθ and corresponding covariance matrix Kθθθ . Placing a prior on θθθ , the hierarchical specification
is:

θθθ ∼ p(θθθ) (7.1)

f | X ,θθθ ∼N (µ,Kθθθ ) (7.2)

yi | f (xi)∼N ( f (xi),σ
2), ∀i (7.3)

The computational difficulty of an MCMC scheme for this model arises from Eq. (7.2) which
requires the computation of a multivariate Gaussian pdf:

N (µ,Kθθθ ) = (2π)−n/2|Kθθθ |−1/2e−
1
2 µ⊤K−1

θθθ
µ (7.4)

Forming Kθθθ takes storage O(n2) and it takes time O(n3) to calculate its inverse and log-
determinant, using e.g. the Cholesky decomposition Rasmussen and Williams (2006). This
costly operation occurs for each draw of a sampler, and HMC, it occurs for each “leapfrog”
step, many of which are taken per draw.

I will primarily focus on the case of a Gaussian observation model. This will conveniently
allow us to sidestep the issues that arise from trying to sample f. For fixed hyperparameters,
a GP prior with Gaussian observation model is conjugate. Usually this is used to find the
posterior distribution over f in closed form. My setting is even simpler: we only need to have a
way of calculating the likelihood of our observations y, integrating out f. I have the following

1In a medium data spatial statistics setting, Diggle et al. [2013] report fitting a GP model with MCMC: after
running for 18 million iterations, they retained every 18,000th iteration to yield a sample size of 1,000.
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standard result Rasmussen and Williams (2006):

y | X ,θθθ ,µµµ ∼N (µµµ,Kθθθ +σ
2I) (7.5)

7.1.3 Kronecker inference

A series of recent papers Flaxman et al. (2015d); Gilboa et al. (2013); Groot et al. (2014);
Riihimäki and Vehtari (2014); Saatçi (2011); Wilson et al. (2014) has developed a set of
inference techniques for the case of GP inference and prediction with separable covariance
structures and inputs with a Cartesian product structure. I extend this line of work to an MCMC
framework.

Assume that the covariance function k(·, ·) decomposes with Kronecker structure so that
k = k1⊗k2⊗·· ·⊗kd meaning that k(x,x′)= k1(x1,x′1)k2(x2,x′2) · · ·k(xd,x′d) for x∈Rd . Further
assume that we have a grid of input locations given by the Cartesian product (x1

1, . . . ,x
N
1 )×

(x1
2, . . . ,x

N
2 ) · · · × (x1

d, . . . ,x
N
d ) where for notational convenience we assume the grid has the

same size N in each dimension. Then the covariance matrix K corresponding to k(·, ·) has
Nd ×Nd entries, but it can be calculated by first calculating the smaller N×N covariance
matrices K1, . . . ,Kd and then calculating the Kronecker product K = K1⊗K2⊗·· ·⊗Kd . The
assumption that our data lies on a grid occurs naturally in various settings: images Wilson et al.
(2014), spatiotemporal point patterns Flaxman et al. (2015d), and as we will illustrate below,
time series and categorical data (where grid cells correspond to cells in a contingency table.)

We rely on standard Kronecker algebra results Saatçi (2011), specifically efficient Kro-
necker matrix-vector multiplication to calculate expressions like (K1⊗K2⊗·· ·⊗Kd)v, efficient
eigendecomposition of Kronecker matrices, and efficient Cholesky factorization of Kronecker
matrices.

7.2 Theory

7.2.1 Inference

A key subroutine in any MCMC scheme is the evaluation of the log of the probability density
function (pdf) of the posterior. In a GP model, this means calculating the pdf of a Gaussian
distribution shown in Eq. (7.4). Following Saatçi (2011), I show how to efficiently evaluate
the pdf in the case of a Kronecker-structured covariance matrix Kθθθ and also in the case of a
covariance matrix Kθθθ +σ2I, which will arise when I analytically integrate out f.
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Working with the log of the pdf, and considering the case of K = K1⊗K2 (the extension to
higher dimensions follows as in Saatçi (2011)), the log of Eq. (7.4) is:

−n
2

log(2π)− 1
2

log |K1⊗K2|−
1
2

y⊤(K1⊗K2)
−1y (7.6)

for observations y, where I have assumed for simplicity that µµµ = 0. Applying standard
Kronecker algebra results (see Section 2.3), I calculate:

log |K1⊗K2|= N2 log |K1|+N1 log |K2| (7.7)

where K1 is N1×N1 and K2 is N2×N2. If we let Y be the reshaped column-major N2×N1

matrix corresponding to y, so that vec(Y ) = y (where vec stacks columns of a matrix), then we
have:

(K1⊗K2)
−1y = K−1

1 (Y K−1
2 )⊤ (7.8)

And we apply any standard linear solver to evaluate these matrix products. In general, for n
training points on a d-dimensional grid, the time complexity is O(dn

d+1
d ) where n = Nd and

N1 = N2 = · · ·= Nd = N Saatçi (2011) .
For a Gaussian observation model after integrating out f, our sampler needs to be to

evaluate the log of the pdf in Eq. (7.5). We can use eigendecomposition where K1 = Q⊤1 Λ1Q1,
K2 = Q⊤2 Λ2Q2 gives:

K1⊗K2 = (Q⊤1 ⊗Q⊤2 )(Λ1⊗Λ2)(Q1⊗Q2) (7.9)

and since the Q matrices are orthonormal:

K1⊗K2 +σ
2I = (Q⊤1 ⊗Q⊤2 )(Λ1⊗Λ2 +σ

2I)(Q1⊗Q2) (7.10)

Thus we can calculate:

log |K1⊗K2 +σ
2I|= N1N2 ∑

i j
log(Λ1iiΛ2 j j +σ

2) (7.11)

(K1⊗K2 +σ
2I)−1y =

(
(Q⊤1 ⊗Q⊤2 )(Λ1⊗Λ2 +σ

2I)−1(Q1⊗Q2)
)

y (7.12)

Eq. (7.11) follows because the eigenvalues of K1 and K2 are given by the diagonal of Λ1 and
Λ2 and the computation is O(N1N2) or in general O(n). For Eq. (7.12), we use a Kronecker
matrix-vector product to calculate (Q1⊗Q2)y. The middle term (Λ1⊗Λ2+σ2I)−1 is diagonal,
and multiplying a diagonal matrix by a vector is just the elementwise product. Finally, we
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have one more Kronecker matrix-vector product to calculate, as above. Eigendecomposition is
O(N3) for an N×N matrix. Additional speed improvements are available for the calculation of
the smaller Ki matrices: e.g., FFT works well for stationary kernels and regular gridded input
Ripley (2009) and Toeplitz methods work well for stationary kernels in one-dimension with
regularly spaced inputs Cunningham et al. (2008).

7.2.2 Prediction

I extend the ideas introduced above to efficiently infer the posterior p(f∗|y,X ,x∗) at a new
location x∗. For a fixed Kθθθ we have the following standard result Rasmussen and Williams
(2006):

p(f∗|y,X ,x∗,θθθ) =N (K∗
θθθ
(Kθθθ +σ

2I)−1y,K∗∗
θθθ
−K∗

θθθ
(Kθθθ +σ

2I)−1K∗⊤
θθθ

) (7.13)

where K∗
θθθ
= [kθθθ (x∗,x1), . . . ,kθθθ (x∗,xn)] and K∗∗

θθθ
= kθθθ (x∗,x∗). A naive implementation would

have time complexity O(n3). To calculate the mean in Eq (7.13), we can again exploit
Kronecker structure with the eigendecompositions in Eqs. (7.9) and (7.12):

K∗
θθθ
(Kθθθ +σ

2I)−1y = K∗
θθθ
(Q⊤1 ⊗Q⊤2 )(Λ1⊗Λ2 +σ

2I)−1(Q1⊗Q2)y (7.14)

We now apply Kronecker-matrix vector multiplication to the first two terms and the last two
terms, and we are left with a vector times a diagonal matrix times a vector, which we can
calculate efficiently through elementwise vector multiplication. Thus, the overall complexity is
the same as for Eq. (7.12). For the variance term we have:

K∗∗
θθθ
−K∗

θθθ
(Kθθθ +σ

2I)−1K∗⊤
θθθ

= K∗∗
θθθ
−K∗

θθθ
(Q⊤1 ⊗Q⊤2 )(Λ1⊗Λ2 +σ

2I)−1(Q1⊗Q2)K∗⊤θθθ
(7.15)

We use Kronecker matrix-vector multiplication twice to efficiently calculate the variance.

7.3 Modeling approaches

In this section, I demonstrate the advantages and flexibility of a fully Bayesian approach to GP
modeling. I explore priors for categorical data and a low-rank factor analysis style model for
clustering, demonstrate novel priors over hyperparameters for structured kernels, show how to
infer missing data, and close with extensions for non-Gaussian observation models.
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7.3.1 Kernel choice and priors over hyperparameters

The spatial statistics and machine learning literature provides a rich palette of scientifically and
statistically motivated kernels from which to choose. As with any modeling choice, this could
be informed by prior information, continuous model expansion Gelman and Shalizi (2013), or
a nonparametric Wilson and Adams (2013b) approach could be taken. Because the problem of
kernel learning is so difficult, including priors over the kernel hyperparameters to accurately
characterize posterior uncertainty is very important.

Another advantage of placing priors over kernel hyperparameters is that the posterior
distribution, which integrates out these parameters, is a heavy tailed non-Gaussian process.
Following Agarwal and Gelfand (2005), we adopt weakly informative priors for inverse length-
scales and variances which concentrate their support on reasonable values. We face an issue
similar to the problem of applying HMC to neural networks Choo (2000): small changes in the
inverse length-scales can result in orders-of-magnitude changes in the posterior. Experience
suggests that more informative priors can contribute to sampling efficiency with HMC. My
provisional suggestions for priors are listed below.

For a stationary kernel k(x,x′)= v2κ(|x−x′|2λ )+σ2I(x= x′) where, e.g. κ(d)= exp(−d2)

is the RBF kernel or κ(d) =
(
1+d

√
3
)

exp
(
−d
√

3
)

is the Matérn-3
2 kernel I suggest priors as

follows:

• The inverse length-scale λ should have a weakly informative prior, like Cauchy(0,2.5)
constrained to be positive (also known as the half-Cauchy).2 I usually standardize our
input locations to have standard deviation 1, but it is very important to untransform the
learned length-scale to check that it is a reasonable value.

• The signal-variance v2 should be about the scale of the data. In practice, I standardize our
observed y to have standard deviation 1 so that I can place a log-normal(0,1) prior on v2.

• For computational reasons (equivalent to the jitter that is often added to the main diagonal)
I constrain the nugget σ2 to be greater than ε = 10−6 and use a log-normal(0,1) prior.

2An alternative worth considering is placing a Student-t with ν = 4 centered at 0 with scale parameter 1
constrained to be positive on the length-scale. This is a more informative choice than the half-Cauchy.
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7.3.2 Categorical data

Consider a multitask / co-kriging model where our dataset is structured as a real-valued
observation yi from category (task) ci occuring at time ti. I propose the following GP model:

yi ∼N ( f (ti,ci),σ
2) (7.16)

f (t,c)∼ GP(0,Kt⊗Kc) (7.17)

We can immediately apply the methods developed in the previous sections to this setting, which
is similar to the multitask approach in Bonilla et al. (2007). It remains to choose the kernel
over categories. Let us express ci as an indicator vector, where, e.g. for 3 categories we have
the vectors [1 0 0]⊤, [0 1 0]⊤ and [0 0 1]⊤. Then we can use the covariance matrix Kc as the
kernel:

k(c,c′) = c⊤Kcc (7.18)

The default choice of prior for a covariance matrix is the inverse Wishart distribution, which
is conjugate, but has well-known drawbacks; various alternatives have been proposed and
analyzed Tokuda et al. (2011). As an alternative, and because I only care about learning
correlations, not covariances, between tasks, I use a recently proposed prior Lewandowski
et al. (2009) which was termed the LKJ prior in Stan Development Team (2014). This prior
has the advantage that for precision parameter α = 2, each partial correlation has distribution
Uniform(−1,1).

7.3.3 Factor analysis

Another natural extension if we want to cluster our m categories into p clusters is to use a
low-rank factorization where Ks = LL⊤+σ2I with Ks ∈Rm×m and L ∈Rm×p for p≪ m. This
kernel has been called a “factor analysis” kernel Rasmussen and Williams (2006). I propose
constraining each row of L to sum to 1 to represent a soft clustering model, where Li j gives the
degree of membership of xi in group j. A natural choice of prior is the Dirichlet distribution.
Denoting row i of L as Li we have:

Li
iid∼ Dirichlet(α, . . . ,α) (7.19)

for a concentration parameter α which may be fixed or have its own prior.
If we have, for example, time series observations for each category and we want to cluster

categories then we can use the Kronecker formulation: K = Kt⊗Ks. The factorization above
is convenient because we can readily obtain the eigendecomposition of Eq. (7.12) through
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singular value decomposition (SVD) of L. We can efficiently find the p singular values of L,
which we denote e1, . . . ,ep. Then the m eigenvalues of Ks are e2

1 +σ2, . . . ,e2
p +σ2,σ2, . . . ,σ2.

Similarly, we can use the left-singular vectors from SVD to obtain the eigenvectors of Ks.

7.3.4 Additive models

Another structured model worth considering is an additive covariance model Ks +Kt , which is
equivalent to f ∼ GP(0,Ks)+GP(0,Kt). We propose a very convenient way of emulating this
model using a mixture modeling approach. We introduce a latent variable z∼ Bernoulli(π).
Then we have:

f | z = 0∼ GP(0,Ks) (7.20)

f | z = 1∼ GP(0,Kt) (7.21)

The goal is to obtain a very flexible model, without adding much computational burden. As
shown in Section 7.6, the implementation is very straightforward after integrating out z.

7.3.5 Missing observations

Incomplete grids due to missing observations can be straightforwardly handled in the fully
Bayesian framework (especially when using a probabilistic programming language): for any
observation location xi where we do not observe yi, we treat yi as a latent parameter. The
key likelihood calculation in Eq. (7.6) remains the same, only now we mix together observed
(and thus for the purposes of our sampler fixed) yi’s with missing yi’s which we must learn by
sampling. Code is in Section 7.6.

7.3.6 Extensions to non-Gaussian observation models

Non-Gaussian observation models are very useful for generalized regression and classification.
For example, classification uses the Bernoulli likelihood with logistic link function:

y∼ Bernoulli(logit( f (x))) (7.22)

f ∼ GP(0,Kθθθ ) (7.23)

This model is no longer conjugate, so we cannot integrate out f, but we can handle it in an
MCMC framework. This has the effect of increasing the number of parameters in our model,
and these parameters have strong correlations. To attempt to mitigate these correlations, I adopt
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the formulation of Christensen et al. (2006) which has been used in HMC in Vanhatalo and
Vehtari (2007), introducing latent variables z1, . . . ,zn based on the weight-space view of GPs:

z1, . . . ,zn
iid∼ N (0,1) (7.24)

Now we calculate Kθθθ and its Cholesky decomposition L where LLT = Kθθθ . Then we have:

f := Lz (7.25)

yi ∼ Bernoulli(logit( f (xi))) (7.26)

By introducing z we have avoided some computational difficulty as we no longer need to
calculate the determinant of Kθθθ . But we still need to calculate K itself and its Cholesky
decomposition, which is O(n3) time and O(n2) memory. Once again we can exploit two
Kronecker algebra results. We calculate the N×N Kronecker matrices Ks and Kt and find their
Cholesky decompositions Ls and Lt in O(N3) time. Since K = LL⊤ we have:

K = Ks⊗Kt = (Ls⊗Lt)(L⊤s ⊗L⊤t ) (7.27)

Now we need to calculate f = Lz = (Ls⊗Lt)z for Eq. (7.25). Once again, we use efficient
Kronecker matrix-vector multiplication. Now, rather than a costly multivariate Gaussian pdf,
we only have to evaluate the much cheaper univariate Gaussian distribution in Eq. (7.24).

In practice, I have had difficulties using HMC to update both z1, . . . ,zn and the hyperpa-
rameters simultaneously. A reasonable solution might be to follow the blocked approach of
Agarwal and Gelfand (2005); Vanhatalo et al. (2013), wherein the hyperparameters are sampled
with, e.g. HMC and then conditional on these hyperparameters the zi are sampled, with HMC
or another algorithm.

7.4 Experiments

I implemented our models using HMC in the probabilistic programming language Stan Stan
Development Team (2014). This allowed me to easily try out different choices of priors and
different modeling approaches. All source code is provided Section 7.6.

7.4.1 Synthetic data

I simulate from a Gaussian process on an n×n regular grid using a product of RBF kernels:
k((s, t),(s′, t ′)) = e−4|s−s′|2e−|t−t ′|2 with spherical Gaussian noise σ = 0.1. A sample is shown
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Fig. 7.1 My method (“Kronecker HMC”) was implemented in Stan, standard HMC and
elliptical slice sampling were implemented in GPstuff. HMC was run for 200 iterations, with
100 iterations of warm-up, and elliptical slice sampling (ESS) for 30 iterations. Each method
was compared on the same simulated datasets (Section 7.6.1).

in Figure 7.4. I compare our proposed Kronecker-based inference to non-Kronecker inference,
both with HMC, and to elliptical slice sampling. As shown in Figure 7.1 our approach is much
more efficient than the alternatives. We are not in a regime in which theO(n3) asymptoptic time
of the Cholesky decomposition dominates the computation, and there are many other factors
which come into play in determining how long MCMC takes to run, but it is clear that our
HMC approach is much faster, especially considering that I implemented it in a general purpose
probabilistic programming language (Stan) rather than relying on custom code. Furthermore,
the memory requirements for the non-Kronecker methods became prohibitively large in practice.
As another comparison, I calculated the effective sample size Kass et al. (1998) for a dataset of
size n = 2,500. My model generated an effective sample of 203 draws in 296 seconds or 0.69
samples per second. Elliptical slice sampling generated an effective sample of 221 draws in
3,438 seconds or 0.06 samples per second. Standard HMC generated an effective sample size
of 51 samples in 31,364 seconds or 0.002 samples per second.

7.4.2 Real data

I obtained time series of monthly population-adjusted incidence of hepatitis A, measles, mumps,
pertussis, and rubella for the 48 lower United States plus DC from Project Tycho3.

I used our factor analysis formulation to cluster US states based on the time series of
measles incidence. The separable covariance function was Kt⊗Ks where Kt was an RBF kernel
and Ks = ΛΛ⊤+σ2I, with a Dirichlet(0.1,0.1,0.1) on each row of Λ ∈R49×3. The clustering
of states is shown in Figure 7.2 (left): a geographic pattern is recovered, despite the model

3www.tycho.pitt.edu

www.tycho.pitt.edu
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not using geographic information. In Figure 7.2 (right) I show the posterior mean time series
averaged for each cluster. Different dynamics are evident.

(a)

Cluster 1

Cluster 2

Cluster 3

0
1
2
3

0
1
2
3

0
1
2
3

1928 1930 1932 1934 1936

z−
sc

or
e

(b)

Fig. 7.2 Left: clustering US states based on their time series of measles incidence. For each
state I learned a 3-dimensional vector giving cluster assignment probabilities. I assign each
state to its most probable cluster of the three, and shade it accordingly. Despite not using any
geographic information in our model, I find a clear geographic pattern based on the similarities
in time series. Right: mean posterior time series are shown for each cluster with evident
differences in dynamics.

Finally, I considered the national time series for 4 different diseases from the Project Tycho
dataset with a separable covariance Kt ⊗Kc where Kt is as above and Kc is the categorical
kernel in Eq. (7.18). I assign an LKJ prior with α = 2 over the cross-type correlation matrix
Kc. In Table 7.1 I show the posterior cross-type correlation matrix Kc. The lengthscale for Kt

was 2 months (1.9,2.3) which corresponds to short-scale variation. Posterior plots are shown
in Figure 7.3.
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Fig. 7.3 Raw incidence across the United States of 4 types of infectious disease are shown as
points, along with our model’s estimates and 95% uncertainty intervals.
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Hepatitis A Mumps Pertussis Rubella
Hepatitis A 1 0.6 (0.4,0.8) -0.3 (-0.6,-0.1) 0.4 (0.1,0.6)

Mumps 0.6 (0.4,0.8) 1 -0.2 (-0.4,0.0) 0.6 (0.4,0.7)
Pertussis -0.3 (-0.6,-0.1) -0.2 (-0.4,0.0) 1 -0.2 (-0.5,-0.0)
Rubella 0.4 (0.1,0.6) 0.6 (0.4,0.7) -0.2 (-0.5,-0.0) 1

Table 7.1 For the multitask model with covariance Kt ⊗Kc, I learned the posterior over a
cross-task correlation matrix Kc. Medians and 95% UI intervals are stated. The corresponding
lengthscale for Kt was 2 months (1.9,2.4) which corresponds to short-scale variation.

7.5 Conclusion

In this chapter I presented efficient inference methods for a Bayesian hierarchical modeling
framework based on GPs, demonstrating the efficiency gains possible in the case of structured
kernels as compared to standard approaches. This modeling approach enabled a variety of
interesting and novel models, including learning cross-correlations between categories and
factor analysis for spatiotemporal data. As my methods were implemented in a probabilistic
programming language rather than in custom code, speed gains will no doubt result from
dedicated code for some of the key Kronecker algebra, eigendecomposition, and gradient
calculations. Further work is needed on the challenges of non-Gaussian observation models
and on investigating other approximate methods for GPs like inducing points.

7.6 Source code

R code for generating large synthetic datasets and Stan code for the models in this chapter are
given in this section.

7.6.1 Synthetic Data

To generate large synthetic datasets, I use the following R code:

library(kernlab)

eps = 1e-8

n = 200

space = seq(-2,2,length.out=n)

time = space

K1 = kernelMatrix(rbfdot(4), as.matrix(space))
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K2 = kernelMatrix(rbfdot(1), as.matrix(time))

L1 = chol(K1 + eps * diag(n))

L2 = chol(K2 + eps * diag(n))

v = rnorm(n*n)

y = as.numeric(matrix(t(t(L2) %*% matrix(t(t(L1) %*% matrix(v,n,n)),n,n)),n*n,1))

y = y + rnorm(n*n,sd=.1) # Add spherical noise

data = list(n1=length(space),n2=length(time), x1=space, x2=time, y=as.numeric(y))

A sample dataset is shown in Figure 7.4.

Fig. 7.4 A synthetic dataset with n = 40,000 observations generated by a GP with a separable
covariance function k((s, t),(s′, t ′) = e−4|s−s′|2e−|t−t ′|2 .

7.6.2 Categorical data model

functions {

// return (A \otimes B) v where:

// A is n1 x n1, B = n2 x n2, V = n2 x n1 = reshape(v,n2,n1)

matrix kron_mvprod(matrix A, matrix B, matrix V) {

return transpose(A * transpose(B * V));

}

// A is a length n1 vector, B is a length n2 vector.
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// Treating them as diagonal matrices, this calculates:

// v = (A \otimes B + sigma2)^{-1}

// and returns the n1 x n2 matrix V = reshape(v,n1,n2)

matrix calculate_eigenvalues(vector A, vector B, int n1, int n2, real sigma2) {

matrix[n1,n2] e;

for(i in 1:n1) {

for(j in 1:n2) {

e[i,j] <- (A[i] * B[j] + sigma2);

}

}

return(e);

}

}

data {

int<lower=1> n1;

int<lower=1> n2; // categories for learning cross-type correlations

vector[n2] x1; // observation locations (e.g. timestamps)

matrix[n2,n1] y; // NB: this should be reshape(y, n2, n1),

// where y corresponds to expand.grid(x2,x1).

// To double-check, make sure that y[i,j] is

// the observation from category x2[i]

// at location x1[j]

}

transformed data {

matrix[n1, n1] xd;

vector[2] one;

one[1] <- 1;

one[2] <- 1;

for (i in 1:n1) {

xd[i, i] <- 0;

for (j in (i+1):n1) {

xd[i, j] <- -(x1[i]-x1[j])^2;

xd[j, i] <- xd[i, j];

}

}

}
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parameters {

real<lower=0> var1; // signal variance

real<lower=0> bw1; // this is equivalent to 1/sqrt(length-scale)

corr_matrix[n2] L;

real<lower=0.00001> sigma1;

}

model {

matrix[n1, n1] Sigma1;

matrix[n1, n1] Q1;

vector[n1] R1;

matrix[n2, n2] Q2;

vector[n2] R2;

matrix[n2,n1] eigenvalues;

Sigma1 <- var1 * exp(xd * bw1);

for(i in 1:n1)

Sigma1[i,i] <- Sigma1[i,i] + .00001;

L ~ lkj_corr(2.0);

Q1 <- eigenvectors_sym(Sigma1);

R1 <- eigenvalues_sym(Sigma1);

Q2 <- eigenvectors_sym(L);

R2 <- eigenvalues_sym(L);

eigenvalues <- calculate_eigenvalues(R2,R1,n2,n1,sigma1);

var1 ~ lognormal(0,1);

bw1 ~ cauchy(0,2.5);

sigma1 ~ lognormal(0,1);

increment_log_prob(

-0.5 * sum(y .* kron_mvprod(Q1,Q2, // calculates -0.5 * y’ (K1 \otimes K2) y

kron_mvprod(transpose(Q1),transpose(Q2),y) ./ eigenvalues))

-0.5 * sum(log(eigenvalues))); // calculates logdet(K1 \otimes K2)

}

7.6.3 Low-rank factorization model
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functions {

... see first model above ...

}

data {

int<lower=1> n1; // categories for clustering

int<lower=1> n2;

vector[n2] x2; // observation locations (e.g. timestamps)

matrix[n2,n1] y; // NB: this should be reshape(y, n2, n1),

// where y corresponds to expand.grid(x2,x1).

// To double-check, make sure that y[i,j] is

// the observation from category x1[j] at location

// x2[i]

int K;

}

transformed data {

vector[K] alpha;

matrix[n2,n2] xd;

for(i in 1:n2) {

xd[i,i] <- 0;

for (j in (i+1):n2) {

xd[i, j] <- -(x2[i]-x2[j])^2;

xd[j, i] <- xd[i, j];

}

}

for(i in 1:K)

alpha[i] <- .1;

}

parameters {

real<lower=0> var1;

real<lower=0> bw2;

real<lower=0.0001> sigma1;

real<lower=0.0001> sigma2;

simplex[K] Lambda1[n1];

}

transformed parameters {

matrix[n1,K] Lambda1m;
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for(i in 1:n1) {

Lambda1m[i] <- to_row_vector(Lambda1[i]);

}

}

model {

matrix[n1, n1] Sigma1;

matrix[n2, n2] Sigma2;

matrix[n1, n1] Q1;

matrix[n2, n2] Q2;

vector[n1] L1;

vector[n2] L2;

matrix[n2,n1] eigenvalues;

for(i in 1:n1)

to_vector(Lambda1[i]) ~ dirichlet(alpha);

Sigma1 <- var1 * Lambda1m * transpose(Lambda1m);

for (i in 1:n1)

Sigma1[i] <- Sigma1[i] + sigma1;

Sigma2 <- exp(xd * bw2);

for (i in 1:n2) {

Sigma2[i, i] <- Sigma2[i,i] + 0.000001;

}

Q1 <- eigenvectors_sym(Sigma1);

Q2 <- eigenvectors_sym(Sigma2);

L1 <- eigenvalues_sym(Sigma1);

L2 <- eigenvalues_sym(Sigma2);

eigenvalues <- calculate_eigenvalues(L2,L1,n2,n1,sigma2);

bw2 ~ cauchy(0,2.5);

var1 ~ lognormal(0,1);

sigma1 ~ lognormal(0,1);

sigma2 ~ lognormal(0,1);

increment_log_prob(

-0.5 * sum(y .* kron_mvprod(Q1,Q2, // calculates -0.5 * y’ (K1 \otimes K2) y

kron_mvprod(transpose(Q1),transpose(Q2),y) ./ eigenvalues))

-0.5 * sum(log(eigenvalues))); // calculates logdet(K1 \otimes K2)
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}

7.6.4 Synthetic data

functions {

... see first model above ...

}

data {

int<lower=1> n1;

int<lower=1> n2;

vector[n1] x1;

vector[n2] x2;

matrix[n1,n2] y;

real sigma2;

}

parameters {

real<lower=0> bw1;

real<lower=0> bw2;

real<lower=0> var1;

}

model {

matrix[n1, n1] Sigma1;

matrix[n2, n2] Sigma2;

matrix[n1, n1] Q1;

matrix[n2, n2] Q2;

vector[n1] L1;

vector[n2] L2;

matrix[n1,n2] eigenvalues;

// these loops can be moved to the transformed data

// block for efficiency, as in the source code in

// the next section

for (i in 1:n1) {

Sigma1[i, i] <- var1;

for (j in (i+1):n1) {

Sigma1[i, j] <- var1 * exp(-(x1[i]-x1[j])^2*bw1);
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Sigma1[j, i] <- Sigma1[i, j];

}

}

for (i in 1:n2) {

Sigma2[i, i] <- 1;

for (j in (i+1):n2) {

Sigma2[i, j] <- exp(-(x2[i]-x2[j])^2*bw2);

Sigma2[j, i] <- Sigma2[i, j];

}

}

Q1 <- eigenvectors_sym(Sigma1);

Q2 <- eigenvectors_sym(Sigma2);

L1 <- eigenvalues_sym(Sigma1);

L2 <- eigenvalues_sym(Sigma2);

eigenvalues <- calculate_eigenvalues(L1,L2,n1,n2,sigma2);

var1 ~ lognormal(0,1);

bw1 ~ cauchy(0,2.5);

bw2 ~ cauchy(0,2.5);

sigma2 ~ lognormal(0,1);

increment_log_prob( -0.5 * sum(y .* kron_mvprod(Q1,Q2,

kron_mvprod(transpose(Q1),transpose(Q2),y) ./ eigenvalues))

- .5 * sum(log(eigenvalues)));

}

7.6.5 Incomplete grids / missing observations

functions {

... see first model above ...

}

data {

int<lower=1> n1;

int<lower=1> n2;

int<lower=0> nmissing;

vector[n1] x1;

vector[n2] x2;

matrix[n2,n1] y;

int x1missing[nmissing];
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int x2missing[nmissing];

}

transformed data {

matrix[n1, n1] xd1;

matrix[n2, n2] xd2;

for(i in 1:n1) {

xd1[i, i] <- 0;

for (j in (i+1):n1) {

xd1[i, j] <- -(x1[i]-x1[j])^2;

xd1[j, i] <- xd1[i, j];

}

}

for (i in 1:n2) {

xd2[i, i] <- 0;

for (j in (i+1):n2) {

xd2[i, j] <- -(x2[i]-x2[j])^2;

xd2[j, i] <- xd2[i, j];

}

}

}

parameters {

real<lower=0> var1; // signal variance

real<lower=0> bw1; // bandwidth

real<lower=0> bw2;

real<lower=0.00001> sigma1;

vector[nmissing] ymissing;

}

transformed parameters {

matrix[n2,n1] ystar;

ystar <- y;

for(i in 1:nmissing) {

ystar[x2missing[i],x1missing[i]] <- ymissing[i];

}

}

model {

matrix[n1, n1] Sigma1;
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matrix[n2, n2] Sigma2;

matrix[n1, n1] Q1;

vector[n1] R1;

matrix[n2, n2] Q2;

vector[n2] R2;

matrix[n2,n1] eigenvalues;

Sigma1 <- var1 * exp(xd1 * bw1);

for(i in 1:n1)

Sigma1[i,i] <- Sigma1[i,i] + .00001;

Sigma2 <- exp(xd2 * bw2);

for(i in 1:n2)

Sigma2[i,i] <- Sigma2[i,i] + .00001;

Q1 <- eigenvectors_sym(Sigma1);

R1 <- eigenvalues_sym(Sigma1);

Q2 <- eigenvectors_sym(Sigma2);

R2 <- eigenvalues_sym(Sigma2);

eigenvalues <- calculate_eigenvalues(R2,R1,n2,n1,sigma1);

var1 ~ lognormal(0,1);

bw1 ~ cauchy(0,2.5);

bw2 ~ cauchy(0,2.5);

sigma1 ~ lognormal(0,1);

increment_log_prob(

-0.5 * sum(ystar .* kron_mvprod(Q1,Q2,

kron_mvprod(transpose(Q1),transpose(Q2),ystar) ./ eigenvalues)) // calculates -0.5 * y’ (K1 \otimes K2) y

-0.5 * sum(log(eigenvalues))); // calculates logdet(K1 \otimes K2)

}

7.6.6 Mixture model

data {

int<lower=1> n1;

int<lower=1> n2;

vector[2] x1[n1];
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vector[n2] x2;

matrix[n2,n1] y;

}

transformed data{

vector[2] one;

matrix[n1,n2] yt;

vector[n1] zero1;

vector[n2] zero2;

one[1] <- 1;

one[2] <- 1;

for(i in 1:n1)

zero1[i] <- 0;

for(i in 1:n2)

zero2[i] <- 0;

yt <- transpose(y);

}

parameters {

real<lower=0> var1;

real<lower=0> var2;

vector<lower=0>[2] bw;

real<lower=0.00001> sigma1;

real<lower=0.00001> sigma2;

real<lower=0> spacetime;

}

model {

matrix[n1, n1] Sigma1;

matrix[n2, n2] Sigma2;

matrix[2,2] SpaceTime;

real lp1;

real lp2;

SpaceTime[1,1] <- 10;

SpaceTime[1,2] <- spacetime;

SpaceTime[2,1] <- spacetime;

SpaceTime[2,2] <- 10;

for (i in 1:n1) {

Sigma1[i, i] <- var1 + sigma1;
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for (j in (i+1):n1) {

Sigma1[i, j] <- var1 * exp(-dot_self(x1[i]-x1[j])*bw[1]);

Sigma1[j, i] <- Sigma1[i, j];

}

}

for (i in 1:n2) {

Sigma2[i, i] <- var2 + sigma2;

for (j in (i+1):n2) {

Sigma2[i, j] <- var2 * exp(-(x2[i]-x2[j])^2*bw[2]);

Sigma2[j, i] <- Sigma2[i, j];

}

}

bw ~ multi_normal(one,SpaceTime);

spacetime ~ uniform(-1,1);

var1 ~ lognormal(0,1);

var2 ~ lognormal(0,1);

sigma1 ~ lognormal(0,1);

sigma2 ~ lognormal(0,1);

pi ~ uniform(0,1);

lp1 <- 0;

for(i in 1:n2)

lp1 <- lp1 + multi_normal_log(y[i],zero1, Sigma1);

lp2 <- 0;

for(j in 1:n1)

lp2 <- lp2 + multi_normal_log(yt[j],zero2, Sigma2);

increment_log_prob(log_mix(pi,lp1,lp2));

}

7.6.7 Trace plots and summary statistics

For the multitask model, we ran 4 chains for 600 iterations with 200 iterations of warm-up. The
effective sample size was above 1000 for each parameter, with the Gelman-Rubin potential
scale reduction statistic R̂≤ 1.01. Trace plots are shown in Figure 7.5.
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Fig. 7.5 Traces show good convergence for the 4 chains, each of which was run for 600
iterations after 200 iterations of warm-up.



Chapter 8

Conclusion

This thesis was motivated by the pressing public policy and social science questions my
collaborators ask everyday, and it was driven by my desire to develop statistical machine
learning methods to help them find answers to these questions. Machine learning has excelled
in data rich domains on prediction tasks, but when I told our collaborators in the Chicago
government that I had discovered novel associations in their crime data (that is, I could make
good predictions) they immediately wanted more: how sure was I? Were the associations
causal? Would the predictions hold in the future?

Answering these and related questions led me to work on difficult problems, some long-
established within statistics but with only small sparks of attention within machine learning:
spatiotemporal learning and inference, causal inference, spatiotemporal forecasting, and eco-
logical inference. I hope that this thesis can contribute to more firmly establishing a field of
spatiotemporal statistical machine learning. My approach emphasizes nonparametric Bayesian
modeling based on Gaussian processes and kernel methods, but entirely different and fascinat-
ing approaches exist as well, e.g. Montanez and Shalizi (2015). I also hope that this thesis has
asked novel questions which will inspire future research on relatively unexplored topics such
as spatiotemporal causal inference.

The central body of work of this thesis was methodological: I presented my Kernel Space-
Time interaction test in Chapter 3, new ways of scaling up inference for large-scale log-Gaussian
Cox Processes in Chapter 4, a new ecological inference through distribution regression method
in Chapter 5, a new conditional independence test, appropriate for spatiotemporal data in
Chapter 6, and new hierarchical modeling and inference methods for fully Bayesian GP models
in Chapter 7. Nevertheless, I have tried not to lose sight of the real-world applications driving
these methods, and although I have relied on toy and synthetic datasets, I have tried whenever
possible to use real datasets as well. Much more work lies ahead in testing these and related
methods in the field. Machine learning’s successes on prediction tasks are by now unmatched
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and the standard across a range of applications. But the future of statistical machine learning
driven scientific discovery is wide open. I hope my methods will inspire practitioners and
methodologists alike towards new discoveries.
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