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Abstract
Time series models are specialized in learning temporal dependencies among ob-

servations and interactions between multiple features in a data stream. During

the last decade, the unprecedented success of Deep Learning (DL) models in Com-

puter Vision and Natural Language Processing has steadily permeated to time series

tasks. From Recurrent Neural Networks to Transformers, new advancements in

architectural design improved capabilities and performance. Despite this success,

I identify several challenges to adopting current state-of-the-art (SoTA) methods,

including handling distribution shifts and missing data, computational complexity,

and interpretability.

The success of DL models is usually attributed to their ability to discover helpful

data representations automatically. Multivariate time series models involve high-

dimensional objects with numerous time series and temporal observations. However,

they often exhibit strong temporal dependencies and inter-feature relations. In

this thesis, I propose to design DL architectures and algorithms for forecasting

and anomaly detection tasks that leverage these dependencies to induce efficient

learning of representations that satisfy desirable properties that can (i) improve the

models’ performance, (ii) improve robustness by favoring domain adaptation, and

(iii) reduce over-parameterization to improve scalability. The completed work is

organized in three parts, presenting seven novel model types and algorithms that

achieve state of the art performance in various tasks while addressing key adoption

challenges.

In the first part, I explore the dynamic latent space principle and design latent

temporal representations to make robust anomaly detection and forecasting models.

In the second part, I present a novel scalable and interpretable model for multi-step

forecasting based on a novel non-linear frequency decomposition with connections

to Wavelet theory. It also features two extensions on using multivariate exogenous

covariates for high-impact domains, including energy and healthcare. Finally, in

the third part, I present a large-scale study on enabling conditions, on both model

design and data characteristics, for transferability of pre-trained models on time

series tasks.
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Chapter 1
Introduction

1.1 Problem Statement

Time series data are abundant in many fields, including social, applied, and natural sciences.

Time series models are specialized in learning the temporal dependencies among observations

and interactions between multiple features. In this thesis, I focus on forecasting and anomaly
detection, two of the most useful applications of time series modeling. Forecasting is essential

to optimize the production and distribution of goods, plan electricity markets, build financial

portfolios, and predict healthcare patient outcomes, among other examples. Anomaly detection

has been gaining attention with the Internet of Things (IoT), with applications for detecting fraud,

faults in manufacturing processes, monitoring sensor readings, and predictive maintenance.

During the last decade, the unprecedented success of deep learning models (DL) on Computer

Vision (CV) and Natural Language Processing (NLP) has steadily permeated to time series tasks.

From Recurrent Neural Networks (RNN) to Transformers, new advancements in architectural

design improved capabilities and performance. The high expressivity of DL models allows

them to learn non-linear temporal dynamics spanning thousands of observations and relations

between hundreds of time series. Cross-learning allows a single global model to forecast or

monitor multiple time series in a dataset, simplifying pipelines. The success has been evident in

academia and industry, and DL models are now predominant in large-scale industrial forecasting

applications and monitoring systems (Benidis et al., 2020a).

Despite this recent success, I identify several challenges to adopting current state-of-the-art

(SoTA) DL methods, especially in high-stakes applications. Most of the latest research has

focused on improving the accuracy on curated datasets, which rarely resemble real-world data.

For instance, two understudied recurrent challenges are distribution shifts and missing data.

Distribution shifts are changes in the data-generating process over time and can considerably

degrade accuracy (Du et al., 2021). Missing values form a generic data quality issue; some causes

include faulty sensors and misplaced collected data. Additionally, many applications require

models operating in resource-constrained environments due to limited hardware capacity or

high-volume data. In this thesis, I propose to develop novel interpretable DL methods that push
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the SoTA performance and address those key challenges to their adoption.

One of the most widely accepted explanations behind the success of deep learning models is

their ability to automatically discover helpful data representations, referred to as representation
learning (Goodfellow et al., 2016). Multivariate time series models involve high-dimensional

objects with numerous time series and temporal observations. However, they exhibit strong

temporal dependencies and relations between features, which have been thoroughly studied

(Box et al., 2015b; Hyndman and Athanasopoulos, 2018a). In my work, I propose to design DL

architectures that leverage these dependencies to induce efficient learning of good representa-

tions, as defined in (Bengio et al., 2013), that satisfy desirable properties that can (i) improve the

models’ performance, (ii) improve robustness by favoring domain adaptation, and (iii) reduce

overparameterization to improve scalability.

1.2 Thesis Statement

This thesis focuses on improving the performance, scalability, and capabilities of multivariate

deep learning time series models for forecasting and anomaly detection to improve their adop-

tion and potential benefits. In particular, it is based on designing efficient architectures and

latent representations leveraging time series dynamics. My dissertation is centered around the

following statement:

Deep multivariate time series algorithms can be designed to yield compact informed
representations while delivering superior performance, computational efficiency, and
robustness.

1.3 Overview and Summary of Contributions

I provide evidence that supports my thesis statement in the following three parts, containing six

different case studies of novel forecasting and anomaly detection architectures with informed

data representation structures that improve the capabilities of deep learning models.

Part I: Dynamic Latent Space for Multivariate Time Series

Chapter 2: Multivariate Online Anomaly Detection

Multivariate time series anomaly detection (MAD) is gaining relevance with the Internet of

Things (IoT), with myriad crucial applications such as fraud or threat detection, monitoring

sensor readings, and predictive maintenance. Despite its multiple applications and potential

benefits, designing useful and more accurate MAD methods remains challenging. DL methods, in

particular, struggle to detect contextual anomalies without overfitting the training data. Second,

real sensor data streams are usually extremely noisy, with missing values, corrupted data, and

variable features.
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This chapter first presents DGHL, a novel Generative model for online multivariate time

series anomaly detection that tackles the limitations of current approaches in high-stakes settings.

It employs an adaptation of the Alternating Back-Propagation algorithm to dynamically infer

the optimal latent vector to reconstruct the current behavior of the time series, equivalent to

maximizing the posterior distribution of the target variable conditional on the available signal.

A novel hierarchical structure of latent factors allows the model to reconstruct long signals

efficiently, improving its capabilities to detect contextual anomalies. Extensive empirical analysis

on four benchmark datasets demonstrates that DGHL achieves SoTA performance in detecting

anomalies, increasing relative performance on datasets with higher missing data.

Second, this chapter presents SAAT, a framework for automatic optimal threshold selection

for anomaly detection. Thresholds are crucial in pipelines since they determine the frontier of

anomaly scores to label an observation as nominal or anomalous. An optimal threshold can be as

important in performance as the model itself. Despite this, existing algorithms to find thresholds

are simple and not tailored to the latest DL methods. We showcase the superior performance

of SAAT on three benchmark datasets and seven models over existing alternatives. Finally,

SAAT can incorporate domain knowledge by selecting the synthetic anomaly generator that

best mimics true anomalies in the task.

Chapter 3: Robust Multivariate Forecasting and Imputation

We identify two widespread challenges for adopting deep learning methods to real applications,

which have been largely understudied: distribution shifts and missing data. Distribution shifts
are changes in the time series behavior over time and can considerably degrade the accuracy of

forecasting models (Kuznetsov and Mohri, 2014; Du et al., 2021; Xu et al., 2022b; Ivanovic et al.,

2022). Missing values occur when no data value is stored for some dataset entries. Some common

causes include faulty sensors and misplaced collected data. These challenges limit forecasting

methods and their potential benefits in many applications.

This chapter presents Temporal Inference Networks (TIN), a new paradigm for time series

forecasting: a Generator Network directly takes latent factors as inputs, which are dynamically

inferred by matching the model’s output on past observations by minimizing a reconstruction

error. This formulation is equivalent to the target variable’s maximum a posteriori estimation

(MAP) conditional on past observations. A novel Temporal Dynamic Module imposes temporal

dynamics on the latent factors based on function templates. The empirical comparison shows the

proposed approach outperforms current SoTA models with improvements over 50% on settings

with up to 80% missing data while simultaneously imputing missing past observations with

better accuracy than alternatives.

Part II: Scalable and Interpretable Multi-step Forecasting

Chapter 4: Long-Horizon Multi-Step Forecasting

The recent advancements in neural forecasting methods have steadily improved the performance

and capabilities of forecasting systems. Machine learning methods won recent large-scale
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competitions, such as the M4 (Makridakis et al., 2020), improving over classic statistical methods.

However, their impressive accuracy is usually accompanied by a drastic increase in computational

cost. This increase is exacerbated in long-horizon forecasting, where accurately predicting

hundreds of timestamps requires modeling longer temporal dependencies. Current architectures

scale poorly with the input and output dimensionality. Designing accurate and efficient methods

is essential for many applications, particularly in domains where computational resources are

constrained.

This chapter presents NHITS, a novel global model with hierarchical interpolation and

multi-rate sampling techniques to decompose the forecast in frequency bands. The novel decom-

position extends on the classic Fourier decomposition, as it is not constrained only to period

signals in each frequency. The NHITS achieves remarkable performance in six benchmark

datasets commonly used in the long-horizon forecasting literature, outperforming even the

latest specialized transformers architectures. Finally, thanks to the hierarchical interpolation

technique, the NHITS is 1.26x faster and requires only 54% of the parameters of the related

NBEATS model, and an order of magnitude faster than Transformers baselines.

Chapter 5: Multivariate Forecasting

This chapter presents two extensions of the NHITS and NBEATS models on multivariate

forecasting with exogenous variables on real applications. Exogenous variables are temporal or

static features that provide additional information to forecast the target time series. In many

settings, these additional covariates are crucial to achieving accurate forecasts. They can provide

necessary information on the generating process of the target variable, which is not available in

the autoregressive values alone.

The first extension,NBEATSx, incorporates a convolutional encoder to learn a decomposable

basis of the exogenous covariates. The method is tested on the electricity price forecasting (EPF)

task, a classic forecasting setting with exogenous covariates. In the second application, we

propose a pharmacokinetic prior encoder to incorporate sparse treatment variables efficiently.

The encoder pre-processed the sparse treatment variables to model their cumulative effect and

passed them as inputs to the NHITS model. The capabilities and superior performance of the

proposed method are compared to current alternatives in the glucose forecasting task.

Part III: Towards Time Series Foundation Models

Chapter 6: Transferability of Neural Forecasting Methods

Transfer learning is a technique that involves applying knowledge acquired from one task to

solve separate related tasks more accurately and efficiently. Therefore, transfer Learning and

representation learning are intrinsically related, as models exploit commonalities between tasks

by learning shared useful representations that capture common underlying factors of the data.

In practice, models are pre-trained on source large-scale tasks and then directly used to forecast

on a new task, with or without re-training the parameters.
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This chapter aims to advance the applications of transfer learning in time series forecasting

tasks to extend its enormous benefits. First, we perform a large-scale evaluation using different

model architectures, implementing a unified framework to evaluate transfer learning pipelines.

The empirical study presents evidence that pre-trained architectures outperform the accuracy of

widely adopted statistical forecasting tools and baselines, with computational speed improve-

ments on the orders of magnitude. Second, we explore the conditions on the model design and

the data that enable transferability between tasks. Notably, we note that the number of learnable

parameters, the size of the source dataset, and fine-tuning enhance accuracy, but they have

diminishing returns. Finally, training data diversity plays a critical role in the accuracy of the

transferred model. In particular, we propose a novel distance metric between time series tasks

that strongly correlates with pre-trained model accuracy.
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Part I

Dynamic Latent Space for Multivariate

Time Series

Most existing Deep Generative models for time series are based on the encoder-

decoder paradigm. This part explores the application of using a latent space in-

ference step, replacing encoders or other auxiliary networks, by minimizing the

reconstruction error on past observations. The latent space of the Generator model

can incorporate domain knowledge to encode time series patterns more efficiently.

In addition to state-of-the-art performance, two main advantages of this novel frame-

work are robustness to data quality issues including missing data or distribution

shifts. The two chapters in this Part present novel approaches based on the dynamic

latent space inference principle for time series anomaly detection and forecasting.
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Chapter 2
Multivariate Online Anomaly Detection

2.1 Motivation

Recent advancements in Deep Learning, such as Recurrent Neural Networks (RNN), Temporal

Convolution Networks (TCN), and Graph Networks (GN), have been successfully incorporated

by recent models to outperform previous approaches such as out-of-limits, clustering-based,

distance-based, and dimensionality reduction on a wide range of tasks. (Chalapathy and Chawla,

2019) (Ruff et al., 2021) present comprehensive reviews of current state-of-the-art methods for

time series anomaly detection.

This chapter proposes DGHL, a novel Deep Generative model based on a top-down Convolu-

tion Network (ConvNet), which maps multivariate time series windows to a novel hierarchical

latent space. The model is trained by maximizing the observed likelihood directly with the

Alternating Back-Propagation algorithm (Han et al., 2017) and short-run MCMC (Nijkamp et al.,

2021), so it does not rely on auxiliary networks such as encoders or discriminators as VAEs and

GANs do. DGHL, therefore, comprehends a separate family of generative models, previously

unexplored for time series anomaly detection. We perform experiments on several popular

datasets and show the proposed model outperforms the recent state-of-the-art while reducing

training times against previous reconstruction-based and generative models.

With the advent of IoT, settings with corrupted or missing data have increasing relevance. For

example, faulty sensors can cause missing values, privacy issues on consumer electronics devices,

or heterogeneous hardware can lead to variable features. We present the first extensive analysis

on the robustness of current state-of-the-art models on datasets with missing inputs and variable

features with novel occlusion experiments. DGHL achieved superior performance on this setting,

maintaining state-of-the-art performance with up to 90% of missing data, without modification

to the architecture or training procedure. We perform additional qualitative experiments of our

model to assess desirable properties of lower-dimensional representations, such as continuity

and extrapolation capabilities. Finally, we show how DGHL can be used as a forecasting model,

demonstrating its versatility on various time series tasks.

The main contributions of this section are:
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• Short-run MCMC. The first time series anomaly detection generative model based on

short-run MCMC for estimating the posterior of latent variables and inferring latent

vectors. In particular, the first application of the Alternating Back-Propagation algorithm

for learning generative models for time series data.

• Hierarchical latent factors. A novel hierarchical latent space representation to generate

windows of arbitrary length. We demonstrate with ablation studies how DGHL achieves

state-of-the-art performance by leveraging this representation on four benchmark datasets.

• Robustness to missing data. The first experiments on robustness to missing inputs

of state-of-the-art anomaly detection models and demonstrate DGHL achieves superior

performance in this setting.

2.2 Related Work

2.2.1 Anomaly Detection

Multivariate Anomaly detection (MAD) is an unsupervised binary classification problem con-

sisting of detecting anomalous events at the timestamp level on a stream of time series data.

In the Online setting, we want to detect anomalous events as soon as possible, using only past

information. Recent advancements in Deep Learning, such as Recurrent Neural Networks (RNN),

Temporal Convolution Networks (TCN), and Graph Networks (GN), have been successfully in-

corporated by recent models to outperform previous approaches such as out-of-limits, clustering-

based, distance-based, and dimensionality reduction on a wide range of tasks. (Chalapathy

and Chawla, 2019; Ruff et al., 2021) present comprehensive reviews of current state-of-the-art

methods for time series anomaly detection.

2.2.2 Reconstruction-based models

Reconstruction-based models learn representations for the time series by reconstructing the

input based on latent variables. The reconstruction error or the likelihood is commonly used as

anomaly scores. Among these models, variational auto-encoders (VAE) are the most popular.

The LSTM-VAE, proposed in (Park et al., 2018), uses LSTM as encoders and decoders and models

the reconstruction error with support vector regression (SVR) to have a dynamic threshold based

on the latent space vector. OmniAnomaly (Su et al., 2019) improves the LSTM-VAE by adding

normalizing planar flows to increase the expressivity and including a dynamic model for the

latent space. Generative Adversarial Networks (GANs) were also adapted for anomaly detection

as alternatives to VAE, with models such as AnoGAN (Schlegl et al., 2017), MAD-Li (Li et al.,

2018), and MAD-GAN (Li et al., 2019a).

Most recent models propose directly detecting anomalies in the latent representation and

embeddings. THOC (Shen et al., 2020) proposed to use one-class classifiers based on multiple

hyperspheres on the representations on all intermediate layers of a dilated RNN. NCAD (Carmona

et al., 2021) uses a TCN to map context windows and suspect windows into a neural representation
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and detect anomalies in the suspect window on the latent space with a contextual hypersphere

loss.

2.2.3 Generative models with Alternating Back-Propagation

Virtually all current models, including our proposed approach, rely on mapping the original time

series input into embeddings or a lower-dimensional latent space. DGHL, however, is trained

with the Alternating Back-Propagation (ABP) algorithm, presented in (Han et al., 2017), and

short-run MCMC, presented in (Nijkamp et al., 2021). ABP maximizes the observed likelihood

directly; it does not rely on variational inference approximations or auxiliary networks such as

discriminators. Instead, our approach uses MCMC sampling methods to sample from the true

posterior to approximate the likelihood gradient.

Several generative models that rely on MCMC sampling, particularly Langevin Dynamics,

have shown state-of-the-art performance on computer vision (Pang et al., 2020) and NLP (Pang

et al., 2021) tasks. To our knowledge, this algorithm has not been used for time series forecasting

and time series anomaly detection. We present the ABP algorithm in more detail in subsection

2.4.3.

2.3 What is an anomaly?

The definition of an anomaly is a fundamental question of the field. Anomalies are almost always

subjective since they depend on the task and the user doing the labeling. In this chapter, we

do not tackle this question but rather define and test models on a setting applicable to most

applications.

Models are trained on a clean dataset without anomalies. The model, therefore, learns the

reference distribution of the data. The trained model is then deployed in a test dataset, resembling

the production deployment of the model. The test set can contain both reference and anomalous

observations, and the task is to output a binary label to classify them. Figure 2.1 illustrates the

setting.

To evaluate models, we use several public benchmark datasets with the F1 score using

anomaly labels, determined by experts, of the test set. These datasets were published by different

organizations, such as NASA, and included labels created by experts. Note that the labels on the

test set are only used to compare between models, so in real applications, users do not need to

label anomalies to train models.

2.4 Methodology

2.4.1 DGHL

We propose DGHL, a novel Deep Generative model based on a top-down Convolution Network

(ConvNet), which maps multivariate time series windows to a novel hierarchical latent space.
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Figure 2.1: Evaluation setting. Models are trained on the train set without anomalies and are evaluated

on the test set using the F1 score, using true labels provided by the benchmark dataset.

The model is trained by maximizing the observed likelihood directly with the Alternating

Back-Propagation algorithm (Han et al., 2017) and short-run MCMC (Nijkamp et al., 2021).

2.4.2 Hierarchical Latent Factors

Let Y ∈ Rm×sw
be a window of size sw of a multivariate time series with m features. The

window Y is further divided in sub-windows of equal length Yj ∈ Rm× sw
aL , j = 0, ..., aL. The

structure of the hierarchy is specified by a = [a1, ..., aL], where L is the number of levels, and

al determines the number of consecutive sub-windows with shared latent vector on level l, with

al | aL. Figure 2.2 presents an example of how a determines the hierarchy. Our model for each

sub-window Yj of Y is given by,

sj = Fα(z
1⌊

j
a1

⌋, ...,zL⌊
j

aL

⌋)
Yj = Gβ(sj) + ej

(2.1)

where Fα is the State model, Gβ is the Generator model, θ = [α,β] are the parameters,

sj ∈ Rd
is the state vector, ej ∼ N(0, ID), and

Z = {zl⌊
j
Al

⌋ ∈ Rdl}l,j (2.2)

is the hierarchical latent factor space for window Y . For the State model, we used a concate-

nation layer. For the Generator model we used a top-down Convolution Network (ConvNet),
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Figure 2.2: Panel (a): Example of hierarchical latent factor space for a = [1, 3, 6]. On each level l, the

latent vectors of al consecutive sub-windows are tied. For instance, the latent vector on the highest layer,

L, is shared by all sub-windows of Y . Panel (b): DGHL architecture

which maps an input state vector to a multivariate time series window. The State model for each

sub-window has L latent vector inputs. On each level, l, the latent vectors of al consecutive

sub-windows are tied. For instance, the latent vector on the highest layer, L, is shared by all

sub-windows of Y . Figure 1 shows an example of a hierarchical latent space with a = [1, 3, 6].

The key principle of the hierarchical latent space is to leverage dynamics on the time series,

such as seasonalities, to encode the information on the latent space more efficiently with lower-

dimensional vectors. The hierarchical latent space allows the generating of realistic time series

of arbitrary length while preserving their long-term dynamics. The hierarchical structure can be

incorporated as hyper-parameters to be tuned or pre-defined based on domain knowledge. For

instance, hierarchies can correspond to the multiple known seasonalities on the time series.

The hierarchical latent space Z is jointly inferred using Langevin Dynamics. The relative size

of the lowest level state vector and the upper levels controls the flexibility of the model. Larger

lower hierarchy level vectors make the model more flexible, making it robust to normal changes

or randomness in long-term dependencies of the time series and, therefore, reducing false

positives by reducing the reconstruction error. Larger tied vectors will make the model stricter

and better for detecting contextual anomalies. The model presented in (Han et al., 2017) can be

seen as a single-level hierarchical latent space model, with a = [1], in the current framework.

Previous work, such as OmniAnomaly, incorporates transition models to learn dynamics

in the latent space. We believe our proposed hierarchical latent factors structure has several

advantages over transition models. First, the computational cost and training time are lower

for the proposed model since it does not rely on sequential computation and, therefore, on

back-propagation through time for training parameters. Second, transition models implicitly

assume the dynamics are constant over time, a non-realistic assumption in many settings. Our

solution allows the model to share information across windows to model long-term dynamics

without relying on a parametric model which assumes constant dynamics.
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2.4.3 Training with Alternating Back-Propagation

The parameters θ of DGHL are learned with the Alternating Back-Propagation algorithm.

First, the training multivariate time series Y ∈ Rm×T
with m features and T timestamps is

divided in consecutive windows of size sw and step size s in a rolling-window fashion. Let

{Y(i), i = 1, ..., n} be the training set of time series windows. Alternating Back-Propagation

algorithm learns parameters θ by maximizing the observed log-likelihood directly, given by,

L(θ) =
n∑

i=1

log pθ(Y
(i)) =

n∑
i=1

log

∫
pθ(Y

(i),Z(i))dZ(i)
(2.3)

where Z(i)
is the latent vector for window i specified in equation 2. The observed likelihood

L(θ) is analytically intractable. However, the gradients L′(θ) for a particular observation can

be simplified to,

∂

∂θ
log pθ(Y

(i)) =
1

pθ(Y(i))

∂

∂θ

∫
pθ(Y

(i),Z(i))dz

= Epθ(Z(i)|Y(i))

[
∂

∂θ
log pθ(Y

(i),Z(i))

] (2.4)

where pθ(Z
(i)|Y(i)) = pθ(Y

(i),Z(i))/pθ(Y
(i)) is the posterior. The expectation in the pre-

vious equation can be approximated with the Monte Carlo average by taking samples using

MCMC. In particular, Alternating Back-Propagation takes a single sample of the posterior using

Langevin Dynamics (Neal et al., 2011), a Hamiltonian Monte Carlo algorithm, which iterates,

Z
(i)
t+1 = Z

(i)
t +

s

σz

∂

∂Z(i)
log pθ(Z

(i)
t |Y(i)) +

√
2sϵt

= Z
(i)
t +

√
2sϵt+

s

σz

[
(Y(i) − f(Z(i)

t ,θ))
∂

∂Z(i)
f(Z

(i)
t ,θ)−Y

(i)
t

] (2.5)

where ϵt ∼ N(0, ID), t is the time step of the dynamics, s is the step size, and σz controls

the relative size of the injected noise. This iteration is an explain-away process where latent

factors are chosen such that the current residual on the reconstruction, Y(i) − f(Z(i)
t ,θ), is

minimized. With large values of σz , the posterior will be close to the prior, while small σz allows

for a richer posterior. The iterative process is truncated to a predefined number of iterations,

and the rejection step is not considered. As explained in (Neal et al., 2011), for an observation

Y(i)
, the resulting vector is a sample from an approximated posterior, pθ(Z

(i)|Y(i)). The Monte

Carlo approximation of the gradient then becomes,

L′(θ) ≈ ∂

∂θ
log pθ(Z

(i),Y(i))

=
1

σ2
(Y(i) − f(Z(i),θ))

∂

∂θ
f(Z(i),θ)

(2.6)
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2.4.4 Online Anomaly Detection

By learning how to generate time series windows based on the training data Y , DGHL implicitly

learns reference (non-anomalous) temporal dynamics and correlations between the multiple time

series. In this subsection, we explain the proposed approach to reconstruct windows on unseen

test data Y test
to detect anomalies.

In Online Anomaly Detection, we consider the test set Y test ∈ Rm×Ttest
to be a stream of

m time series. The goal is to detect anomalies (the evaluation is equivalent to a supervised

setting with two classes) as soon as possible. As with the training set, Y test
is first divided

in consecutive windows with the same parameters sw and s. We propose to reconstruct and

compute anomaly scores one window at a time.

Let Yt∗ be the current window of interest. The latent space Zt∗ is jointly inferred to recon-

struct the target window, namely Ŷt∗ . The anomaly score for a particular timestamp t in the

window is computed as the Mean Square Error (MSE) considering all m time series, given by

st =
1

m

m∑
i=1

(yi,t − ŷi,t)2 (2.7)

The size of the window sw and step size s control how early anomalies can be detected.

With a smaller s, anomaly scores for newer values in the stream are computed sooner. When

s < sw, consecutive windows have overlapping timestamps. In this case, scores are updated by

considering the average reconstruction. In datasets with multiple entities (for instance, machines

in SMD), we scale the scores by the accumulated standard deviation of scores before window t∗.

One main difference with the inference step during training is removing the Gaussian noise,

ϵt, of the Langevin Dynamics update. The inferred factors then correspond to the maximum a

posteriori mode, which in turn minimizes the reconstruction error conditional on the learned

models F and G. This novel strategy makes DGHL unique among reconstruction-based models:

it avoids overfitting during training by sampling from the posterior with Langevin Dynamics

and minimizes the reconstruction error to reduce false positives by MAP estimation.

Many previous models rely on complex and unusual specific scores, butDGHL uses the simple

MSE. The anomaly scores of our approach are interpretable since they can be disaggregated by

the m features. Users can rank the contribution to the anomaly score of each feature to gather

insights of the anomaly.

2.4.5 Online Anomaly Detection with missing data

The first step of the ABP algorithm is to infer latent vectors with Langevin Dynamics. This is

an explain-away process where latent factors are chosen such that the current residual on the

reconstruction, Y − f(Zt,θ), is minimized. The model can intrinsically deal with missing data

by inferring Z, computing the residuals only on the observed signal Yobs. The inferred vectors

then correspond to samples from the posterior distribution conditional on the available signal,

pθ(Z|Yobs). Since no explicit learnable parameters map inputs to the latent space, the model is
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Figure 2.3: Occlusion experiment on machine-1-1 of the SMD. Red lines correspond to the actual values,

and blue lines present the reconstructed time series with DGHL. Gray areas correspond to the occluded

information during training.

more robust to missing values and outliers (masked as missing data). Generative models trained

with ABP algorithm outperformed VAEs and GANs on experiments with missing information

on computer vision and NLP tasks (Han et al., 2017).

Figure 2.3 shows an example of occluded data, for a subset of features of one machine of the

SMD dataset. Occluded segments are marked in gray. First, DGHL is able to precisely reconstruct

the observed data (white region), even when most features are missing. This is most relevant for

the anomaly detection task since only the observed features are used to compute the anomaly

score. Second, the model is able to recover missing data with great precision, which can be

helpful in complete pipelines with downstream applications.

2.5 Experiments

In this section, we compare DGHL to current state-of-the-art (SoTA) models and simple one-line

approaches such as Mean deviation and Nearest Neighbors. Table 2.1 presents the main results.

Our methods consistently achieve the Top-2 F1 scores, with overall performance superior to

SoTA in four benchmark datasets from various domains. Moreover, our approach achieved the

highest performance among all reconstruction-based and generative models on all datasets.
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Figure 2.4: F1 scores on SMD dataset using a single threshold across all machines.

2.5.1 Datasets

Server Machine Dataset (SMD) − Introduced in (Su et al., 2019), SMD is a multivariate time

series dataset with 38 features for 28 server machines, monitored during 5 weeks. The time

series includes common activity metrics in servers, such as CPU load, network, and memory

usage, among others. Both training and testing sets contain around 50k timestamps each, with 5

% of anomalous cases. We trained separate models for each machine as suggested by the authors

but with the same hyperparameters.

Soil Moisture Active Passive satellite (SMAP) and Mars Science Laboratory rover
(MSL)− Published by NASA in (Hundman et al., 2018), they contain real telemetric data of

the SMAP satellite and MSL rover. SMAP includes 55 multivariate time series datasets, each

containing one anonymized channel and 24 variables encoding information sent to the satellite.

MSL includes 27 datasets, each with one telemetry channel and 54 additional variables. Again,

we trained separate models for each telemetry channel, considering additional variables as ex-

ogenous, i.e., only the anomaly score of the telemetry channel was used for detecting anomalies.

Secure Water Treatment (SWaT) − Is a public dataset with information of a water treat-

ment testbed meant for cyber-security and anomaly detection research. It contains network

traffic and data from 51 sensors for 11 days, 7 days of normal operation (train set), and 4 days

with cyber attacks (test set).

2.5.2 Evaluation

We evaluate the performance of DGHL and benchmark models on the four datasets with the

F1-score, considering the anomaly detection problem as a binary classification task where the

positive class corresponds to anomalies. Anomalies often occur continuously over a period of
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Table 2.1: F1 scores on benchmark datasets (the larger the better). The benchmark models performance

was taken from (Shen et al., 2020), (Carmona et al., 2021) and (Zhao et al., 2020). The first place is marked

in bold and the second place is marked in bold and italic. DGHL corresponds to the full model described

in previous section, without Hierarchical factors corresponds to the simpler model with fully independent

latent vectors for each window.

Model SMAP MSL SWaT

Mean deviation (one-line) 57.61 68.91 85.71

Nearest Neighbors 75.10 90.01 86.72

AnoGAN 74.59 86.39 86.64

DeepSVDD 71.71 88.12 82.82

DAGMM 82.04 86.08 85.37

LSTM-VAE 75.73 73.79 86.39

MAD-GAN 81.31 87.47 86.89

MSCRED 85.97 77.45 86.84

OmniAnomaly 85.35 90.14 86.67

MTAD-GAT 90.13 90.84 -

THOC 95.18 93.67 88.09
NCAD 94.45 95.60 -

DGHL 96.38 ± 0.72 94.08 ± 0.35 87.47 ± 0.22
DGHL, without Hierarchial factors 94.87 ± 0.71 91.26 ± 0.71 87.08 ± 0.12

DGHL, with encoder, no Hier. factors 78.41 ± 0.92 87.10 ± 0.54 86.39 ± 0.32

time, creating anomalous segments. (Xu et al., 2018) proposed an adjustment approach where

the predicted output is re-labeled as an anomaly for the whole continuous anomalous segment

if the model correctly identifies the anomaly in at least one timestamp. We use this adjustment

technique for SMAP, MSL and SMD datasets to make results comparable with existing literature.

Moreover, we followed the common practice of comparing the performance using the best

F1-score, by choosing the best threshold on the test set. For SMAP, MSL, and SMD, we use

a single threshold through the entire dataset (not different thresholds for each machine or

channel).

To compare our results with previous work, we follow the train, validation, and test split

described in (Shen et al., 2020) for SMAP, MSL, and SWaT. For SMD we use the train and test

splits described in (Su et al., 2019). All architecture hyper-parameters of the Generator model,

optimization hyper-parameters, and all hyper-parameters of the Langevin Dynamics were kept

constant across the four datasets.

We compare DGHL to current state-of-the art models, such as THOC(Shen et al., 2020),

NCAD(Carmona et al., 2021), and MTAD-GAT (Zhao et al., 2020); and previous widely used

models such as AnoGAN(Schlegl et al., 2017), DeepSVDD(Ruff et al., 2018), DAGMM(Zong et al.,

2018), OmniAnomaly, (Su et al., 2019), MAD-GAN(Li et al., 2019a) and LSTM-VAE(Park et al.,

2018). We also include simple one-line and non deep learning approaches such as Mean deviation
and Nearest Neighbors. Mean deviation uses the average deviation to the mean of each feature as

an anomaly score. The latter uses the average distance to the k nearest windows of the training
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Figure 2.5: F1 scores for DGHL and LSTM-VAEbenchmark for occlusion experiments on SMD for three

levels of occlusion probability p, 0, 0.5, 0.9 and r = 5.

set as the anomaly score. Finally, we include two additional versions of DGHL removing the

key contributions of our work. First, we remove the hierarchical factors (a = [1]), and second,

we replace the Langevin Dynamics algorithm for inferring latent factors with a convolutional

encoder.

Table 2.1 shows the F1 scores for DGHL, and the benchmark models for SMAP, MSL, and

SWaT datasets. Our methods consistently achieve the Top-2 F1 scores, with overall performance

superior to state-of-the-art such as MTAD-GAT (Zhao et al., 2020), THOCand NCAD. Moreover,

our approach achieved the highest performance between all reconstruction-based and generative

models on all datasets. Figure 2 shows the F1 scores for SMD dataset. DGHL achieved a score of

86.18± 0.66, outperforming all benchmark models. Our model without hierarchical factors had

a score of 80.84± 0.40, and with encoder had a score of 76.59± 0.78.

DGHL significantly outperformed simple baselines in all datasets. The one-line solution

ranked worst consistently. Nearest Neighbors, however, achieved a better performance than

several complex models in all datasets with a fraction of the computational cost, demonstrating

how simple models need to be considered to understand the benefits of recent models. DGHL
outperforms other pure reconstruction-based models because inferring latent vectors for com-

puting anomaly scores provides several advantages. First, it provides additional flexibility and

generalization capabilities to prevent false positives, which is instrumental in noisy or non-

constant temporal dynamics datasets. Second, it helps to reduce the lasting impact of anomalies

on the reconstruction error over time, reducing false positives once anomalies end.

DGHL took an average of 2 minutes to train for each entity (e.g., one machine of SMD or

one channel of SMAP) consistently across datasets. For instance, the training time was around

60 minutes for SMD and MSL, and 100 minutes for SMAP. This is comparable to other state-

of-the-art models’ self-reported training times, such as NCAD, and is faster than RNN-based

models. For instance, OmniAnomaly took an average of 20 minutes to train each model for each

machine on the SMD dataset. The inference time varies depending on the length of the test set.

The average time to infer 3000 timestamps (average downsampled SMD test set), with sw = 32,

was lower than 5 seconds.
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2.5.3 Online Anomaly Detection with missing data

All current benchmark datasets in the time series anomaly detection literature assume perfect
data. However, this is not usually the case in real scenarios, with issues such as missing values,

corrupted data, and variable features. This section presents the first experiments to assess the

robustness of current state-of-the-art models to common data issues such as missing values.

In particular, we adapt the popular occlusion experiments from computer vision literature for

training models with incomplete data.

We define the occlusion experiments with two parameters. First, the original time series

Y ∈ Rm×T
, is divided in r segments of equal length, Yi ∈ Rm×T

r . Second, each feature m in

each segment is occluded for model training or inference with probability p.

We assess the robustness of models to incomplete training data with occluding experiments on

the SMD dataset for different levels of r and p and usingF1 scores to evaluate performance. Figure

2.5 shows the F1 score for DGHL, LSTM-VAE, and OmniAnomaly. DGHL achieves the highest

scores consistently, with increasing relative performance on higher data occlusion probability.

Moreover, DGHLmaintained high F1 scores even with up to 90% of missing information, without

any changes to the hyperparameters, architecture, or training procedure.

2.6 Anomaly Threshold Selection

2.6.1 Motivation

The evaluation in the last section was based on prior work that compares performance with

the optimal F1. This metric uses the true labels of the test set to define the best threshold

that maximizes the F1 score. While this methodology is useful for comparing models, it lacks

practical applications as the true anomaly labels are unavailable during inference.

Few algorithms exist for threshold selection, as most research endeavors have focused on

developing models. Regarding performance, the threshold definition can be as important as the

underlying model. Moreover, automatic thresholding can benefit large systems where defining

manual thresholds for each instance is not feasible, and a common pre-defined threshold is too

restrictive.

In this section, we evaluate existing methods and propose a novel Synthetic Anomalies

Automatic Thresholding algorithm (SAAT).

2.6.2 Methodology

Let Ytrain ∈ Rm×T
be a stream of non-anomalous m time series of length T , F an anomaly

detection model trained on Ytrain which for each timestamp t produces an anomaly score st.
Let Ytest ∈ Rm×T ′

be the test set, a stream of m labeled time series observed after the train set.

The model F labels each timestamp t as an anomaly if st > h, i.e., the score is greater than a
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Figure 2.6: Intuition of estimating normal variance on common windows (states) on a time series. Each

plot shows a window (state), and black lines show multiple instances (neighbors). Some states have

higher normal variance, so injected anomalies should be larger.

threshold h. The goal of automatic thresholding is to define the threshold h(F, Ytrain), such that

it maximizes T (Ytest, F, h), where T is a performance metric (such as F1-score).

Algorithm 2.1 presents the SAAT methodology, maximizing the F1 score on the augmented

Ŷ data with injected synthetic anomalies. First, SAAT randomly samples n disjoint windows of

size sw. The intuition is that these windows represent different states of the stream. Next, for

each window, it finds similar windows (other instances of the same state) based on a distance

d(Yi, Yj) between two windows. In the experiments, we set d as the Euclidean distance. Next, it

generates synthetic anomalies based on the Generator G(Φ, d̂n) that parameterize anomalies

based on a distribution Φ and the average distance d̂n on the true training data. The goal of

using d̂n is for the generator to produce true out-of-distribution anomalies outside the normal

behavior of the time series, with the intuition presented in Figure 2.6. Finally, injected anomalies

are labeled, and optimal h∗ is computed such that it maximizes the F1 score. Figure 2.7 presents

an example of injected scale anomalies and how the optimal threshold is defined.

Algorithm 2.1 SAAT
Input: train dataY, model Fθ, distance d(Yi, Yj), distribution Φ, anomaly generator G(Φ, d),
parameters n sw.

Output: h∗.
Randomly select n disjoint windows from Y , and find similar windows for each with motif

discovery algorithm based on d(Yi, Yj).

d̂n ← Average d for each n group of windows.

Ŷ ← Inject anomalies from G(Φ, d̂n) on Y .

h∗ ← argmaxF1(F, Ŷ )

2.6.3 Synthetic Anomalies and Domain Knowledge

How to generate synthetic anomalies is an interesting and important problem in the field. SAAT
consists of a general framework, which is agnostic to any particular type of injected anomalies.
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(a) Synthetic anomalies

(b) Anomaly scores from vs synthetic anomaly size

Figure 2.7: Optimal threshold is selected to separate true negative (in black) and true positives (in red)

based on the anomaly scores produced by model F .

For the following experiments, we consider the 9 different types of synthetic anomalies from

(Goswami et al., 2023).

One key advantage of SAAT is the capability to incorporate domain knowledge from experts

through the choice of synthetic anomalies generator. As mentioned in section 2.3, anomalies

are identified by experts in each application domain. SAAT allows users to define the synthetic

anomalies to match true expected anomalies in production to improve anomaly detection

performance by defining optimal thresholds that minimize errors.

2.6.4 Experiments

We repeat the anomaly detection experimental setting from section 2.5 for SMD, SMAP, and

MSL datasets, but varying the threshold method instead of only using the optimal F1 score. We

compare the performance of SAAT against two popular alternatives in the literature: Peak-over-

threshold (POT), proposed in (Siffer et al., 2017), and modeling anomaly scores as a Gaussian

Distribution (Gaussian). In terms of models, we consider the simple baselines from the

previous section, the LSTM-VAE and LSTM-NDT, and two new models: Random Cut Forest

(RCF) and the recent AnoTrans (Xu et al., 2022a).

Table 2.2 presents the main results. First, SAAT improves over alternative methods consis-

tently across models and datasets. The improvements are larger for more complex deep learning

and machine-learning models. The top performing models, regardless of the threshold algorithm,

are DGHL and AnoTrans.
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Table 2.2: F1 scores on benchmark dataset (larger is better). First place, excluding Optimal, is marked

in bold.

Gaussian POT SAAT Optimal

S
M

D

Mean deviation 62 64 69 84

Nearest Neighbors 58 52 72 89

LSTM-NDT 57 59 66 70

LSTM-VAE 50 55 63 89

OmniAnomaly 38 40 74 88

RCF 57 51 70 71

AnoTrans 48 44 81 90

DGHL 59 60 84 92

S
M

A
P

Mean deviation 72 62 68 79

Nearest Neighbors 71 39 74 84

LSTM-NDT 56 52 71 95

LSTM-VAE 74 60 74 83

RCF 58 41 61 65

AnoTrans 89 85 91 97

DGHL 88 86 89 97

M
S
L

Mean deviation 52 55 50 86

Nearest Neighbors 48 50 66 93

LSTM-NDT 52 48 67 93

LSTM-VAE 53 49 68 91

RCF 59 47 64 92

AnoTrans 62 64 78 97

DGHL 61 67 76 96

2.7 Discussion and Conclusion

DGHL outperforms SoTA baselines and simple approaches by the current experimental standards

of the literature. Although DGHL relies on MCMC for posterior sampling, it remains computa-

tionally efficient thanks to a lower number of training iterations needed. The ablations studies

presented in Table 2.1 demonstrate the complementary gains of our two main contributions,

namely, a novel hierarchical latent representation and training the Generator with the alternating

back-propagation algorithm.

(Wu and Keogh, 2021) strongly argue that some of the benchmark datasets used in our

experiments have mislabeled observations and are therefore worthless to compare to. While we

agree this adds noise to the evaluation metrics, we believe the consistent improvement of our

model (and current SoTA deep learning models) demonstrates their superior performance on this

task over simpler approaches. We also observed the SMD dataset does not have a considerable

amount of mislabeled observations that could significantly alter the results
1
. We decided to use

1
Even though we do not know the ground truth, most labeled anomalies seem to relate to some form of a rare
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these benchmark datasets for comparison purposes with existing methods.

Most of the anomalies in the benchmark datasets used in this paper can be easily identified

by humans (e.g. large spikes), as noted in (Wu and Keogh, 2021). Accurately detecting such

anomalies is relevant for many applications, particularly large-scale automatized systems, for

which the current benchmarks provide representative estimates of the relative performance of

models. Identifying contextual anomalies, which can be hard to detect even for humans, is also

highly relevant, but current benchmarks do not provide insights on the performance of models

on such tasks. Creating relevant benchmark datasets with contextual anomalies is a pressing

necessity.

Table 2.2 on the results of threshold selection shows there is still a considerable gap between

all methods and the optimal threshold, showing the need for further developing these methods.

It also raises concerns about using the optimal F1 as an evaluation metric for comparing models,

as it does not have practical applications directly.

In summary, we present DGHL, a state-of-the-art Deep Generative model for multivariate

time series anomaly detection. The proposed model maps time series windows to a novel

hierarchical latent space representation, which leverages the time series dynamics to encode

information more efficiently. Our model has several advantages over existing methods: i. shorter

training times, ii. demonstrated superior performance on several benchmark datasets, and

iii. better robustness to missing values and variable features. Second, we present SAAT, an

algorithm for automatic optimal threshold selection based on injecting synthetic anomalies and

optimizing the desired performance metric.

pattern, and we did not observe clear anomalies (e.g. large spikes) labeled as normal observations.

23



Chapter 3
Robust Multivariate Forecasting and

Imputation

3.1 Motivation

Multivariate time series forecasting is an essential task in various domains. Forecasts are a key

input to optimize the production and distribution of goods (Bose et al., 2017), predict patient

outcomes in healthcare (Chen et al., 2015), plan electricity production (Olivares et al., 2022b),

build financial portfolios (Emerson et al., 2019), among other examples (Challu et al., 2021;

Challu et al., 2022b). Due to its high potential benefits, researchers have dedicated many efforts

to improving the forecasting models’ capabilities, with breakthroughs in architectures leading

to increased performance and scalability (Benidis et al., 2022).

While neural forecasting models differ in architecture design and how they model temporal

and inter-feature relations, they share some key characteristics: (i) they explicitly or implicitly

rely on encoders that map historical values as inputs to embeddings or latent representations;

(ii) their architecture contains explicit operations (usually multiplication or addition) between

learnable parameters and inputs; and (iii) once the model is trained, the forecast (or in the case

of probabilistic models, the distribution parameters) are fixed, as the inputs and parameters fully

determine it.

We identify and empirically document the limitations of state-of-the-art (SoTA) methods

following these principles in forecasting settings with missing data, a problem that has been

largely understudied. Missing values are a generalized data problem with common causes

including faulty sensors and human error (Tashiro et al., 2021; Yi et al., 2016), and are predominant

in high-stake domains such as healthcare and finance where settings with up to 80% missing

data are common (Silva et al., 2012). Missing data can severely degrade performance for most

applications and downstream tasks (Figure 1.b). Designing robust methods that can intrinsically

handle missing values or developing imputation models to accurately recover missing data can,

therefore, provide enormous benefits.

To this end, we propose Temporal Inference Networks (TIN), a novel family of time series
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Imputation Forecast

TI-CNN output 

Figure 3.1: TIN-CNN’s output evolution during latent factors inference, where ŷi is the output after i
inference steps. The model generates the complete window, simultaneously imputing missing data and

forecasting future values, using the available information on the reference window (white region).

forecasting and imputation models that challenges the established principles of most SoTA

models. A TIN network consists of three components: the Latent Factors inference procedure,

a Temporal Dynamic Module (TDM), and the Generator network. The Generator network

generates complete time series windows from latent factors, interpolates missing data, and

forecasts future values. Latent factors are inferred by matching the Generator’s output on

available past observations, minimizing a reconstruction loss using gradient descent methods.

The TDM module endows the latent factors with temporal dynamics and imposes strict temporal

dependencies along the window. By combining the three modules, a TIN network does not

contain operations between learnable parameters and inputs and can adjust the imputation and

forecasts to match the latest behavior of the data.

To the best of our knowledge, TIN is the first approach to achieve SoTA performance in

settings with full data and missing values while simultaneously performing forecasting and

imputation tasks. Forecasting and imputation have been studied separately, and virtually all work

proposing new methods has specialized in one task. Our method can greatly simplify production

systems by unifying both into a single efficient and parsimonious model. The contributions are

summarized below:

• Latent Factors inference: methodology to infer latent factors of a Generator network

that replaces parametric encoders, theoretically motivated as a MAP estimation of the

posterior distribution of latent factors.

• Temporal Dynamic Module: representation of a multivariate time series window on a

shared latent space with temporal dynamics.

• TIN-CNN : multivariate forecasting and imputation model with a Convolution Neural

Network (CNN) Generator that combines the previous techniques to simultaneously

achieve SoTA performance on forecasting and imputation tasks in several benchmark

datasets.
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3.2 Related Work

3.2.1 Multivariate Forecasting

The earliest multivariate forecasting methods are the Vector Autoregression (VAR) statistic

models from the 1980’s (Sims, 1980; Granger, 1969), used mainly by econometricians to forecast

macroeconomic indicators. In recent years, several multivariate neural forecasting approaches

have been proposed using a wide range of architectures. The success of Transformers (Vaswani

et al., 2017) in sequential data, such as natural language processing (NLP) and audio processing,

inspired many multivariate models with attention mechanisms. For example, the Informer
(Zhou et al., 2020) introduces a Prob-sparse self-attention to reduce the quadratic complex-

ity of vanilla Transformers; the Autoformer (Wu et al., 2021) proposed a decomposition

architecture in trend and seasonal components and the Auto-correlation mechanism. Other

approaches incorporated Graph Neural Networks (GNN) to model complex relations between a

large number of time series. Some examples include the GraphWaveNet(Wu et al., 2019) and

StemGNN(Cao et al., 2020) models.

3.2.2 Time series Imputation

The standard practice to handle missing data is filling the missing information, a process called

imputation. Simple interpolation alternatives include replacing missing values with zeros,

the mean, the most recent value (naive), and linear interpolation. Most recent deep learning

approaches consist of Generative Adversarial Networks (GANs) and RNN-based architectures.

Some notable examples are E2gan (Luo et al., 2019), Brits (Cao et al., 2018), and NAOMI (Liu

et al., 2019). More recent approaches include the CDSI (Tashiro et al., 2021) model, a score-based

diffusion auto-regressive architecture that produces a distribution for the imputed values.

3.2.3 Alternating back-propagation

The method we propose to infer latent vectors is inspired by the Alternating back-propagation

algorithm (ABP) for Generative models (Han et al., 2017). The key idea of this algorithm is to

sample latent vectors from the posterior distribution with MCMC methods and train a Generative

model by maximizing the observed likelihood directly. Generative models trained with ABP do

not need an encoder, such as Variational Autoencoders (VAE), or Discriminator networks, such

as GANs. Some recent work extended the original architecture with energy-based models for

Computer Vision (Pang et al., 2020) and LSTM networks for text generation (Pang et al., 2021).

3.3 Notation and Problem definition

We introduce a notation that we believe is lighter than the standard notation while being

intuitive and formally correct. Let Y ∈ RM×T
be a multivariate time series with M features and
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T timestamps. Let Ya:b ∈ RM×(b−a)
be the observed values for the interval [a, b), that is, Y0:t is

the set of t observations of Y from timestamp 0 to timestamp t− 1 while Yt:t+H is the set of

H observations of Y from timestamp t to timestamp t+H − 1. Let ym,t ∈ R be the value of

feature m at timestamp t. Finally, let M ∈ {0, 1}M×T
be the observation mask indicating data

availability.

The multivariate point forecasting task comprises predicting the future values of a multi-

variate time series sequence based on past observations. The task of a forecasting model at

timestamp t is to predict the future H values, denoted by Ŷt:t+H , based on the previous history

Y0:t. The imputation task, at a timestamp t, consists of recovering historic missing values in

Y0:t from available values.

We evaluate the performance for both tasks with two common metrics, mean squared error

(MSE) and mean absolute error (MAE), given by equation 3.1 (Hyndman and Athanasopoulos,

2018a).

MSE =
1

MH

H−1∑
h=0

M∑
m=1

(ym,t+h − ŷm,t+h)
2 MAE =

1

MH

H−1∑
h=0

M∑
m=1

|ym,t+h − ŷm,t+h| (3.1)

3.4 Methodology

Temporal Inference Networks are composed of three major components: the Latent Factors
Inference procedure, a Temporal Dynamic Module (TDM), and the Generator network,Gθ. Details

and motivations of each component are presented in the following subsections. The core idea of

TIN is to generate multivariate time series windows of size sw = L+H from a latent vector

z ∈ Rd
. The window comprises the reference window of size L, and the forecast window of size

H . The model infers the optimal latent vector by minimizing the reconstruction error on the

available values of the reference window, Yt−L:t. By generating the complete window, TIN can

impute missing data in the reference window and forecast future values, Ŷt:t+H . The overall

architecture, with a Convolution Network as a Generator, is illustrated in Figure 3.2. The main

steps are given by:

Ŷt−L:t+H = [Ŷt−L:t, Ŷt:t+H ] = Gθ(E) (3.2)

E = TDM(z∗) (3.3)

where z∗ is the optimal inferred latent vector, given by:

z∗ = argminz L(Yt−L:t, Ŷt−L:t(z)) (3.4)

3.4.1 Latent factors inference

The proposed latent factor inference procedure is based on the Alternating back-propagation

algorithm (ABP) (Han et al., 2017) for training generative models in computer vision (CV). A
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single generator architecture is trained by maximizing the observed likelihood directly. To

achieve this, ABP samples latent vectors from the posterior distribution P (Z|Y) using MCMC

methods such as Langevin dynamics. Generative models trained with ABP demonstrated

superior performance in recovering missing segments of images and videos over Variational

Autoencoders (VAE) and Generative Adversarial Networks (GAN).

Let y ∈ RD
be a D-dimension data vector (such as an image or time series window), TDM

the Temporal Dynamic Module, G the Generator network with parameters θ,

y = Gθ(TDM(z)) + ϵ (3.5)

where z ∼ N(0, Id), ϵ ∼ N(0, σ2ID), z ∈ Rd
are latent factors and d < D. Let {y(i), i =

1, ..., n} be n training observations. Given that TDM is a fixed set of operations and does

not contain learnable parameters, it can be excluded from the next equations for simplicity.

In Alternating Back-Propagation, parameters θ are trained by maximizing the observed log-

likelihood:

L(θ) =
n∑

i=1

log pθ(y
(i)) =

n∑
i=1

log

∫
pθ(y

(i), z(i))dz(i) (3.6)

The gradients for observation i are given by,

∂

∂θ
log pθ(y

(i)) = Epθ(z(i)|y(i))

[
∂

∂θ
log pθ(y

(i), z(i))

]
(3.7)

where pθ(z
(i)|y(i)) is the posterior distribution. Next, the expectation is approximated with

Monte Carlo by taking a single sample z∗ from the posterior distribution with approximate

Langevin Dynamics, by iterating

z
(i)
j+1 = z

(i)
j +

s

σz

∂

∂z(i)
log pθ(z

(i)
t |y(i)) +

√
2sϵj (3.8)

where ϵj ∼ N(0, ID), s is the step size, z
(i)
0 ∼ N(0, ID), and σz controls the annealing or

tempering.

We reformulate the posterior sampling as a minimization problem presented in equation 3.4,

which aims to minimize the mean square error (MSE) between the reconstruction and ground

truth y(i)
. This formulation is equivalent to the maximum a posteriori estimation (MAP) of

pθ(z
(i)|y(i)) assuming Gaussian distributions. This methodology also allows for more robust

gradient-based methods than equation 3.8. In particular, we use ADAM (Kingma and Ba, 2014)

optimizer. Given that this optimization problem is non-convex, converging to the global minima

is not guaranteed. We perform a bagging procedure (Breiman, 1996) to produce more stable

reconstruction by inferring multiple latent vectors with different initializations z
(i)
0 , and taking

the median as the final forecast. Figure 3.1 demonstrates how TIN-CNN’s output evolves during

the inference of z. Section 3.4.4 presents how TIN-CNN is trained by alternating the inference

and parameter learning steps.
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Temporal Inference Networks, relying on latent factor inference, have two key properties:

(i) the Generator model does not contain any operation between parameters and historical

values (see Figure 3.2), and (ii) the forecast is not fixed after the model is trained, the model will

iterate different forecasts adapting it to match the latest dynamics on the reference window.

These properties improve the model’s robustness to missing data, as the latent factors are not a

direct function of the incomplete inputs. Additionally, the reconstruction loss is masked only to

consider available data points, and therefore latent factors correspond to the MAP estimation of

the posterior conditional on the observed values, pθ(z
(i)|y(i)

o ). When the reference window has

missing values, the latent factors are inferred following:

z∗ = argminz L(Mt−L:t ◦Yt−L:t,Mt−L:t ◦ Ŷt−L:t(z))

where ◦ is the element-wise matrix multiplication. As demonstrated in the experimental

section results in Tables 3.1 and 3.3, and in congruity with previous studies in CV and NLP such

as (Han et al., 2017; Pang et al., 2020), inferring latent vectors provides superior robustness to

missing data.

3.4.2 Temporal Dynamic Module

The previous procedure allows the model to encode the characteristics of a time series window in

latent factors z. Time series data is characterized by exhibiting temporal dependencies between

consecutive observations. The Temporal Dynamic Module (TDM) is proposed to endow the

learned representation with temporal dynamics in the form of an embedding E ∈ Rd×dt
, where

d is the number of elements, and dt is the temporal length. This temporal embedding imposes

strict temporal dependencies along the reference window and with the forecasting window,

allowing the model to better impute and forecast unobserved regions of the sequence. The

embedding E is passed as input to the Generator to produce the final output.

The TDM module does not contain learnable parameters. Instead, it enforces temporal

dynamics with a predefined set of d template functions, forming a library B ∈ Rd×dt
. The library

includes patterns commonly found in time series: trends, represented by polynomial functions,

and seasonalities, by harmonic functions. The final library is the row-wise concatenation of the

three following matrices:

Btrd
i,t = ti , for i ∈ {0, ..., p}, t ∈ {0, ..., dt}

Bcos
i,t = cos(2πit), for i ∈ {1, ..., sw

2
}, t ∈ {0, ..., dt}

Bsin
i,t = sin(2πit), for i ∈ {1, ..., sw

2
}, t ∈ {0, ..., dt}

(3.9)

where p is a hyperparameter controlling the polynomial basis’s max degree. The final size of

the basis d is equal to sw + p+ 1, and we set dt =
sw
2

. Finally, E is composed by relating one

element of z with a template function. The i-th row of E is then given by,

Ei,: = z∗iBi,: (3.10)
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Figure 3.2: TIN-CNN architecture. Latent factors z are inferred with Gradient Descent methods,

minimizing the reconstruction error on the reference window. The TDM encodes shared temporal

dynamics into Fourier waves and polynomial functions. The Convolution Network generates the time

series window by sequentially mixing the embedding components and refining the output.

The temporal embedding E can also be motivated as a latent space spectral decomposition (LSSD)

that encodes shared temporal dynamics, as the latent vector z∗ selects the relevant trend and

frequency bands for the current window. The principle of encoding temporal dynamics in

template functions is inspired by previous work on signal processing to synthesize and generate

audio (Engel et al., 2020; Shan et al., 2022). The NBEATS (Oreshkin et al., 2019) contains a similar

interpretable basis expansion component, but it is used as a final layer to decompose the final

forecast.

3.4.3 Generator Network

The final component of TIN is the Generator (Decoder) Network, which will produce the

forecast and reconstruction of the reference window Ŷt−L:t+H from the temporal embedding

E. The Generator contains all the trainable parameters of the model, which are fixed after the

model is trained. The general TIN framework is compatible with different architectures. In

this work, we propose using a Top-Down Convolution Network (CNN), given its remarkable

capability to generate highly complex objects by modeling interactions between channels and

features. A diagram of the CNN is presented in Figure 3.2, and additional details and ablation

studies are presented in Appendix B.2. We referred to the particular TIN network with CNN

generator as TIN-CNN.

3.4.4 Training procedure

Each training iteration consists of two steps: the inference step and the learning step. During the

inference step, the optimal latent vector z∗ is inferred, solving the optimization problem given in

equation 3.4 with the current parameters θ. During the learning step, the latent vector is used as
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(c) Informer

Figure 3.3: Forecasts for five feature of Simulated7 with TIN-CNN, NHITS, and Informer, for 80%

missing data (missing in grey). The forecast horizon is 24, produced in a rolling window strategy. Full

forecasts for all baseline models are included in Appendix B.7.

the input to the Generator, and the parameters θ are updated using ADAM optimizer (Kingma

and Ba, 2014). For each iteration, we sample a small batch (with replacement) of windows

Yt:t+sw from the training data, each starting at a random timestamp t. Each sampled observation

is first normalized with the mean and standard deviation on the reference window to decouple

the scale and patterns (the output is scaled back before evaluation). The full training procedure

is presented in Appendix B.5.

The computational cost is one potential drawback of relying on the inference process for

finding optimal latent factors. We tackle this in several ways. First, by using gradient descent

methods to solve 3.4, we can use automatic differentiation libraries to compute gradients ef-

ficiently. Second, backpropagation is parallelizable between windows since the forecasts are

independent. Finally, during training, we persist the optimal latent vector to future iterations.

For a given window starting in t, the final latent vector is stored and used as a warm start when

it is sampled again, considerably reducing the number of iterations. We discuss training times

and memory complexity in section 3.5.

3.5 Experiments

We base our experimental setting, benchmarks, train/validation/test splits, and data processing

on previous works on multivariate forecasting (Zhou et al., 2020; Wu et al., 2021; Challu et al.,

2023b).

3.5.1 Datasets

Models are evaluated on synthetic data and five benchmark datasets commonly used in the

forecasting literature, comprising various applications and domains. All datasets are normalized

with the mean and standard deviation computed on the train set. We present summary statistics

in Appendix B.2.
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Simulated7 is a synthetic multivariate dataset. Each feature is generated as the sum of

two cosines with different frequencies and small Gaussian noise; more details are presented

in Appendix B.3. The Influenza-like illness (ILI) dataset contains the weekly proportion of

patients with influenza-like symptoms in the US, reported by the Centers for Disease Control and

Prevention, from 2002 to 2021. Exchange reports the daily exchange rates of eight currencies

relative to the US dollar from 1990 to 2016. Solar dataset contains the hourly photo-voltaic pro-

duction of 32 solar stations in Wisconsin during 2016. Electricity Transformer Temperature
(ETTm2) dataset has eight sensor measurements of an electricity transformer in China from

July 2016 to July 2018. Weather contains 21 meteorological conditions recorded at the German

Max Planck Biogeochemistry Institute in 2021.

3.5.2 Training and Evaluation setup

Models are trained on the training set comprising the earliest history of each dataset. Our

experimental setting extends the standard practice of using the default configuration for baselines.

We select the optimal hyperparameters for all models (including baselines) on each dataset

and occlusion percentage based on the performance, measured by MSE, on the validation set

using a Bayesian optimization algorithm, HYPEROPT (Bergstra et al., 2011). The complete list

of hyperparameters explored is included in Appendix B.4. We repeated the experiment with

different random seeds for HYPEROPT five times and reported average performance. We report

standard deviations in Appendix B.9. We ran the experiments on an AWS g3.4xlarge EC2

instance with NVIDIA Tesla M60 GPUs.

We compare our approach against univariate and multivariate SoTA based on different

architectures: Transformers, feed-forward networks (MLP), Graph Neural Networks (GNN),

and Recurrent Neural Networks (RNN). For Transformers, we include the PatchTST (Nie et al.,

2022), FEDformer(Zhou et al., 2022b), Informer (Zhou et al., 2020), and Autoformer(Wu

et al., 2021); for MLP, the univariate NHITS (Challu et al., 2023b) and N-BEATS (Oreshkin et al.,

2019) models (combined in NHITS column); for GNN the StemGNN(Cao et al., 2020), lastly, we

include a univariate RNN with dilations (Chang et al., 2017). Some baselines are only included

in Appendix B.9 due to limited space.

One standard practice to handle missing data is first to recover missing values with an

imputation model before training and predicting with the forecasting model. We include in

the comparison two pipelines, CSDI+NHITS and CSDI+PatchTST, which first use a SoTA

imputation diffusion-based model, CSDI(Tashiro et al., 2021), to recover missing values. These

baselines comprise the current gold standard for handling missing data by combining SoTA

approaches from both literatures.

3.5.3 Missing data setup

We present a new experimental setting for testing the models’ robustness to missing data based

on classic occlusion experiments in Computer Vision. We parameterize the experiments with

the size of missing segments s and the occlusion probability po. First, the time series is divided
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Table 3.1: Main forecasting accuracy results on benchmark datasets with different proportions of missing

values (po), forecasting horizon of 24 timestamps, lower scores are better. Metrics are averaged over five

runs, best model highlighted in bold. We report standard deviations in Appendix JB.9

TIN-CNN(M) CSDI+NHITS CSDI+PatchTST NHITS (U) PatchTST (U) Informer (M) Autoformer (M) StemGNN (M)

po MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

S
i
m

u
l
a
t
e
d

7

0.0 0.004 0.041 - - - - 0.001 0.015 0.004 0.043 0.008 0.079 0.017 0.096 0.036 0.122

0.2 0.009 0.081 0.010 0.093 0.082 0.236 0.012 0.176 0.162 0.291 0.071 0.237 0.319 0.430 0.097 0.266

0.4 0.011 0.073 0.018 0.121 0.123 0.341 0.022 0.213 0.368 0.465 0.095 0.242 0.591 0.612 0.181 0.385

0.6 0.018 0.100 0.095 0.277 0.196 0.394 0.133 0.338 0.479 0.502 0.231 0.380 0.752 0.994 0.362 0.488

0.8 0.023 0.127 0.216 0.323 0.395 0.470 0.365 0.439 0.515 0.596 0.372 0.478 0.925 1.106 0.436 0.614

I
L

I

0.0 0.724 0.557 - - - - 1.379 0.762 1.228 0.730 4.265 1.329 2.249 0.967 4.013 1.437

0.2 1.153 0.662 1.946 0.901 1.837 0.894 2.028 0.933 2.737 1.102 3.624 1.127 3.250 1.292 4.372 1.503

0.4 1.646 0.793 3.110 1.142 2.837 1.137 3.248 1.134 4.180 1.267 3.908 1.351 4.308 1.419 4.752 1.694

0.6 2.453 1.012 3.552 1.364 3.409 1.285 3.871 1.257 4.355 1.449 3.991 1.277 4.571 1.515 5.170 1.863

0.8 3.136 1.139 3.878 1.293 4.126 1.377 5.102 1.451 5.676 1.647 4.180 1.363 4.745 1.536 5.337 1.836

E
x
c
h

a
n

g
e 0.0 0.048 0.157 - - - - 0.031 0.102 0.024 0.100 0.472 0.534 0.049 0.167 0.102 0.251

0.2 0.091 0.223 0.072 0.208 0.093 0.230 0.295 0.342 0.362 0.498 1.013 0.772 0.758 0.523 1.021 0.599

0.4 0.158 0.292 0.163 0.313 0.160 0.311 0.321 0.534 1.057 0.590 1.162 0.905 0.782 0.606 0.826 0.608

0.6 0.367 0.418 0.492 0.661 0.503 0.692 0.549 0.745 1.451 0.925 1.564 0.932 1.346 0.849 1.991 1.002

0.8 1.125 0.785 1.308 0.860 1.217 0.812 1.792 1.188 2.890 1.302 2.530 1.281 2.520 1.231 2.778 1.318

S
o

l
a
r

0.0 0.007 0.054 - - - - 0.008 0.061 0.008 0.060 0.011 0.065 0.018 0.095 0.015 0.077

0.2 0.012 0.058 0.015 0.060 0.017 0.075 0.016 0.063 0.018 0.079 0.016 0.083 0.025 0.116 0.016 0.084

0.4 0.012 0.062 0.017 0.069 0.021 0.082 0.017 0.068 0.023 0.119 0.020 0.102 0.023 0.118 0.023 0.103

0.6 0.013 0.068 0.020 0.071 0.022 0.090 0.022 0.075 0.025 0.126 0.021 0.107 0.027 0.130 0.031 0.115

0.8 0.014 0.072 0.025 0.089 0.025 0.103 0.025 0.089 0.035 0.148 0.035 0.156 0.036 0.127 0.065 0.192

E
T

T
m

2

0.0 0.136 0.212 - - - - 0.116 0.203 0.107 0.202 0.366 0.462 0.171 0.275 0.154 0.273

0.2 0.155 0.260 0.145 0.226 0.140 0.221 0.656 0.420 0.542 0.492 0.895 0.704 0.512 0.450 0.963 0.581

0.4 0.228 0.316 0.211 0.282 0.200 0.274 1.191 0.637 1.154 0.631 0.923 0.679 1.078 0.683 1.542 0.795

0.6 0.500 0.442 0.563 0.460 0.535 0.458 1.976 0.918 1.763 1.002 1.784 0.999 1.643 0.891 2.151 0.978

0.8 0.725 0.528 0.986 0.624 0.801 0.593 2.019 1.230 2.315 1.071 1.982 1.115 1.992 1.062 2.595 1.162

W
e
a
t
h

e
r 0.0 0.112 0.193 - - - - 0.109 0.127 0.131 0.124 0.218 0.283 0.186 0.263 0.116 0.152

0.2 0.154 0.218 0.148 0.155 0.163 0.165 0.181 0.205 0.190 0.233 0.287 0.350 0.324 0.389 0.179 0.223

0.4 0.205 0.269 0.216 0.283 0.229 0.297 0.264 0.279 0.292 0.308 0.320 0.385 3.105 1.456 0.296 0.311

0.6 0.329 0.387 0.417 0.412 0.431 0.454 0.420 0.414 0.486 0.501 0.761 0.628 3.772 1.660 0.495 0.569

0.8 0.439 0.463 0.506 0.550 0.509 0.546 0.517 0.503 0.531 0.517 0.915 0.889 4.204 1.859 0.760 0.702

into disjoint segments of length s. Second, each feature m in each segment is occluded with

probability po. We repeat the experiment with different probabilities: 0% (no missing values),

20%, 40%, 60%, and 80%. The size of segments s is fixed at ten timestamps for ILI and at 100 for

all other datasets. Figure 3.3 shows an example of the setting for Simulated7 with 80% missing

data (occluded data in grey).

3.5.4 Key results

Forecasting accuracy on full data. TIN-CNN achieves SoTA performance on settings with

full data, outperforming all multivariate models consistently across all datasets. TIN-CNN is

also the only multivariate approach to improve over the recent NHITSand PatchTSTmodels

in several datasets.

Forecasting accuracy with missing data. While all models perform similarly well on

Simulated7 with full data, the accuracy of baselines degrades as the missing data increases. On

the contrary, as seen in Figure 3.3 (a), our method can produce accurate forecasts even with 80%

of missing values. This controlled experiment allows for isolating the effects of missing data

on the models’ performance, demonstrating that SoTA forecasting methods failed to accurately

forecast simple and predictable time series. Appendix B.8 demonstrates how TIN-CNN is

robust to changes over time of the missing data regime. The superior robustness of TIN-CNN
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Table 3.2: Imputation accuracy on the test set for TIN and baselines with different proportion of missing

data (po). Lower scores are better, best model highlighted in bold.

TIN-CNN CSDI Mean Naive Linear

po MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Simulated7

0.2 0.008 0.070 0.062 0.184 0.535 0.642 0.188 0.344 0.069 0.213

0.6 0.022 0.116 0.218 0.334 0.551 0.656 0.468 0.518 0.225 0.341

Solar

0.2 0.004 0.042 0.022 0.096 0.038 0.182 0.052 0.139 0.032 0.116

0.6 0.006 0.048 0.034 0.103 0.038 0.182 0.056 0.145 0.039 0.128

Exchange

0.2 0.018 0.058 0.045 0.093 1.560 1.002 0.071 0.105 0.023 0.055
0.6 0.035 0.084 0.101 0.196 1.573 1.010 0.099 0.138 0.042 0.089

ILI

0.2 0.592 0.603 2.153 0.903 4.085 1.412 1.878 0.871 0.630 0.642

0.6 2.568 1.349 5.131 1.508 7.351 1.880 7.840 1.895 7.245 1.605
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Figure 3.4: Memory efficiency and train time analysis on ETTm2. Memory efficiency is measured

as the number of parameters; train time includes the complete training procedure. We use the best

hyperparameter configuration for each model based on model accuracy.

to missing values is evident across all real datasets, with the relative performance of our method

improving with the proportion of missing data. For example, with 80% of the data occluded, the

average MSE across datasets is 48% lower than the NHITS. Finally, while adding CSDI to impute

missing values improves the performance of NHITS and PatchTST, TIN-CNN consistently

outperforms both pipelines.

Imputation accuracy. Table 3.2 presents the results for the imputation task. We include a

SoTA imputation diffusion model, CSDI (Tashiro et al., 2021), and simple baselines: (i) imputation

with the mean of each feature, (ii) imputation with the last available value (Naive) and (iii) linear

interpolation between past and future available values. TIN-CNN consistently achieves the

best performance across all datasets. CSDI outperforms baselines on Simulated7 and Solar,
but its performance degrades on ILI dataset due to the distribution shift (see Appendix B.6).

Memory and time complexity. We compare the training time and memory usage as a
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TIN-CNN1 TIN-CNN2 TIN-CNN
po MSE MAE MSE MAE MSE MAE

0.0 0.691 0.461 0.237 0.283 0.213 0.251
0.2 0.839 0.623 0.382 0.328 0.310 0.284
0.4 1.412 0.666 0.492 0.427 0.449 0.341
0.6 1.952 0.974 0.916 0.620 0.752 0.467
0.8 2.541 1.082 1.547 0.859 1.126 0.579

Table 3.3: Average forecasting accuracy across five real benchmark datasets for TIN and two versions

without main components. Lower scores are better, best highlighted in bold.

function of the input size on the ETTm2 dataset in Figure 3.4, using the optimal hyperparameters.

Panel (a) shows our method has the lowest memory footprint, with up to 85% fewer parameters

than the NHITS and 69% fewer than PatchTST. With the improvements discussed in section

3.4, training times are comparable to baseline models. Appendix B.10 compares prediction times,

analyzing the performance and computation trade-off of the number of iterations for the latent

factors inference process.

Ablation studies. Finally, we test the contribution of the two new components proposed in

this work, the Latent Factors Inference and TDM. We compare TIN-CNN against two versions:

TIN-CNN1 adds a CNN encoder to map inputs to latent factors, and TIN-CNN2 keeps the

inference step but does not have the TDM. Table 3.3 presents the average performance across

the five datasets. As expected, TIN-CNN1 with the parametric encoder is not robust to missing

data, with similar performance to other SoTA models. On top of improving the performance

over TIN-CNN2, the TDM reduces the number of parameters by 70% since fewer layers are

needed to generate the complete window.

3.6 Discussion and Conclusion

Multivariate vs Univariate. Several recent studies have raised questions on the effectiveness

of multivariate forecasting models (Zeng et al., 2023; Challu et al., 2023b), as simple univariate

approaches often outperform them. We believe that our approach constitutes a significant im-

provement in multivariate architectures. TIN-CNN achieved better accuracy than multivariate

baselines in all datasets and outperformed SoTA univariate models in several cases. In particular,

we hypothesize our model improves over univariate models in Solar by leveraging Granger
causal relations (Granger, 1969) between nodes

1
. The benefits of modeling multivariate relations

are evident in scenarios with missing data, as the available features provide information to

forecast and impute missing features.

Impact of missing data. Our experiments show the performance of current SoTA fore-

casting models significantly degrades under missing data, a common setting in high-stakes

1
Panels in the east receive sunlight earlier due to the sun movement, providing useful information and current

conditions to forecast western nodes better.
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settings such as healthcare and finance. Designing robust algorithms can significantly improve

their adoption and potential benefits across multiple domains. Using imputation models to

recover missing data partially alleviates the performance degradation, but this approach also

adds complexity to pipelines and computational costs, as several models need to be trained and

maintained.

Distribution Shifts. We believe that TIN’s capability to dynamically adjust the forecasts

to the latest temporal dynamics provides additional flexibility to handle distribution shifts in the

data. TIN-CNN’s performance on ILI, which exhibits larger spikes on the test set, supports this

claim. In particular, the unconstrained latent factors can extrapolate beyond training regions

to produce forecasts with unseen patterns and scales, such as ILI’s larger spikes. We formally

define this setting and perform additional experiments in Appendix B.6. Related to this, we

believe our approach can also have applications in transfer learning. The inference procedure

will allow a pre-trained generator model to adapt the forecasts to unseen temporal patterns on

the target dataset. Exploring TIN’s transfer learning and domain adaptation capabilities can be

a promising line of research for future work.

Limitations. While our approach demonstrates improvements over the current SoTA in

several tasks and settings, we identify several limitations. Similarly to all windows-based models,

TIN-CNN can only model dynamics present within the reference window. Additionally, while

our approach can handle some forms of distribution shifts, it assumes the temporal dynamics

are constant between the reference and forecast windows. Finally, in this paper, we focused on

point forecasting and imputation tasks. Extending TIN to produce probabilistic predictions will

be explored in future work.

This chapter presents Temporal Inference Networks, a family of neural models for simultaneous

forecasting and imputation of time series. A TIN network consists of three components: the

Latent Factors Inference procedure, a Temporal DynamicModule, and the Generator. The Generator

generates complete time series windows from latent factors, interpolating missing data and

forecasting future values. The temporal latent factors are inferred from the first two components

by matching the Generator’s output on past observations. We compare the accuracy of our

method against SoTA models from both forecasting and interpolation literature on several

benchmarks. TIN-CNN achieves SoTA on both tasks simultaneously, with comparable training

times and as much as 92% fewer parameters.
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Part II

Scalable and Interpretable Multi-step

Forecasting

The impressive accuracy of deep learning models in the long-horizon multi-step

forecasting task is usually accompanied by high computational cost, given that

modeling long temporal dependencies requires complex models and longer inputs.

The first chapter presents the NHITS, a novel model with hierarchical interpola-

tion and multi-rate sampling techniques to decompose the forecast in frequency

bands, extending on the classic Fourier decomposition. The second chapter presents

multivariate extensions with exogenous covariates to enhance forecasting accuracy.

The proposed methods are tested in two important domains: energy and healthcare.
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Chapter 4
NHITS: Long-Horizon Multi-Step

Forecasting

4.1 Motivation

The recent advancements in neural forecasting methods have steadily improved the performance

and capabilities of forecasting systems. Machine learning methods won recent large-scale com-

petitions, such as the M4 (Makridakis et al., 2020), improving over classic statistical methods.

However, their impressive accuracy is usually accompanied by a drastic increase in computa-

tional cost. This increase is exacerbated in long-horizon forecasting since accurately predicting

hundreds of timestamps requires modeling longer temporal dependencies, which in turn requires

longer inputs. Current architectures scale poorly with the input and output dimensionality.

Designing accurate and efficient methods is essential for many applications, particularly in

domains where computational resources are constrained. To this end, this chapter proposes

NHITS, a novel global model with hierarchical interpolation and multi-rate sampling techniques

to decompose the forecast in frequency bands, which achieves SoTA performance in several

benchmark datasets with a fraction of the computational cost.

Long-horizon multi-step forecasting is challenging due to the computational complexity

and performance degradation of modeling longer temporal dependencies. Most of the latest

academic work has focused on transformer-based models, given their capabilities to automatically

select relevant features and timestamps among large input sequences. However, transformers

are inherently large models and expensive to train. Some recent work has questioned using

transformer-based models for time series, claiming the additional computational cost is not

worth the small accuracy gains (Zhou et al., 2022a; Zeng et al., 2022).

A popular strategy of many forecasting models is to decompose the time series represen-

tations or predictions based on interpretable definitions for humans. These decompositions

can have multiple benefits: incorporating domain knowledge in the form of inductive bias,

simplifying architectures, reducing parameters, and producing interpretable forecasts. The most

common decomposition is the trend and seasonal components (Hyndman and Athanasopoulos,
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2018b). For example, the NBEATS (Oreshkin et al., 2020) learns projections to a pre-defined

basis of polynomial and harmonic functions, and the ESRNN (Smyl, 2019) uses the classic

Holt-Winters (Holt, 1957) model to deseasonalize and standardize the time series automatically.

A separate popular approach is decomposing the time series by frequency, incorporating Fourier

transforms in the architecture. Some examples are Fredo (Sun and Boning, 2022), FEDFormer

(Zhou et al., 2022b), and ETSFormer (Woo et al., 2022a). One limitation of current methods is

they assume constant dynamics along a frequency band.

The contributions are summarized below:

1. Multi-Rate Data Sampling: incorporate sub-sampling layers in front of fully connected

blocks, significantly reducing the memory footprint and the amount of computation

needed while maintaining the ability to model long-range dependencies.

2. Hierarchical Interpolation: to enforce the smoothness of the multi-step predictions

by reducing the dimensionality of the neural network’s prediction and matching its time

scale with that of the final output via multi-scale hierarchical interpolation. This novel

technique is not unique to the proposed model and can be incorporated into different

architectures.

3. NHITS architecture: hierarchically synchronizing the input sampling rate with the scale

of output interpolation across blocks, which induces each block to specialize in forecasting

its own frequency band of the time series signal.

4. State-of-the-art results on six large-scale benchmark datasets from the long-horizon

forecasting literature: electricity transformer temperature, exchange rate, electricity con-

sumption, San Francisco Bay area highway traffic, weather, and influenza-like illness.

4.2 Related Work

4.2.1 Multi-step forecasting

Multi-step forecasting consists of predicting a sequence of future values of the target time series.

Two classic strategies for producing multi-step forecasts are iterating one-step-ahead models,

named recursive strategy, and allocating separate models for each forecast horizon, named direct
strategy. Several recent studies, such as (Atiya and Taieb, 2016), demonstrated the direct method

achieves lower bias by avoiding error accumulation through the forecast horizon. However,

this approach usually has a larger variance due to the increased number of parameters. The

high expressivity of deep learning approaches allowed for a third strategy: a single large model

simultaneously produces forecasts for all steps. This approach achieves a better balance between

variance and bias by also avoiding error accumulation while leveraging shared parameters.

4.2.2 Long-horizon forecasting

Long-horizon forecasting is a case of multi-step forecasting where the predicted sequence

spans hundreds or thousands of timestamps. The recent surge in long-horizon forecasting
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Figure 4.1: (a) The computational costs in time and memory (b) and mean absolute errors (MAE) of

the predictions of a high capacity fully connected model exhibit evident deterioration with growing

forecast horizons. (c) Specializing a flexible model’s outputs in the different signal frequencies through

hierarchical interpolation combined with multi-rate input processing offers a solution.

methods originated from the Informer (Zhou et al., 2020) work, which proposed ProbSparse,

an efficient attention mechanism with sparse query approximation to achieve O(L log L) in

time complexity. After the initial success of the Informer, many other transformer-based

approaches have been proposed to further reduce computational complexity and improve

accuracy. Some examples include the Autoformer (Wu et al., 2021), ETSformer (Woo

et al., 2022a), and FEDformer (Zhou et al., 2022b).

4.2.3 Multi-rate sampling and interpolation

The earliest forms of multi-rate sampling for time series forecasting correspond to the mixed data
sampling regression (MIDAS; Ghysels et al. 2007). The regression model in MIDAS incorporates

input time series data sampled at different frequencies to extract relevant information in higher

frequencies efficiently. The multi-rate sampling technique proposed in the approach is based

on the pooling layers commonly used in Convolution Neural Networks (CNN) for Computer

Vision (CV) (Krizhevsky et al., 2017). In time series forecasting, interpolation has a wide range

of applications, from completing unevenly sampled data and noise filters (Chow and Lin, 1971;
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Fernandez, 1981; Rubanova et al., 2019) to fine-grained quantile-regressions with recurrent

networks (Gasthaus et al., 2019). To my knowledge, this work is the first approach to use

temporal interpolation to induce multi-scale forecasts.

4.3 Methodology

The method extends the Neural Basis Expansion Analysis approach (NBEATS; Oreshkin et al.

2020) in several important respects, making it more accurate and computationally efficient,

especially in the context of long-horizon forecasting. In essence, it uses multi-rate sampling of

the input signal and multi-scale synthesis of the forecast, resulting in a hierarchical construction

of the forecast, greatly reducing computational requirements and improving forecasting accuracy.

Fig. 4.2 presents a high-level diagram and main principles of operation.

Similarly to NBEATS, NHITS performs local nonlinear projections onto basis functions

across multiple blocks. Each block consists of a multilayer perceptron (MLP), which learns to

produce coefficients for the backcast and forecast outputs of its basis. The backcast output is

used to clean the inputs of subsequent blocks, while the forecasts are summed to compose the

final prediction. The blocks are grouped in stacks, each specialized in learning a different data

characteristic using a different set of basis functions. The overall network input, yt−L:t, consists

of L lags.

NHITS is composed of S stacks, B blocks each. Each block contains an MLP predicting

forward and backward basis coefficients. The next subsections describe the novel components of

the architecture. Note that the s stack index is not included for brevity in the following section.

4.3.1 Multi-Rate Signal Sampling

At the input to each block ℓ, we propose to use a MaxPool layer with kernel size kℓ to help it

focus on analyzing components of its input with a specific scale. Larger kℓ will tend to cut more

high-frequency/small-time-scale components from the input of the MLP, forcing the block to

focus on analyzing large-scale or low-frequency content. We call this multi-rate signal sampling,

referring to the fact that the MLP in each block faces a different effective input signal sampling

rate. Intuitively, this helps the blocks with larger pooling kernel size kℓ focus on analyzing

large-scale components critical for producing consistent long-horizon forecasts.

Additionally, multi-rate processing reduces the width of the MLP input for most blocks,

limiting the memory footprint and the amount of computation and reducing the number of

learnable parameters, hence alleviating the effects of overfitting while maintaining the original

receptive field. Given block ℓ input yt−L:t,ℓ (the input to the first block ℓ = 1 is the network-wide

input, yt−L:t,1 ≡ yt−L:t), this operation can be formalized as follows:

y
(p)
t−L:t,ℓ = MaxPool (yt−L:t,ℓ, kℓ) (4.1)
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Figure 4.2: NHITS architecture. The model is composed of several MLPs with ReLU nonlinearities. Blocks

are connected via doubly residual stacking principle with the backcast ỹt−L:t,ℓ and forecast ŷt+1:t+H,ℓ

outputs of the ℓ-th block. Multi-rate input pooling, hierarchical interpolation, and backcast residual

connections induce the specialization of the additive predictions in different signal bands, reducing

memory footprint and compute time and improving architecture parsimony and accuracy.

4.3.2 Non-Linear Regression

Following subsampling, block ℓ looks at its input and non-linearly regresses forward θfℓ and

backward θbℓ interpolation MLP coefficients that learns hidden vector hℓ ∈ RNh
, which is then

linearly projected:

hℓ = MLPℓ

(
y
(p)
t−L:t,ℓ

)
θfℓ = LINEARf (hℓ) θbℓ = LINEARb (hℓ)

(4.2)

The coefficients are then used to synthesize backcast ỹt−L:t,ℓ and forecast ŷt+1:t+H,ℓ outputs of

the block, via the process described below.

4.3.3 Hierarchical Interpolation

In most multi-horizon forecasting models, the neural network prediction’s cardinality equals

the horizon’s dimensionality, H . For example, in NBEATS-I |θfℓ | = H ; in Transformer-

based models, decoder attention layer cross-correlates H output embeddings with L encoded

input embeddings (L tends to grow with growing H). This leads to quick inflation in compute

requirements and unnecessary explosion in model expressiveness as horizon H increases.

We propose to use temporal interpolation to combat these issues. We define the dimensionality

of the interpolation coefficients in terms of the expressiveness ratio rℓ that controls the number
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Figure 4.3: NHITS composes its predictions hierarchically using blocks specializing on different fre-

quencies, through expressiveness ratios, and interpolation. The coefficients are locally determined along

the horizon, allowing NHITS to reconstruct non-periodic/stationary signals beyond constant Fourier

transform.

of parameters per unit of output time, |θfℓ | = ⌈rℓH⌉. To recover the original sampling rate and

predict all H points in the horizon, we use temporal interpolation via the interpolation function

g:

ŷτ,ℓ = g(τ, θfℓ ), ∀τ ∈ {t+ 1, . . . , t+H},
ỹτ,ℓ = g(τ, θbℓ), ∀τ ∈ {t− L, . . . , t}.

(4.3)

Interpolation can vary in smoothness, g ∈ C0, C1, C2. In Appendix C.7, we explore the nearest

neighbor, piece-wise linear, and cubic alternatives. For concreteness, the linear interpolator

g ∈ C1, along with the time partition T = {t + 1, t + 1 + 1/rℓ, . . . , t + H − 1/rℓ, t + H}, is

defined as

g(τ, θ) = θ[t1] +

(
θ[t2]− θ[t1]
t2 − t1

)
(τ − t1)

t1 = arg min
t∈T :t≤τ

τ − t, t2 = t1 + 1/rℓ.
(4.4)

The hierarchical interpolation principle is implemented by distributing expressiveness ratios

across blocks in a manner synchronized with multi-rate sampling. Blocks closer to the input

have smaller rℓ and larger kℓ, implying that input blocks generate low-granularity signals via

more aggressive interpolation, being also forced to look at more aggressively sub-sampled

(and smoothed) signals. The resulting hierarchical forecast ŷt+1:t+H is assembled by summing

the outputs of all blocks, essentially composing it out of interpolations at different time-scale

hierarchy levels.

43



Since each block specializes in its own scale of input and output signal, this induces a clearly

structured hierarchy of interpolation granularity, the intuition conveyed in Fig. 4.1 and 4.3. We

propose to use exponentially increasing expressiveness ratios to handle a wide range of frequency

bands while controlling the number of parameters. Alternatively, each stack can specialize in

modeling a different known cycle of the time series (weekly, daily, etc.) using a matching rℓ.
Finally, the backcast residual formed at the previous hierarchy scale is subtracted from the input

of the next hierarchy level to amplify the focus of the next level block on signals outside of the

band that have already been handled by the previous hierarchy members.

ŷt+1:t+H =
L∑
l=1

ŷt+1:t+H,ℓ

yt−L:t,ℓ+1 = yt−L:t,ℓ − ỹt−L:t,ℓ

Hierarchical interpolation has advantageous theoretical guarantees. We show in Appendix

C.1, that it can approximate infinitely/dense horizons. As long as the interpolating function

g is characterized by projections to informed multi-resolution functions Vw, and the forecast

relationships are smooth.

Theorem 4.1: Neural Basis Approximation.

Let a forecast mapping be Y(· | y[t−L:t]) : [0, 1]L → F , where the forecast functions

F = {Y(· | y[t−L:t]) : [0, 1]→ R} = L2([0, 1]) representing a infinite/dense horizon, are

square integrable. If the multi-resolution functions Vw = {ϕw,h(τ) = ϕ(2w(τ − h)) | w ∈
Z, h ∈ 2−w × [0, . . . , 2w]} can arbitrarily approximate L2([0, 1]). And the projection

ProjVw
(Y(τ)) varies smoothly on y[t−L:t]. Then the forecast mapping Y(· | y[t−L:t]) can be

arbitrarily approximated by a neural basis expansion learning a finite number of multi-

resolution coefficients θ̂w,h. That is ∀ϵ > 0,∫
|Y(τ | y[t−L:t])−

∑
w,h

θ̂w,h(y[t−L:t])ϕw,h(τ)|dτ ≤ ϵ (4.5)

Examples of multi-resolution functions Vw = {ϕw,h(τ) = ϕ(2w(τ − h)) | w ∈ Z, h ∈
2−w × [0, . . . , 2w]} include piece-wise constants, piece-wise linear functions and splines with

arbitrary approximation capabilities.

4.4 Experiments

The experimental setting is based on (Wu et al., 2021; Zhou et al., 2020) (NeurIPS 2021 and AAAI

2021 Best Paper Award). We first describe datasets, baselines, and metrics used to evaluate the

model quantitatively. Table 4.1 presents the key results, demonstrating the SoTA performance

44



of the method relative to existing work. We then carefully describe the details of training and

evaluation setups. We conclude the section by describing ablation studies.

Table 4.1: Main empirical results in long-horizon forecasting setup, lower scores are better. Metrics are

averaged over eight runs, best results are highlighted in bold. In Appendix E we complement the main

results with standard deviations.

NHITS (Ours) NBEATS FEDformer Autoformer Informer LogTrans Reformer DilRNN ARIMA
H. MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

2 96 0.176 0.255 0.184 0.263 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 0.343 0.401 0.225 0.301

192 0.245 0.305 0.273 0.337 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827 0.424 0.468 0.298 0.345

336 0.295 0.346 0.309 0.355 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972 0.632 1.083 0.370 0.386

720 0.401 0.413 0.411 0.425 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 2.631 1.242 0.634 0.594 0.478 0.445

EC
L

96 0.147 0.249 0.145 0.247 0.183 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402 0.233 0.927 1.220 0.814

192 0.167 0.269 0.180 0.283 0.195 0.308 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433 0.265 0.921 1.264 0.842

336 0.186 0.290 0.200 0.308 0.212 0.313 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433 0.235 0.896 1.311 0.866

720 0.243 0.340 0.266 0.362 0.231 0.343 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.420 0.322 0.890 1.364 0.891

Ex
ch

an
ge 96 0.092 0.202 0.098 0.206 0.139 0.276 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 0.383 0.45 0.296 0.214

192 0.208 0.322 0.225 0.329 0.256 0.369 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.123 0.834 1.056 0.326

336 0.301 0.403 0.493 0.482 0.426 0.464 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 1.612 1.051 2.298 0.467

720 0.798 0.596 1.108 0.804 1.090 0.800 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016 1.827 1.131 20.666 0.864

Tr
affi

c-
L 96 0.402 0.282 0.398 0.282 0.562 0.349 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423 0.580 0.308 1.997 0.924

192 0.420 0.297 0.409 0.293 0.562 0.346 0.616 0.382 0.696 0.379 0.685 0.390 0.733 0.420 0.739 0.383 2.044 0.944

336 0.448 0.313 0.449 0.318 0.570 0.323 0.622 0.337 0.777 0.420 0.733 0.408 0.742 0.420 0.804 0.419 2.096 0.960

720 0.539 0.353 0.589 0.391 0.596 0.368 0.660 0.408 0.864 0.472 0.717 0.396 0.755 0.423 0.695 0.372 2.138 0.971

W
ea
th
er 96 0.158 0.195 0.167 0.203 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596 0.193 0.245 0.217 0.258

192 0.211 0.247 0.229 0.261 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638 0.255 0.306 0.263 0.299

336 0.274 0.300 0.287 0.304 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.064 0.596 0.329 0.360 0.330 0.347

720 0.351 0.353 0.368 0.359 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792 0.521 0.495 0.425 0.405

IL
I

24 1.862 0.869 1.879 0.886 2.203 0.963 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382 4.538 1.449 5.554 1.434

36 2.071 0.934 2.210 1.018 2.272 0.976 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 3.709 1.273 6.940 1.676

48 2.134 0.932 2.440 1.088 2.209 0.981 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 3.436 1.238 7.192 1.736

60 2.137 0.968 2.547 1.057 2.545 1.061 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483 3.703 1.272 6.648 1.656

4.4.1 Datasets

All large-scale datasets used in the empirical studies are publicly available and have been used

in the neural forecasting literature, particularly in the context of long-horizon (Lai et al., 2017;

Zhou et al., 2019; Li et al., 2019c; Wu et al., 2021). Table A1 summarizes their characteristics.

Each set is normalized with the train data mean and standard deviation.

Electricity Transformer Temperature. The ETTm2 dataset measures an electricity

transformer from a region of a province of China, including oil temperature and variants of

load (such as high useful load and high useless load) from July 2016 to July 2018 at a fifteen-

minute frequency. Exchange-Rate. The Exchange dataset is a collection of daily exchange

rates of eight countries relative to the US dollar. The countries include Australia, UK, Canada,

Switzerland, China, Japan, New Zealand and Singapore from 1990 to 2016. Electricity. The ECL
dataset reports the fifteen-minute electricity consumption (KWh) of 321 customers from 2012 to

2014. For comparability, we aggregate it hourly. San Francisco Bay Area Highway Traffic.
This Traffic-L dataset was collected by the California Department of Transportation; it reports

road hourly occupancy rates of 862 sensors from January 2015 to December 2016. Weather.
This Weather dataset contains the 2020 year of 21 meteorological measurements recorded

every 10 minutes from the Weather Station of the Max Planck Biogeochemistry Institute in

Jena, Germany. Influenza-like illness. The ILI dataset reports weekly recorded influenza-like
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illness (ILI) patients from the Centers for Disease Control and Prevention of the United States

from 2002 to 2021. It is a ratio of ILI patients vs. the week’s total.

4.4.2 Evaluation Setup

The accuracy of the proposed approach is evaluated using mean absolute error (MAE) and mean
squared error (MSE) metrics, which are well-established in the literature (Zhou et al., 2020; Wu

et al., 2021), for varying horizon lengths H :

MSE =
1

H

t+H∑
τ=t

(yτ − ŷτ )
2 , MAE =

1

H

t+H∑
τ=t

|yτ − ŷτ | (4.6)

Note that for multivariate datasets, the NHITS forecasts each feature, and metrics are

averaged across dataset features. Since the model is univariate, each variable is predicted using

only its own history, yt−L:t, as input. Datasets are partitioned into train, validation, and test splits.

Train split is used to train model parameters, validation split is used to tune hyperparameters, and

test split is used to compute metrics reported in Table 4.1. Appendix C.3 shows partitioning into

train, validation, and test splits: seventy, ten, and twenty percent of the available observations,

respectively, with the exception of ETTm2 that uses twenty percent as validation.

4.4.3 Training and Hyperparameter Optimization

We consider a minimal search space. We tune the kernel size for multi-rate sampling from

Equation (4.1) and the number of coefficients from Equation (4.2), some matching common

seasonalities and others exponentially increasing. Additionally, we tune the random seed to

escape under-performing local minima. Details are reported in Appendix C.4.

During the hyperparameter optimization phase, we measure MAE on the validation set and

use a Bayesian optimization library (HYPEROPT; Bergstra et al. 2011), with 20 iterations. We

use the optimal configuration based on the validation loss to make predictions on the test set. We

refer to the combination of hyperparameter optimization and test prediction as a run. NHITS is

implemented in PyTorch (Paszke et al., 2019) and trained using ADAM optimizer (Kingma and

Ba, 2014), MAE loss, batch size 256 and initial learning rate of 1e-3, halved three times across

the training procedure. All the experiments were conducted on a GeForce RTX 2080 GPU.

4.4.4 Key Results

We compare NHITS to the following SoTA multivariate baselines: (1) FEDformer (Zhou

et al., 2022b), (2) Autoformer (Wu et al., 2021), (3) Informer (Zhou et al., 2020), (4)

Reformer (Kitaev et al., 2020) and (5) LogTrans (Li et al., 2019c). Additionally, we consider

the univariate baselines: (6) DilRNN (Chang et al., 2017) and (7) auto-ARIMA (Hyndman and

Khandakar, 2008).
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Figure 4.4: Computational efficiency comparison. NHITS exhibits the best training time compared to

Transformer-based and fully connected models and the smallest memory footprint.

Forecasting Accuracy. Table 4.1 summarizes the multivariate forecasting results. NHITS
outperforms the best baseline, with an average relative error decrease across datasets and hori-

zons of 14% in MAE and 16% in MSE. NHITS maintains a comparable performance to other

state-of-the-art methods for the shortest measured horizon (96/24), while for the longest mea-

sured horizon (720/60), it decreases multivariate MAE by 11% and MSE by 17%. We complement

the key results in Table 4.1, with the additional univariate forecasting experiments in Appendix

C.6, again demonstrating state-of-the-art performance against baselines.

Computational Efficiency. We measure the computational training time of NHITS,

NBEATS and Transformer-based methods in the multivariate setting and show a comparison in

Figure 4.4. The experiment monitors the whole training process for the ETTm2 dataset. We used

hyperparameters reported in (Wu et al., 2021) for the Transformer-based models. Compared to

the Transformer-based methods, NHITS is 45× faster thanAutoformer. In terms of memory,

NHITS has less than 26% of the parameters of the second-best alternative since it scales linearly

with respect to the input’s length. Compared to the original NBEATS, the proposed method

is 1.26× faster and requires only 54% of the parameters. Finally, while NHITS is a univariate

model, it has global (shared) parameters for all time series in the dataset. Just like Oreshkin et al.,

2020, the experiments (Appendix C.9) show that NHITS maintains constant parameter/training

computational complexity regarding the dataset’s size.

4.4.5 Ablation Studies

We believe the advantages of the NHITS architecture are rooted in its multi-rate hierarchical

nature. Fig. 4.5 shows a qualitative comparison of NHITS with and without hierarchical

interpolation/multi-rate sampling components. Unlike the control model, we clearly see NHITS
developing the ability to produce interpretable forecast decomposition, providing valuable

information about trends and seasonality in separate channels. Appendix C.7 presents the

decomposition for the different interpolation techniques.
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Figure 4.5: ETTm2 and 720 ahead forecasts using NHITS (left panel), NHITS with hierarchical linear

interpolation and multi-rate sampling removed (right panel). The top row shows the original signal and

the forecast. The second, third, and fourth rows show the forecast components for each stack. The last

row shows the residuals, y − ŷ. In (a), each block shows scale specialization, unlike (b), in which signals

are not interpretable.

Tab. 4.2 presents an ablation study on the individual proposed components, given by:

NHITS2 only hierarchical interpolation, NHITS3 only multi-rate sampling, NHITS4 no multi-

rate sampling or interpolation (corresponds to the original NBEATS-G (Oreshkin et al., 2020)),

finally NBEATS-I, the interpretable version of the NBEATS ((Oreshkin et al., 2020)). Tab. 4.2

clearly shows that combining both proposed components results in the best performance, em-

phasizing their complementary nature in long-horizon forecasting. The original NBEATS is

consistently worse, especially the NBEATS-I. The advantages of multi-rate sampling and in-

terpolation for long-horizon forecasting are not limited to the NHITS architecture. In Appendix

C.8, we demonstrate how adding them to a DilRNN improves its performance.

Table 4.2: Empirical evaluation of long multi-horizon multivariate forecasts for NHITS with/without

enhancements. MAE and MSE for predictions averaged over eight runs, and five datasets, the best result

is highlighted in bold, second best in blue (lower is better).

NHITS NHITS2 NHITS3 NHITS4 NBEATS-I

A
.
M

S
E

96 0.195 0.196 0.192 0.196 0.209

192 0.250 0.261 0.251 0.263 0.266

336 0.315 0.315 0.342 0.346 0.408

720 0.484 0.498 0.518 0.548 0.794

A
.
M

A
E

96 0.239 0.241 0.237 0.240 0.254

192 0.290 0.299 0.291 0.300 0.307

336 0.338 0.342 0.346 0.352 0.405

720 0.439 0.450 0.454 0.468 0.597

Additional ablation studies are reported in Appendix C.7. The MaxPool multi-rate sampling

wins over AveragePool. Linear interpolation wins over nearest neighbor and cubic. Finally

48



and most importantly, we show that the order in which hierarchical interpolation is imple-

mented matters significantly. The best configuration is to have the low-frequency/large-scale

components synthesized and removed from analysis first, followed by more fine-grained high-

frequency/intermittent signals modeling.

4.5 Discussion and Conclusion

The results indicate the complementary effectiveness of multi-rate sampling and hierarchical

interpolation for long-horizon time series forecasting. Table 4.2 indicates that these compo-

nents enforce a useful inductive bias compared to both the free-form model NHITS4 (plain

fully connected architecture) and the parametric model NBEATS-I (polynomial trend and

sinusoidal seasonality used as basis functions in two respective stacks). The latter provides

a detrimental inductive bias for long-horizon forecasting. We barely scratched the surface

in the right direction, and further progress is possible using advanced multi-scale processing

approaches in the forecasting context, motivating further research.

NHITS outperforms SoTA baselines and provides an interpretable non-linear decomposition.

Fig. 4.1 and 4.5 showcase NHITS perfectly specializing and reconstructing latent harmonic

signals from synthetic and real data, respectively. This novel interpretable decomposition can

provide insights to users, improving their confidence in high-stakes applications, such as health-

care. Finally, NHITS hierarchical interpolation is connected to Wavelet’s multi-resolution

analysis (Daubechies, 1992). Replacing the interpolation functions with orthogonal Wavelet

spaces is a possible research line.

The results in this chapter question the effectiveness of existing long-horizon multi-variate

forecasting approaches, as they are substantially outperformed by an univariate algorithm. If

these approaches underperform due to overfitting problems at the level of marginals, integrating

the proposed components with Transformer-inspired architectures is a promising research

direction. However, there is a chance that existing approaches underperform due to their inability

to integrate information from multiple variables, which clearly hints at possibly untapped

research potential. Whichever is the case, we believe these results provide a strong guidance

signal and a valuable baseline for future research in long-horizon multivariate forecasting.

This chapter presents a novel neural forecasting algorithm NHITS that combines two

complementary techniques, multi-rate input sampling, and hierarchical interpolation, to produce

drastically improved, interpretable, and computationally efficient long-horizon time series

predictions. The NHITS model, operating in the univariate regime and accepting only the

predicted time series history, significantly outperforms all previous Transformer-based multi-

variate models using an order of magnitude less computation. This sets a new baseline for all

ensuing multivariate work on six popular datasets and motivates research to use information

across variables effectively.
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Chapter 5
Multivariate extensions and applications

5.1 Incorporating Exogenous Variables for Electricity Price
Forecasting

5.1.1 Introduction

Neural networks have proven powerful and flexible, yet there are several situations where our

understanding of the model’s predictions can be as crucial as their accuracy, which constitutes

a barrier to their wider adoption. The interpretability of the algorithm’s outputs is critical

because it encourages trust in its predictions, improves our knowledge of the modeled processes,

and provides insights that can improve the method itself. Additionally, the absence of time-

dependent covariates makes these powerful models unsuitable for many applications. For

instance, Electricity Price Forecasting (EPF) is a task where exogenous covariates are fundamental

to obtaining accurate predictions.

In this chapter, we address the two mentioned limitations by extending the neural basis

expansion analysis, allowing it to incorporate temporal and static exogenous variables. We refer

to the new method as NBEATSx. The main contributions of this chapter include:

1. Incorporation of Exogenous Variables: an extension to the NBEATS model to incor-

porate time-dependent and static exogenous variables based on a convolutional encoder

to clean and learn useful information from these covariates.

2. Interpretable Time Series Signal Decomposition: the extended NBEATSx archi-

tecture allows it to decompose its predictions into the classic set of level, trend, and

seasonality and identify the effects of exogenous covariates.

3. Time Series Forecasting Comparison: the proposed method achieves state-of-the-art

performance on five EPF tasks, with accuracy improvements of almost 20% in comparison

to the original NBEATS, and up to 5% over other well-established EPF-tailored methods

(Lago et al., 2021).
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Figure 5.1: Time series forecast decomposition for electricity price day-ahead forecasts using interpretable

variants of NBEATS and NBEATSx. The fourth row presents the partial forecast of the exogenous block

with electricity load and production covariates.

5.1.2 Methodology

We propose a new deep learning module to incorporate exogenous variables, compatible with

any decomposition-based model such as the NHITS and NBEATS. The proposed method learns

a context vector Cl ∈ RNc×H
from temporal exogenous variables X ∈ RNx×L+H

with a

convolutional encoder:

Cl = TCN(X)

ŷexog
l =

Nc∑
i=1

Cl,iθ
f
l,i ≡ Clθ

f
l

(5.1)

where ŷexog
l is the partial forecast of the exogenous block, θfl ∈ RNc

are the learned co-

efficients for each context variable (see Figure 4.2), and the TCN is a Temporal Convolutional
Network (Bai et al., 2018b). The TCN encoder mixes the Nx exogenous covariates to produce the

context vector. Motivated by the NBEATS, the final forecast is produced by a basis expansion
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Table 5.1: Benchmark datasets used in the experiments. For the five electricity markets considered, we

report the test period and two covariate variables.

Market Exogenous Variable 1 Exogenous Variable 2 Test Period

NP day-ahead load day-ahead wind generation 27-12-2016 to 24-12-2018

PJM 2 day-ahead system load 2 day-ahead COMED load 27-12-2016 to 24-12-2018

EPEX-FR day-ahead load day-ahead total France generation 04-01-2015 to 31-12-2016

EPEX-BE day-ahead load day-ahead total France generation 04-01-2015 to 31-12-2016

EPEX-DE day-ahead zonal load day-ahead wind and solar generation 04-01-2016 to 31-12-2017

operation on the context vector as the learned basis.

We added the exogenous block to the original NBEATS model and tested the proposed

approach, named NBEATSx, on five electricity markets commonly used in the EPF literature as

benchmarks. NBEATSx achieved SoTA performance, improving the accuracy by 20% over the

NBEATSand by 5% over statistical and deep learning methods specialized in EPF.

Another advantage of the proposed method is interpretability. The effects of the exogenous

variables on the forecast are isolated in the exogenous block. Figure 5.1 presents the interpretable

decomposition of the NBEATSx method.

5.1.3 Experiments

Datasets. To evaluate our method’s forecasting capabilities, we consider short-term electricity

price forecasting tasks, where the objective is to predict day-ahead prices. Five major power

markets
1

are used in the empirical evaluation, all comprised of hourly observations of the

prices and two influential temporal exogenous variables that extend for 2,184 days (312 weeks,

six years). From the six years of available data for each market, we hold two years out to

test the forecasting performance of the algorithms. The length and diversity of the test sets

allow us to obtain accurate and highly comprehensive measurements of the robustness and the

generalization capabilities of the models.

Table 5.1 summarizes the key characteristics of each market. The Nord Pool electricity market

(NP), which corresponds to the Nordic countries exchange, contains the hourly prices and day-

ahead forecasts of load and wind generation. The second dataset is the Pennsylvania-New

Jersey-Maryland market in the United States (PJM), which contains hourly zonal prices in the

Commonwealth Edison (COMED) and two day-ahead forecasts of load at the system and COMED

zonal levels. The remaining three markets are obtained from the integrated European Power

Exchange (EPEX). Belgium (EPEX-BE) and France (EPEX-FR) markets share the day-ahead

forecast generation in France as covariates since it is known to be one of the best predictors for

Belgian prices (Lago et al., 2018b). Finally, the German market (EPEX-DE) contains the hourly

prices, day-ahead load forecasts, and the country-level wind and solar generation day-ahead

forecast.

1
For the sake of reproducibility, we only consider datasets that are openly accessible in the EPFtoolbox library

https://github.com/jeslago/epftoolbox (Lago et al., 2021).
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Table 5.2: Forecast accuracy measures for day-ahead electricity price predictions of ensembled models.
The ESRNN and NBEATS do not include time-dependent covariates. The smallest errors in each row are

highlighted in bold.

AR1 ESRNN NBEATS ARx1 LEARx* DNN NBEATSx-G NBEATSx-I

NP

MAE 2.26 2.09 2.08 2.01 1.74 1.68 1.58 1.62

rMAE 0.71 0.66 0.66 0.63 0.55 0.53 0.50 0.51

sMAPE 6.47 6.04 5.96 5.84 5.01 4.88 4.63 4.70

RMSE 4.08 3.89 3.94 3.71 3.36 3.32 3.16 3.27

PJM

MAE 3.83 3.59 3.49 3.53 3.01 2.86 2.91 2.90

rMAE 0.79 0.74 0.72 0.73 0.62 0.59 0.60 0.60

sMAPE 14.5 14.12 13.57 13.64 11.98 11.33 11.54 11.61

RMSE 6.24 5.83 5.64 5.74 5.13 5.04 5.02 4.84

EPEX-BE

MAE 7.2 6.96 6.84 7.19 6.14 5.87 5.95 6.11

rMAE 0.88 0.85 0.83 0.88 0.75 0.72 0.73 0.75

sMAPE 16.26 15.84 15.80 16.11 14.55 13.45 13.86 14.02

RMSE 18.62 16.84 17.13 18.07 15.97 15.97 15.76 15.80

EPEX-FR

MAE 4.65 4.65 4.74 4.56 3.98 3.87 3.81 3.79
rMAE 0.78 0.78 0.80 0.76 0.67 0.65 0.64 0.64
sMAPE 13.03 13.22 13.30 12.7 11.57 10.81 10.59 10.69

RMSE 13.89 11.83 12.01 12.94 10.68 11.87 11.50 11.25

EPEX-DE

MAE 5.74 5.60 5.31 4.36 3.61 3.41 3.31 3.29
rMAE 0.71 0.70 0.66 0.54 0.45 0.42 0.41 0.41
sMAPE 21.37 20.97 19.61 17.73 14.74 14.08 13.99 13.99
RMSE 9.63 9.09 8.99 7.38 6.51 5.93 5.72 5.65

Baselines We conducted an empirical study involving two types of Autoregressive Models
(AR1 and ARx1; (Weron, 2014)), the Lasso Estimated Auto-Regressive (LEARx; (Uniejewski

et al., 2016)), a parsimonious Deep Neural Network (DNN; (Lago et al., 2018a; Lago et al., 2021)),

the original Neural Basis Expansion Analysis without exogenous covariates (NBEATS; (Oreshkin

et al., 2020)), and the Exponential Smoothing Recurrent Neural Network (ESRNN; (Smyl, 2019)).

KeyResultsTable 5.2 summarizes the performance of the ensembled models whereNBEATSx
ensemble shows prevailing performance. It improves 18.77% on average for all metrics and

markets when compared with the original NBEATS and 20.6% when compared to ESRNN
without time-dependent covariates. For the ensembled models, NBEATSx RMSE improved

on average 4.68%, MAE improved 2.53%, rMAE improved 1.97%,and sMAPE improved 1.25%.

When comparing NBEATSx ensemble against DNN ensemble on individual markets, NBEATSx
improved by 5.38% on the NordPool market, by 2.48% on the French market, and 2.81% on the

German market. There was a non-significant difference of NBEATSx performance on PJM and

EPEX-BE markets of 0.24% and 1.1%, respectively.

5.1.4 Conclusion

This chapter presents the NBEATSx, an extension to the NBEATS model to incorporate ex-

ogenous variables. The model relies on a novel Convolutional encoder that learns a useful

representation of the exogenous variables to forecast the target time series. This encoder can be

combined with any decomposition-based model to produce an interpretable decomposition of

the marginal effects of each component.

The NBEATSx is tested on a set of benchmark datasets from the electricity price forecasting

domain, but it can be straightforwardly applied to forecasting problems in other domains. The
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qualitative evaluation shows that the interpretable configuration of NBEATSx can provide

valuable insights to the analyst, as it explains the variation of the time series by separating it

into a trend, seasonality, and exogenous components in a fashion analogous to classic time series

decomposition. At the same time, NBEATSx improves over NBEATS by nearly 20% and up to

5% over LEAR and DNN models specialized for the Electricity Price Forecasting tasks.
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5.2 Blood Glucose Forecasting with Pharmacokinetic Pri-
ors

5.2.1 Introduction

While including exogenous variables can significantly enhance prediction accuracy, as shown

in the previous chapter, there are instances in which their integration without considering

the domain knowledge yields minimal to no improvement McShinsky and Marshall, 2020;

Rubin-Falcone et al., 2020. Forecasting healthcare time series is crucial for early detection of

adverse outcomes and patient monitoring (Churpek et al., 2016; Gerry et al., 2020). Notably,

healthcare time series data are often affected by exogenous factors, such as medication, exercise,

or diet.

Leveraging the predictive power of exogenous variables presents unique challenges, es-

pecially in healthcare, where patient signals and exogenous factors often exhibit a temporal

resolution mismatch. Furthermore, while the medication dose is usually known, we cannot

directly observe the drug absorption and elimination parameters or plasma concentration of the

drug. Consequently, their impact on the predictive signal remains hidden.

This chapter showcases an extension of the NHITS model with a novel pharmacokinetic

encoder with local parameters for the blood glucose forecasting task with hidden medication

effects. In this setting, blood glucose measurements are taken every five minutes, and exogenous

variables such as carbohydrate ingestion or application of insulin are recorded as instantaneous

points in time. The encoder leverages pharmacokinetic knowledge to generate patient-specific

plasma insulin concentration profiles. Global parameters of the forecasting architecture are

shared across multiple patients Semenoglou et al., 2021, but the parameters of the encoder

are learned from the individual patient’s historical data to address inter-subject variability in

response to treatment. The main contributions are:

• Pharmacokinetic Encoder. A novel architecture module that generates plasma drug

concentration profiles to capture time-dependent medication treatment effects.

• Hybrid Global-Local Architecture. Leverage global architectures (with parameters

shared across patients) with a learnable patient-specific pharmacokinetic encoder.

• State-of-the-Art Results. Significant accuracy improvements on large-scale simulated

and real-world blood glucose forecasting datasets.

5.2.2 Related Work

Deep learning models have permeated into the field of blood glucose level prediction, outper-

forming the accuracy of classic statistical methods (Xie and Wang, 2020). Past research includes

various neural network designs ranging from Multi Layer Perceptron (MLP; Jahangir et al. 2017),

Recurrent Neural Networks (RNN; Fox et al. 2018; Rabby et al. 2021; Rubin-Falcone et al. 2022) to

Temporal Convolutional Networks (TCN; Li et al. 2019b).
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Figure 5.2: (a) Pharmacokinetic modeling of plasma insulin concentration over time. (b) Instantaneous

medication administrations are represented as sparse variables in time series data. We propose a pharma-

cokinetic encoder to effectively capture time-dependent plasma drug concentration.

Despite these advancements, two significant challenges remain. Firstly, existing architectures

struggle to effectively utilize sparse exogenous variables, as shown in Rubin-Falcone et al., 2022.

Medication and carbohydrate values are recorded as sparse values in data, which increases the

difficulty in learning the effects of treatment on blood glucose levels. Early solutions propose

adding exogenous values to the current point within an input window to replace sparse features,

as shown in Fig. 5.2. However, this sum-total approach does not model time-dependent changes

in medication. Secondly, many studies (Xie and Wang, 2020; Rubin-Falcone et al., 2022; Zaidi

et al., 2021) rely on individualized networks for each patient, with limited adoption of cross-

learning approaches that could enhance forecasting models by leveraging shared knowledge

across patients.

5.2.3 Methodology

Our proposed approach addresses both challenges in a novel hybrid global-local modeling ap-

proach that learns patient-specific pharmacokinetics to improve deep learning model capabilities

in forecasting blood glucose levels. The pharmacokinetic encoder informs the deep learning

base model of time-dependent plasma drug concentration to enable more accurate forecasting

of treatment outcomes.

The encoder C takes sparse exogenous medication variables as inputs and generates a

concentration-time profile for a specified dose, d, using the following equation:

C(t, d, k(i)a ) =
d

tk
(i)
a

√
2π

exp{− 1

2(k
(i)
a )

2 (log(t)− 1)2} (5.2)

where t is the time and k
(i)
a is the absorption rate constant for patient, i. Here, C is equivalent

to the log-normal probability density function with σ = ka and µ = 1 and a scaling factor,
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d. Concentration profiles are generated under the assumption that all insulin administrations

adhere to 100% bio-availability. As bio-availability equates to the area under the concentration

curve, the scaled curve thus integrates to the specified dose, d.

Let N be the number of subjects in the data. The absorption rate constant, ka
bolus
∈ [0, 1]Nx1

and ka
basal
∈ [0, 1]Nx1

are represented as network embedding weights. During model training,

sparse basal and bolus features are passed into the pharmacokinetic encoder along with their

respective k
(i)
a parameters, as shown in Fig. 5.3. The encoder then replaces sparse medication

features in the training window with the corresponding concentration curve, as shown in 5.2.

The values for k
(i)
a

bolus
and k

(i)
a

basal
are optimized jointly with all the models’ parameters with gradient

descent optimization.

Multiple insulin doses may occur at close intervals in an event often referred to as “insulin

stacking” as shown in Fig. 5.2. The encoder leverages a matrix, W ∈ RL×L
, where L refers to

the lag time, to perform vectorized operations that enable generating concentration curves for

multiple doses in an input window in O(1) time. Each row of W represents a time count up to

the input time, where the count shifts one-time step for each subsequent row. Concentration

curves are generated for each row of W using the dose at the corresponding time index. The

final concentration curve feature, which can reflect the impact of multiple doses, is generated by

aggregating the individual concentration curves across time steps.

W =


0 1 2 3 · · · L− 1
0 0 1 2 · · · L− 2
. . . . . . . . . . . . . . . . . .
0 0 0 0 · · · 0

 ∈ RL×L
(5.3)

x
′(i)
bolus =

L∑
t=0

C(Wt,j · f, x(i)tbolus
, k(i)abolus

) (5.4)

x
′(i)
basal =

L∑
t=0

C(Wt,j · f, x(i)tbasal
, k(i)abasal

) (5.5)

Here, x ∈ RL×1
a sparse exogenous variable, where xbolus and xbasal correspond to bolus

and basal insulin doses, respectively, f ∈ R is the frequency of the data, and x′(i) ∈ R1×L
is the

new plasma insulin concentration feature.

For each time step within the forecast horizon, H , forecasts, ŷ, are generated by the model,

fθ, as a function of concentration curves, x′, other non-medication time series, x, and static

features s,

ŷ
(i)
t:t+H = fθ(y

(i)
t−L:t, x

′(i)
t−L:t, x

(i)
t−L:t, s

(i)). (5.6)

In the proposed context, x′t−L:t consists of x′basal and x′bolus, x consists of xCHO, and s includes

patient age, weight, one-hot encoded subject identification number, and insulin pump type, if

applicable.
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Figure 5.3: Hybrid Global-Local architecture. Global architectures with parameters shared across

patients’ time series with local parameters from a patient-specific pharmacokinetic (Ph-K.) encoder.

Sparse medication dose time series are passed into the pharmacokinetic encoder and their respective ka
parameters to generate concentration curves. Concentration curves are then passed into a deep learning

model that learns relevant hidden states (hidden) and output parameters, θ̂.

5.2.4 Experiments

Evaluation The task is to forecast blood glucose levels 30 minutes into the future consistent

with prior work (Rubin-Falcone et al., 2022; Xie and Wang, 2020), based on a 10-hour history of

blood glucose, carbohydrate, insulin basal, and insulin bolus values. Trained models are used to

generate rolling window forecasts at one-step intervals. In accordance with prior work (Rubin-

Falcone et al., 2022; Xie and Wang, 2020), forecasts are evaluated using mean absolute error

(MAE), and root mean squared error (RMSE), computed across 8 trials of individually trained

models. Given the critical importance of healthcare outcomes related to blood glucose levels

exceeding or falling below safe thresholds, the model’s performance is evaluated exclusively

at time points where blood glucose levels reach or fall below certain thresholds relevant to

hypoglycemic and hyperglycemic events (i.e., ≤70 mg/dL and ≥180 mg/dL).

Simulated data An open-source python implementation of the FDA-approved UVa/Padova

Simulator (2008 version) (Xie, 2018; Visentin et al., 2016) provides clinical and biological param-

eters for 30 patients (10 adults, 10 adolescents, and 10 children) with Type-I diabetes. Clinical

parameters include information on age and weight, and biological parameters include infor-

mation on insulin-glucose kinetics, such as absorption constants. We generate 54 days of data

for each patient to match the median training set of the OhioT1DM, and approximately 9 days

for the test set. In a similar approach to (Rubin-Falcone et al., 2022), the meal schedule used

to generate simulated data was based on the Harrison-Benedict equation (Arthur Harris and

Gano Benedict, 21919) with approximately 3 meals per day and no additional snacks.

OhioT1DM 12 de-identified individuals with Type 1 diabetes are included in the OhioT1DM

2018 and 2020 datasets (Marling and Bunescu, 2020). Each patient has approximately 8 weeks of

data that includes blood glucose (mg/dL) measurements recorded with a CGM at a frequency of

5-minutes. The dataset consists of both female (n=5) and male (n=8) subjects with unspecified
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Table 5.3: Mean absolute error (MAE) computed for model predictions across all values in the forecast

horizon and only across critical values in the forecast horizon (blood glucose ≤ 70| ≥ 180)

Simulated Dataset

Model All Values Critical Values
Baseline Exogenous Baseline Exogenous

ETS 10.040 – 13.531 –

MLP 9.734 8.653 12.189 9.887

LSTM 8.731 8.372 10.863 9.996

TCN 16.772 12.234 28.913 18.122

TFT 7.788 6.762 9.664 7.828

NHITS 8.333 7.282 10.184 8.353

TFT- Sum-Total – 6.698 – 7.634

NHITS- Pharmacokinetic – 7.027 – 7.917

TFT- Pharmacokinetic – 6.466 – 7.514
OhioT1DM Dataset

ETS 10.126 – 11.781 –

MLP 10.568 10.275 11.805 11.434

LSTM 10.604 9.606 12.999 11.144

TCN 11.011 11.090 12.693 13.212

TFT 9.605 9.515 10.686 10.555

NHITS 9.234 8.954 10.436 10.117

NHITS- Sum-Total – 8.988 – 10.092

NHITS- Pharmacokinetic – 8.769 – 10.007
TFT- Pharmacokinetic – 9.492 – 10.484

ages within the ranges of 20-40, 40-60, and 60-80. Sparse exogenous features in the data include

basal rate (in units per hour), temporary basal rate (units per hour), bolus insulin (units), and

carbohydrate intake. We use the specified train and test partitions provided in the dataset. The

maximum number of test samples consistent across all patients (2691 samples) was used to

obtain equal test sets of approximately 9 days.

Key Results Table 5.3 presents the main results. The pharmacokinetic encoder significantly

improves forecasting accuracy for the top-performing deep learning model by approximately

4.4% and 2.1% for simulated and OhioT1DM datasets, respectively. For the OhioT1DM dataset,

the NHITS-Pharamacokinetic model has significantly lower MAE than the NHITS-Sparse

Exogenous model for forecasts evaluated at all values (t-test p-value: 4.44e-05) and critical values

(t-test p-value: 1.6e-2).

We showcase the efficacy of our novel hybrid global-local model in producing more accurate

forecasts than models trained per patient. Global models consistently outperform local models,

on average, for each OhioT1DM subject, as shown in Fig. 5.4. For the OhioT1DM dataset, the

hybrid global-local pharmacokinetic model achieves a significantly lower (t-test p-value: 1.29e-2)

MAE by 14.6% over patient-specific pharmacokinetic models.
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Figure 5.4: The boxplots show average MAE computed across 8 trials for global (orange) and local (blue)

models for OhioT1DM subjects. Models trained on all subject data, or global models, have lower MAE, on

average, than models trained on individual subjects or local models.

5.2.5 Other applications and extensions

The proposed pharmacokinetic encoder can be easily extended to other applications in healthcare

beyond glucose forecasting. The functions and parametrization of the encoder can be replaced

to model other phenomena, while the global-local architecture will incorporate this knowledge

and simultaneously learn general patterns and particular dynamics of each time series.

As a concrete example, it can be adapted for epidemic forecasting as follows. It is important

to forecast the onset, magnitude, and temporal evolution of outbreaks of seasonal influenza, as

this knowledge can inform preparedness and reduce the impact of this disease on the society. The

encoder described above can incorporate prior knowledge of epidemiology experts regarding the

ranges of expected dynamics of the outbreak events and the seasonal probability priors of their

occurrence, conditioned whenever possible on relevant exogenous covariates encoding societal

factors such as people’s mobility, or environmental factors such as weather. A complementary

approach would be to further improve the models by including other relevant covariates, such

as over-the-counter medication sales, search engine queries, or social media mentions, that can

inform the estimation of flu incidence rates (Farrow et al., 2015).

5.3 Conclusion

The proposed pharmacokinetic encoder enables deep learning models, such as the NHITS
and TFT, to improve their accuracy. Current models that only include sparse features may be

under-leveraging the potential utility of exogenous information. The pharmacokinetic encoder

can have multiple beneficial applications in clinical practice, such as issuing early warnings

about unexpected treatment responses or helping to characterize patient-specific treatment

effects regarding drug absorption and elimination characteristics. Characterizing patient-specific

pharmacokinetic parameters holds substantial potential for advancing the development of more

effective treatments by tailoring medication to individual patients.
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Part III

Towards Time Series Foundation Models

Transfer learning is a popular technique in machine learning that can provide

huge benefits in both performance and computational cost when solving tasks.

It has been successfully exploited in domains such as Computer Vision (CV) and

Natural Language Processing (NLP), constituting the basic principle behind the

recent foundational models. The goal of this chapter is to advance applications

of transfer learning in time series tasks, consisting of a large-scale study on the

conditions that enable the transferability of models between tasks on two aspects:

the model’s architecture and data characteristics. First, we compare state-of-the-art

models with multiple architecture types, number of parameters, forecasting strategy,

and fine-tuning steps, on source datasets of various sizes. Second, we propose a

distance metric between tasks that strongly correlates with the performance of

pre-trained models.
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Chapter 6
Transfering Neural Forecast Models

6.1 Motivation

Neural networks are renowned for their capacity to learn hierarchical representations of inputs.

They acquire higher-level features by composing simple functions across layers, learning intricate

relationships, and enabling accurate predictions. In the forecasting field, these models excel due

to their improved accuracy in large data settings and their ability to simplify the forecasting

pipelines, as shown by their success in recent competitions (Makridakis et al., 2020; Makridakis

et al., 2021) and their industry adoption (Wen et al., 2017; Lim et al., 2021b).

Despite the recent successes of neural networks in time series forecasting, their full expres-

sivity often remains underutilized in scenarios with small groups of series, and the considerable

computational costs remain an adoption barrier. Transfer learning offers a solution by pre-

training deep network models on large-scale datasets to capture expressive representations and

domain knowledge. These pre-trained models can be fine-tuned on smaller datasets, facilitating

effective generalization to specific forecasting tasks with limited data. In addition to knowledge

sharing, transfer learning also enables lightning-fast predictions at a fraction of the computa-

tional cost while significantly enhancing the models’ generalization capabilities (Yosinski et al.,

2014; Zhuang et al., 2021).

The objective of this chapter is to advance the applications of transfer learning in time series

forecasting tasks. We aim to enhance our understanding of the technique and make these tools

widely accessible. The contributions are summarized as follows:

• A Unified Model Implementation. To ensure consistent experimental settings and

facilitate direct comparisons, we introduced a unified implementation of various neural

network-based forecasting models, allowing us to control variables such as architecture

size and optimization and standardize the transfer learning tasks.

• Accessible Transfer Learning Comparison. We explore the impact of neural forecast-

ing innovations on transfer learning tasks and conduct an extensive comparative analysis

of various models and datasets with zero-shot and fine-tuning. We make the comparison

experiments’ code, along with the pre-trained models, publicly accessible.
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• Transferability’s Enabling Conditions Exploration. We document insights from

several transferability-enabling conditions. First, we focus on model-related aspects, such

as architecture, with an emphasis on the number of parameters and forecasting strategy.

Second, we propose a measure of the distance between the source and target tasks strongly

correlating with the pre-trained models’ performance.

6.2 Related Work

6.2.1 Transfer Learning Literature

Transfer learning refers to the techniques that aim to improve a model on a target domain

by transferring information or knowledge from another related training/source domain. It

has been widely studied for tabular data, computer vision, and natural language processing.

There are several different transfer-learning solutions, with data-based solutions focusing on

transferring knowledge via the distribution adjustment and transformation of data; and model-

based approaches focusing on model regularization, model ensembling, and model parameter

sharing. For a throughout review, we refer to the following surveys (Weiss et al., 2016; Zhuang

et al., 2021).

Notable examples of the distribution adjustment solutions include sample weighting strate-

gies for domain adaptation (Huang et al., 2006; Dai et al., 2007), feature transformation strategies

based on minimization of distribution differences (Shen et al., 2018) and feature mappings (Wang

et al., 2018). Notable examples of model-based approaches to transfer learning include model

parameter sharing (Yosinski et al., 2014), model consensus regularization, and model ensem-

bling (Yao and Doretto, 2010). In this work, we mostly focus on model parameter sharing, which

is the most popular transfer learning technique in neural network applications.

6.2.2 Cross and Transfer Learning Relationship

In recent years, neural forecasting models have improved over classical methods, overcoming

previous computational and accuracy limitations (Makridakis et al., 2018). This progress can

be attributed to the widespread adoption of the cross-learning technique and the use of global

models leveraging data from large collections of related time series. Notable applications include

the M4 and M5 competition top performers (Smyl, 2019; Montero-Manso et al., 2020; Oreshkin

et al., 2020) and popular industry models such as DeepAR, MQCNN, and TFT (Salinas et al.,

2020; Wen et al., 2017; Lim et al., 2021b). This success has renewed interest in industry and

academia, leading to numerous neural forecasting innovations (Längkvist et al., 2014; Benidis

et al., 2020b).

The cross-learning and transfer-learning via model parameter-sharing are closely related,

with their main differences in two key aspects. Firstly, transfer learning refers to leveraging

the pre-trained global model to different target datasets. Secondly, transfer learning offers the

flexibility to minimize the re-training procedure or entirely skip it, which is particularly suited for
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Figure 6.1: The figure shows a three-layer fully connected network predictive function. Classic forecasting

applications optimize distinct model parameters for source D(S)
and target D(T )

datasets, a) and b)

columns. Parameter-based transfer-learning leverages source dataset knowledge by using a pre-trained

model’s parameters θ
(S)
l , to initialize another model’s parameters θ

(T )
l that can specialize on a target

dataset.

small dataset applications. On the time series front, the technique’s use has been limited but has

shown very promising early results in classification (Fawaz et al., 2018), anomaly detection (Wen

and Keyes, 2019), contrastive learning pre-training (Eldele et al., 2021) and forecasting meta

learning (Oreshkin et al., 2021).

In neural forecasting applications, an immediate approach for transfer learning via model

parameter-sharing is using pre-trained neural networks that can be updated using the smaller

target dataset. The updating degree determines the scenarios, ranging from zero-shot to k-shot

and fine-tuning
1
.

6.3 Transfer Learning Notation

We now present a formal definition of transfer learning, which will be utilized throughout the

rest of the paper.

Definition 6.1

(Domain and Task). Two components define a domain, a feature space X and a marginal

probability distribution P(x), with realizations x ∈ X . A task T = {Y , f(·)} is defined

by two components, a dependent variable space Y and a predictive function f : X 7→ Y .

In the case of a simple forecasting task, the dependent variable space is Y = {y[t+1:t+H]},
which corresponds to the set of H future values of a series y at time t, and the feature space

X = {y[t−L:t]} is the set of L past observed values (lags) of the series
a
. The forecasting task

1
It is important to note that in classification settings, the k-shot category refers to the number of labeled data

on the target task; k-shot refers to the number of training iterations in the forecasting domain.
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is to learn or estimate the parameters θ in the following regression:

f(x,θ) = P
(
y[t+1:t+H]| y[t−L:t],θ

)
(6.1)

a
Note that the feature space is not restricted to autoregressive features can also include exogenous variables

predictors such as static data, past information, or information available at the time of the predictions.

Definition 6.2

(Transfer Learning). A training dataset D is defined as the set of realization pairs D =
{(x,y)| x ∈ X , y ∈ Y}. Transfer learning breaks the traditional assumption that the

training and the test/target datasets are taken from the same domain. Formally, consider

two different source and target dataset (D(S) ̸= D(T )
) along their corresponding learning

tasks; transfer-learning is the process of improving the predictive function f (T )(·) by using

information directly from the source domain D(S)
or indirectly through f (S)(·).

In this work, we consider a case of homogeneous transfer-learning case where the (autore-

gressive) feature space X (S) = X (T )
, and the forecasting tasks are the same T (S) = T (T )

, but

the distribution of the features are only related P(S)(x) ̸= P(T )(x). We focus, in particular, on

the parameter-based transfer learning approach.

6.3.1 Zero-shot, K-shot, and Finetuning

In general, the forecasting learning task can be translated into a function estimation problem

using the classic Empirical Risk Minimization (ERM) framework (Vapnik, 1999), where the

objective is to minimize the expected loss function at the dataset D level:

f ∗ := argmin
f∈F(Θ)

ED [L(y, f(x,θ)) ] ⇐⇒ θ̂ := argmin
θ∈Θ

ED

[
L(y, ŷ(y[t−L:t]|θ))

]
(6.2)

In this work pre-training and retraining the considered models is performed using stochastic

gradient descent updates (Robbins and Monro, 1951). We used pre-trained model parameters

θ(S) = θ
(T )
0 as the initial condition, and update the parameters for the target task using the

following rule:

Sample (x,y) ∼ P(D(T )) update θ
(T )
k = θ

(T )
k−1 − α∇θL(y, f(x,θ)) (6.3)

Where the re-trained model’s parameters after k steps are denoted by θ
(T )
k , the learning

rate is denoted by α. The difference between zero-shot, k-shot, and finetuning dwells in the

amount of updating steps performed. Zero-shot requires no re-training, finetuned parameters

are re-trained until an early stopping halt, and k-shot performs exactly k-updates.
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Figure 6.2: A taxonomy of neural forecasting models, defined by their fundamental building blocks.

6.4 Forecasting Baselines

6.4.1 Neural Forecast Models

We chose well-performing neural forecasting architectures identified by their fundamental build-

ing blocks to establish experiment baselines: fully connected layers, recurrent and convolutional

decoders, and attention mechanisms.

In the fully connected architectures model group, we consider the basic multi-layer percep-

tron (MLP) (Rosenblatt, 1961), the neural basis expansion network (NBEATS) (Oreshkin et al.,

2020) and the neural hierarchical interpolation network (NHITS) (Challu et al., 2023b). For

architectures with recurrent and convolutional encoders, we include the classic long-short-term

memory network (LSTM) (Gers et al., 2000; Sak et al., 2014), a temporal convolution network

(TCN) (Oord et al., 2016; Bai et al., 2018b), and the deep autoregressive network (DeepAR) (Sali-

nas et al., 2020). Finally, for architectures that integrate the attention mechanism, we consider

the temporal fusion transformer (TFT) (Lim et al., 2021b) and the patch time series transformer

(PatchTST) (Nie et al., 2023).

All architectures are implemented and trained in PyTorch (Paszke et al., 2019), with the code

publicly available at the NeuralForecast repository.

6.4.2 Automated Statistical Forecast

We include in our experiments two workhorse statistical forecasting baselines: the Autoregressive

Integrated Moving Average model (ARIMA) and the simple Naive baseline, which surprisingly

provides accurate performance reference. For ARIMA, we rely on a modern implementation

tool that automatically explores its hyperparameters (Hyndman and Khandakar, 2008; Garza

et al., 2022).
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Table 6.1: Summary of datasets used in the empirical study. All the datasets are used in the forecasting

transfer-learning experiments. We use larger datasets as source domains and smaller as target domains.

Dataset Purpose Time Series Frequencies

Wikipedia Source 5e5 {Daily}
M4 Source 1e5 {Yearly, Quarterly, Monthly, Daily}
M3 Source 3003 {Yearly, Quarterly, Monthly, Daily}

M1 Target 1001 {Yearly, Quarterly, Monthly}
M3 Target 3003 {Yearly, Quarterly, Monthly, Daily}
Tourism Target 1311 {Yearly, Quarterly, Monthly}

Table 6.2: Model evaluation based on sMAPE on zero-shot forecasting transfer learning (lower is better).

The source dataset is the first vertical column, while the target dataset is the second column. Metrics are

averaged over eight runs and standard deviation in brackets, best results are highlighted in bold.

Freq Naive ARIMA MLP LSTM TCN DeepAR TFT Trans NHITS PatchTST

M3

Y 22.43 19.53 15.96 36.51 32.49 29.28 18.08 51.48 17.15 16.50

M1 Q 18.38 17.57 18.15 24.46 22.93 18.31 17.42 23.24 17.30 15.74
M 18.67 13.72 16.35 16.31 16.37 17.27 15.40 15.37 14.43 13.27

Y 34.80 39.76 36.02 60.18 37.79 29.55 35.41 106.13 38.59 32.34

Tour Q 54.19 49.74 58.02 80.07 70.30 48.17 52.55 78.67 56.16 46.76
M 72.24 65.42 65.74 64.77 64.78 71.47 63.52 66.31 66.28 63.76

M4

Y 22.43 19.53 15.70 24.15 25.41 22.94 15.62 21.50 15.62 16.52

M1 Q 18.38 17.57 15.53 17.09 18.39 17.98 15.48 16.47 15.33 15.18
M 18.67 13.72 13.38 15.78 16.01 17.62 13.24 12.94 12.71 12.80

M3

Y 17.88 18.13 16.12 19.55 21.33 20.59 15.64 22.87 15.68 15.30
Q 11.32 10.57 9.32 10.47 11.20 12.46 9.37 10.37 8.95 9.06

M 16.85 13.47 13.46 13.60 14.48 15.40 13.24 13.13 12.97 12.82
D 8.56 6.91 8.44 10.79 10.03 15.54 8.47 8.27 9.55 8.88

Y 34.80 39.76 35.25 31.38 32.15 29.50 31.74 51.32 31.19 31.13

Tour Q 54.19 49.74 45.41 44.32 44.92 50.70 45.49 51.47 45.09 43.62
M 72.24 65.42 64.80 62.88 65.09 71.12 62.40 63.96 63.26 62.85

Wiki M3 D 8.56 6.91 7.91 9.15 9.57 16.71 7.45 7.91 7.72 9.88

6.5 Empirical Evaluation

6.5.1 Datasets

All the datasets used in our empirical studies are publicly available and have been previously

utilized in the neural forecast literature. In Table 6.1, we concisely summarize each dataset’s

sources, time frequencies, and purpose for our transfer learning tasks. Below we describe in

greater detail the origins and dataset characteristics.

• Wikipedia (Wikipedia): This large dataset comprises time series data from Wikipedia

articles’ visits and logs. With approximately half a million series, this dataset provides

valuable insights into the temporal patterns of Wikipedia usage.

67



Table 6.3: Model evaluation based on sCRPS on zero-shot forecasting transfer learning; lower values

are better. The source dataset is the first vertical column, while the target dataset is the second column.

Metrics are averaged over eight runs and standard deviation in brackets, best results are highlighted in

bold.

Freq Naive ARIMA MLP LSTM TCN DeepAR TFT Trans NHITS PatchTST

M3

Y 0.184 0.160 0.116 0.216 0.264 0.198 0.093 0.393 0.130 0.134

M1 Q 0.102 0.088 0.124 0.149 0.115 0.095 0.125 0.148 0.105 0.112

M 0.197 0.134 0.125 0.133 0.130 0.164 0.119 0.121 0.107 0.110

Y 0.112 0.114 0.112 0.161 0.112 0.096 0.114 0.272 0.123 0.098

Tour Q 0.206 0.121 0.163 0.279 0.194 0.127 0.146 0.224 0.157 0.109
M 0.412 0.145 0.202 0.200 0.207 0.208 0.197 0.182 0.172 0.173

M4

Y 0.184 0.160 0.128 0.211 0.205 0.133 0.119 0.186 0.118 0.140

M1 Q 0.102 0.088 0.077 0.092 0.110 0.085 0.076 0.080 0.079 0.072
M 0.197 0.134 0.118 0.127 0.133 0.160 0.119 0.103 0.111 0.110

M3

Y 0.138 0.162 0.139 0.159 0.170 0.156 0.134 0.176 0.136 0.122
Q 0.086 0.079 0.069 0.081 0.086 0.094 0.070 0.075 0.066 0.067

M 0.138 0.088 0.087 0.093 0.099 0.106 0.088 0.085 0.085 0.085

D 0.067 0.053 0.061 0.094 0.078 0.137 0.063 0.061 0.071 0.068

Y 0.112 0.114 0.107 0.098 0.091 0.096 0.099 0.148 0.101 0.102

Tour Q 0.206 0.121 0.107 0.104 0.119 0.150 0.104 0.142 0.102 0.096
M 0.412 0.145 0.170 0.189 0.198 0.217 0.164 0.151 0.148 0.169

Wiki M3 D 0.067 0.053 0.068 0.082 0.085 0.147 0.064 0.069 0.066 0.079

• Makridakis Competitions (M1, M3, M4): The M4 dataset (Makridakis et al., 2020) is a

comprehensive one hundred thousand time series collection from diverse domains such

as finance, industry, macroeconomics, and microeconomics. It offers a wide range of

frequencies from yearly to hourly intervals. The M3 dataset (Makridakis and Hibon, 2000)

shares similarities with M4, although it consists of a smaller set of 3003 series. Notably,

the M3 dataset (Fiorucci et al., 2016; Spiliotis et al., 2020; Hyndman and Khandakar, 2008)

has been extensively utilized for research on statistical methods. Additionally, the M1
dataset (Makridakis et al., 1982) comprises 1001 time series representing demography,

industry, and economics. M1 dataset’s time series is only available in yearly, quarterly,

and monthly frequencies.

• The Tourism dataset (Athanasopoulos et al., 2011) consists of yearly, quarterly, and

monthly records of tourist visits and other indicators sourced from tourism bodies or

academics. This dataset has been utilized in previous tourism forecasting studies.

6.5.2 Evaluation Metrics

To assess the models’ probabilistic and point forecast accuracy, we employ the Scaled Continuous

Ranked Probability Score (sCRPS; Makridakis et al. 2022) and the Symmetric Mean Average
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Percentage Error (sMAPE; Hyndman and Koehler 2006).

sCRPS(P̂,y) =
2

H × |[i ]|
∑
i

t+H∑
τ=t+1

∫ 1

0
QL(P̂i,τ , yi,τ )qdq∑

i |yi,τ |

sMAPE(y, ŷ) =
200

H × |[i ]|
∑
i

t+H∑
τ=t+1

|yτ − ŷτ |
|yτ |+ |ŷτ |

(6.4)

whereQL(P̂i,τ , yi,τ )q stands for the quantile loss at the q level, between the estimated forecast

probability P̂i,τ and the observation yi,τ . We use a Riemann approximation to the sCRPS with

dq quantile intervals of 1 percent.

In addition to measuring forecast accuracy, we also evaluate the computational time com-

plexity of the methods. We conduct the experiments on an EC2 g5.4xlarge instance with NVIDIA

Tesla M60 GPUs and 16 CPU cores.

6.5.3 Key Results

We define a transfer-learning task by combining a source and a target dataset. We report the

performance of zero-shot models, that is, pre-trained models with no additional training. We

use large datasets as sources, for which we select Wikipedia, and M4. The target datasets, M3,

M1, and Tourism are smaller.

6.5.4 Zero-shot

Our findings summarized in Table 6.2 and Table 6.2 confirm that neural networks can acquire

general forecasting knowledge and effectively apply it in zero-shot transfer. Pre-training on

larger source datasets improves performance on downstream target tasks. In addition, the

latest architectures, including NHITS, TFT, and PatchTST, are better suited for leveraging

large datasets’ information. The best pre-trained PatchTST model shows improvements over

automated ARIMA of 8.89% on average across all tasks. On the other side, other architectures

such as LSTM do not manage to improve on ARIMA’s performance on average.

These results also show that, in most cases, the accuracy of transferred neural forecast models

improves when the source dataset is larger. For example, the best pre-trained model on Tourism

monthly is the NHITS, with a sCRPS of 0.172 when trained in M3 and 0.148 when trained in M4,

representing a 14% improvement. In section 6.6.1 we explain this finding based on the distance
between tasks.

6.5.5 Inference Time

One of the most significant advantages of zero-shot transfer learning is the ability to produce

forecasts from a model with a fraction of the computational cost of complete training procedures.
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Figure 6.3: Inference time comparison for selected neural method and baselines. Values reported

correspond to the average inference time for the complete target datasets from Table 6.2.
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Figure 6.4: Finetuning forecasting performance for selected neural forecast models, measured by average

sMAPE and sCRPS across all transfer-learning tasks.

In Figure 6.3, we report the average inference time to forecast a complete target dataset. Zero-

shot inference requires almost the same computational time as the simplest baseline, the Naive,

and 145 times less time to fit and predict with the highly efficient ARIMA from StatsForecast

(Garza et al., 2022). Moreover, neural methods can be fine-tuned for up to 500 training iterations,

requiring less time than the ARIMA.

6.5.6 Finetuning

6.4 presents the results of fine-tuning neural methods in the target task for multiple optimization

steps. The results show that it is possible to improve the zero-shot performance by customizing

the pre-trained models on the task at hand. Updating the model weights on the smaller datasets

tends to be beneficial. However, the benefits diminish with the training iterations, and in the case
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Figure 6.5: Transferability decreases as the distance between tasks increases. (a) Distance nearest

neighbor estimation between forecasting tasks. (b) NHITS zero-shot performance as a function of task

distance.

of large models, there is a potential risk of overfitting, for which early stopping is necessary. In

this experiment, the finetune NHITSmodel achieves average sMAPE improvements considering

all tasks of 11.26% over the ARIMA with just 100 optimization steps and under 10 seconds of

fine-tuning per task.

6.6 Transferability Enabling Conditions

6.6.1 Effects of Tasks Distance

In this section, we explore how differences in the temporal patterns of the time series between

the source and target datasets can affect the transferability of pre-trained models, regardless of

their architecture. We first propose a measure of the distance between the source and target

datasets that strongly correlates with their transferability and, therefore, the performance of

pre-trained models.

Let a window of autoregressive features and forecast horizon be denoted w = y[t−L:t+H].

Let the source domain and target forecasts datasets be D(S) = {(y[t−L:t],y[t+1:t+H]) |y ∈ YS}
and D(T ) = {(y[t−L:t],y[t+1:t+H]) |y ∈ YT}. We estimate the distance between the target and

the source tasks as follows:

δ̂k
(
D(T ), D(S)

)
=

1

k × |Wt|
∑
w∈Wt

∑
wκ∈Nk(w)

||w −wκ||2 (6.5)

where Nk(w) is the neighborhood of wκ closest source windows to the w target window.

This proposed distance is motivated by the fact that most deep learning models can be seen as

functions that map a fixed amount of historical values (lags) L, to the forecasting horizon of

interest H . By setting the window size w to L+H , δ̂k
(
D(T ), D(S)

)
simultaneously measures if

the source dataset contains windows with similar input-to-output mappings as the target dataset.
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For this experiment, we selected additional target datasets exhibiting varying differences in

frequency, seasonality, and trends from the nature of the source datasets in Table 6.1.

• Box-Jenkins Airline Passengers (AirPassengers): This classic dataset (Box et al., 2015a)

captures monthly totals of international passengers from 1949 to 1960, exhibiting promi-

nent trends and seasonal patterns.

• Influenza-like Illness (ILI): This dataset reports weekly recorded influenza-like illness

patients from the Centers for Disease Control and Prevention of the United States from

2002 to 2021 (US-CDC, 2017).

• San Francisco Bay Area Highway Traffic (Traffic): The California Department of Trans-

portation collected this dataset (Dua and Graff, 2017), reporting hourly road occupancy

rates of 862 sensors from January 2015 to December 2016.

Figure 6.5 presents the zero-shot performance of the PatchTSTpre-trained in M4, the

model with the best overall performance, against the task distance for four target datasets. Our

experiment shows that the zero-shot performance of PatchTST declines as the target datasets

deviate from the source dataset. We expect reasonable transfer learning performance when the

source domain contains some highly similar series to the target task.

6.7 Discussion

Pre-training models. The default approach in Natural Language Processing (NLP) uses pre-

trained models due to the considerable advantages in accuracy and efficiency. Large language

models can be used without needing to train them from scratch, saving considerable computation

and time; such models trained on large and diverse datasets can learn complex representations

useful for plenty of smaller tasks. This work may serve as a starting point for the broader

adoption of pre-trained models for the univariate forecasting task; we believe that pre-trained

models and transfer learning will become the default solution for univariate forecasting projects.

Limitations and opportunities. While pre-trained models show impressive results, they

still have limitations. A potential challenge can emerge when the target domain differs substan-

tially from the source domains, distribution shifts, or the need to include particular exogenous

variables due to a lack of information in autoregressive futures. Forecasting domain adaptation

and heterogeneous transfer learning are exciting lines of research, as they will allow pre-trained

models to be of service beyond simple univariate forecasting tasks. Some neural forecasting

architectures have begun incorporating a shared latent feature space, enabling their application

across diverse input scenarios. However, further research is required to unlock their potential

and broaden their applicability.

Beyond Transformers. As is the case of related fields dealing with sequential data such as

Natural Language Processing (NLP), almost all recent foundation models (FM) for time series

rely on some forms of attention mechanisms (Garza and Mergenthaler-Canseco, 2023; Ansari

et al., 2024; Goswami et al., 2024; Liang et al., 2024). Our empirical results also show that

Transformers, particularly PatchTST, tend to achieve the highest on average performance.
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However, even purely feed-forward methods such as NHITS and even a simple MLPcan achieve

similar performance with lower computational times and can, therefore, serve as viable options.

A promising alternative to Transformers is State Space Models (SSM), with approaches such

as S4 or Mamba (Gu et al., 2021; Gu and Dao, 2023). Similarly to RNNs, the SSM concept relies

on modeling the system with state variables that sequentially evolve based on a state equation,

while an output equation determines the prediction based on the states and inputs. The latest

models, such as Mamba, solve the high inference computation cost of transformers, which scale

quadratically with the sequence length, while achieving better or similar performance than

Transformer-based FMs on several language modeling tasks.

Several extensions to Mamba have been proposed, particularly for image and video tasks. A

recent study showed a simple extension with a linear tokenization layer, Simple-Mamba (Wang

et al., 2024), which achieves state-of-the-art performance in time series forecasting. In our

experiments on pre-pretrained models, RNNs tend to perform poorly on zero-shot scenarios.

We hypothesize their poor performance is driven by their limited expressivity compared to

Transformers. The novel selection mechanism of Mamba might alleviate this issue and, therefore,

yield an interesting alternative for future time series foundation models.
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Part IV

Conclusion
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Chapter 7
Conclusion

This dissertation studies improving deep learning (DL) time series models for anomaly detection

and forecasting. Recent advancements in the field have shown promising results and adoption

in academic and industry applications. Despite this progress, I identified several limiting factors

to adoption, including scalability, interpretability, and robustness. The models proposed in this

thesis push the SoTA performance and tackle these challenges.

The work on this thesis began raising the following question:

Can deep learning algorithms leverage efficient and informed representations of mul-
tivariate time series to yield accurate, robust, interpretable, and scalable models to
increase their adoption?

The proposed approach builds on the core principle of DL models: their capability to learn

useful data representations and leverage them to complete a task. Multivariate time series are

complex objects often exhibiting temporal dependencies and feature correlations. Therefore,

we can design models that leverage them to learn better representations and improve their

performance and capabilities. In this work, I presented seven research projects that support this

claim.

In Part I, I proposed two multivariate time series methods, DGHL and TIN, based on dynamic

latent space inference with tailored latent temporal representations. These models achieve SoTA

performance in forecasting, imputation, and anomaly detection tasks while remaining robust

to challenges such as missing values. This part also introduced SAAT, an automatic anomaly

threshold selection algorithm based on augmenting the training data with synthetic anomalies

that consider the reference data’s distribution and maximize the target evaluation metric.

Part II introduces NHITS, a scalable and decomposition-based interpretable model for long-

horizon forecasting. The method uses the proposed hierarchical interpolation and multi-rate
sampling techniques to produce a non-linear frequency decomposition of the forecast. The

second chapter presents two extensions of the NHITS and the related NBEATS model to

incorporate exogenous covariates efficiently. The NBEATSx includes a convolutional decoder

that learns a representation of the exogenous covariates to isolate their effect on the target
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time series. Second, we proposed a novel pharmacokinetics prior encoder for treatment effect

estimation using domain knowledge of drug absorption.

Finally, in Part III, I presented a large-scale study on enabling conditions, on both model

design and data characteristics, for transferability of pre-trained models on time series tasks to

foster the use of this technique. Transfer learning and representation learning are intrinsically

related, as models exploit commonalities between tasks by learning shared representations that

capture common underlying factors. The results show that pre-trained deep learning methods

can outperform classic statistical models trained on the target task. The conclusions of this study

can guide practitioners on how to design transferable models and improve data quality.

7.1 Open Source

While academic studies are important for formalizing and disseminating ideas, it is crucial to

make their results and tools accessible for practitioners’ use. In that regard, the code for all

models and evaluations presented in this thesis is publicly available in open-source libraries

and dedicated repositories. The NHITS and NBEATSx models are included in Neuralforecast

(Olivares et al., 2022a) and other popular open-source libraries. These open-source implementa-

tions of the models presented in this thesis have been impactful, aiding various academic and

industry practitioners in their time series tasks. Through open-source code, researchers can

provide practitioners with better tools to solve their challenges and, ultimately, assist them in

making more informed decisions. In turn, users can offer valuable feedback, which is invaluable

for identifying and prioritizing the most impactful research directions.

7.2 Expected Scope and Application Limitations

In this section, I present guidance on utilizing the proposed methods from this thesis on real-

world applications and conditions when they might fail to provide accurate predictions.

DGHL. This model excels at reconstructing long multivariate time series with temporal

patterns spanning thousands of timestamps. It is suitable for applications where detecting

anomalies requires models to understand longer patterns, often required when dealing with

high-sampling-rate data. Our experiments show that DGHL has superior robustness to missing

data, predominant in domains such as healthcare and IoT. Finally, DGHL is best suited for cases

with less than one hundred features. Given the additive nature of the MSE anomaly scores,

anomaly detection with a greater number of features is challenging, particularly in cases where

anomalies only affect a small subset of features.

The experiments also suggest that the hyperparameters chosen for the inference step of

Alternating Back Propagation, such as the number of iterations, significantly impact the trade-off

between performance and computational time. Proper hyperparameter optimization, using a

validation set with anomalies, can help optimize the model’s application performance and help

practitioners determine the best configuration for their use case.
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As with most other general deep learning anomaly detection models, DGHL can detect

most common anomalies, such as changes in frequency, scale, trends, and patterns, as seen

in (Goswami et al., 2022). This study also shows that detecting subtle contextual anomalies,
present in benchmark datasets such as UCR Anomaly Archive (Wu and Keogh, 2021), remains

challenging.

TIN . The conditions on the data type best suited for this method are similar to DGHL given

the shared principle of dynamic latent inference and the use of a CNN generator.

While TIN networks exhibit superior robustness to missing data and distribution shifts,

they still operate with the principle that the information contained in the reference window,

with the model’s inputs, follows the same temporal relation and distribution as is the data in

the forecast window. This is clear in Figure B.2, where the model can forecast under the new

distribution once it observes it in the reference window.

TIN models need to perform the inference step of the latent factors when forecasting,

significantly increasing computational costs. While these costs are lower than other SoTA

imputation alternatives, they might still be prohibitive in some applications, particularly in cases

with large amounts of data or applications that require low latency forecasts.

NHITS. This model provides accurate forecasts with low computational complexity, espe-

cially in long-horizon settings. Regarding data, NHITS has shown remarkable robustness to

data with a low signal-to-noise ratio when trained with robust losses such as the Huber loss.

However, its performance is greatly affected by missing values and distribution shifts. In practice,

this last limitation can be alleviated by re-training the model frequently, allowed by the lower

computational complexity.

The NHITS model can incorporate exogenous covariates by concatenating their history

to the target variable’s lags and using them as inputs of each MLP block. In practice, we have

observed a decrease in performance when adding several exogenous covariates compared to

other methods, such as TFT (Lim et al., 2021a). This might limit the applications of NHITS in

domains where having many exogenous covariates is required, such as forecasting financial

indicators.

The frequency decomposition capabilities can be used for time series analysis tasks different

than forecasting. The embeddings of the MLP blocks or the reconstruction of each stack can be

used in downstream applications.

The results in Part III show this method can be pre-trained and used in new tasks with

zero-shot forecasts, further reducing computational requirements. This result also supports

using the model in large-scale settings because it can efficiently leverage information from many

different time series.

NBEATSx and PK Encoder. Given the similar architecture to the NHITS, these methods

have the same limitations and advantages regarding the characteristics of the data.

Regarding exogenous covariates, the NBEATSx has a general convolutional encoder that

does not leverage or use prior user’s knowledge on the time series. It is best suited for domains

such as demand forecasting and related tasks, such as electricity price forecasting (EPF).

On the other hand, using the Pharmacokinetic Prior encoder is recommended for domains
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where we have a deeper concrete understanding of the phenomena governing time series

behavior, which is often the case in, e.g., healthcare, biology, and physics. While the proposed

method was tested in particular for blood glucose forecasting, it provides a general framework

that can be used in other tasks. The current method assumes linear stacking of effects (linear

pharmacokinetics), which might not apply as well to other than insulin drug types.

7.3 Future Work

The conclusion section of each chapter presents specific future work for each topic. This section

briefly presents two research directions derived from the thesis.

A recurrent promising line of research is designing methods that incorporate domain knowl-

edge. In anomaly detection, it will be crucial to enable practitioners to encode their knowledge

of potential unseen anomalies during training efficiently. In forecasting, leveraging knowledge

of the underlying dynamics, such as physics, economics, or even biology, can further increase

their applicability to high-stakes settings by improving performance and avoiding producing

unrealistic predictions.

The promising results of transfer learning on time series can lay the path to building foun-

dation models. Some early recent works on this topic include models such as TimeGPT and

Lag-Llama (Garza and Mergenthaler-Canseco, 2023; Rasul et al., 2023). Foundational models

can completely change how practitioners build time series pipelines. Some challenges to further

develop foundational models include how to model beyond pure autoregressive features and

add qualitative context to the task or leverage particular exogenous covariates.
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Appendix A
Multivariate Online Anomaly Detection

A.1 Time series generation

DGHL is trained to generate time series windows from a latent space representation. We examine

how DGHL learns the representation by interpolating and extrapolating between two latent

vectors, Z l and Zu, inferred from two windows of a real time series from the SMD. The trained

Generator network is then used to generate new windows across the interpolation subspace.

Figure A.1 presents the generated windows for interpolated and extrapolated vectors for a

subset of the original features. The generated time series smoothly transitions between clear

patterns on both shape and scale. Moreover, DGHL is able to generate meaningful time series

on the extrapolation region. This experiment shows how our approach maps similar time

series windows into close points of the latent space, which is a desirable property of latent

representations.

Figure A.1: Generated time series windows from interpolation and extrapolation of latent vectors using

DGHL trained on machine-1-1 of the SMD.
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Appendix B
Robust Multivariate Forecasting and

Imputation

B.1 Generator Network

TIN-CNN uses a Top-Down Convolution Network (CNN) as a generator, which produces

the final forecast and reconstruction of the reference window Ŷt−L:t+H from the temporal

embedding E. The full CNN architecture is presented in Figure 3.2, and can be formalized as:

h1 = ReLU(BN(Transposed Convolution(E)))

h2 = ReLU(BN(Transposed Convolution(h1)))

Ŷt−L:t+H = Transposed Convolution(h2)

(B.1)

where Transposed Convolution is a transpose convolutional layer on the temporal dimension,

BN is a batch normalization layer, and ReLU activations introduce non-linearity. The number of

filters at each layer, kernel size, and stride are given in Appendix H. The convolutional filters are

not causal as in a Temporal Convolution Network (TCN) (Bai et al., 2018a). Instead, TIN-CNN’s

causality, which allows forecasting using only past observations, comes from inferring the latent

vector z∗ with the reference window.

Figure 3.2 of the paper presents the default recommended configuration for TIN-CNN.

The first layers of the CNN learn a common representation for all features from the temporal

embedding E. The second layer refines the temporal resolution to the final size of the window

sw. The last layer produces the final output for all M features from h2.

While equation B.1 presents the default configuration used in the experiments, additional

layers can be added to increase the expressivity. Table B.1 presents ablation studies on the

number of layers. We explore different configurations for the CNN, particularly for the number

of hidden layers. For the model TIN-CNNi,j , i refers to the number of layers with temporal

resolution sw/2, and j to the number of layers with sw resolution. The following table presents
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the results on ILI and Solar datasets. The results suggest TIN-CNN’s performance is not

significantly affected by the number of layers in these datasets for several occlusion probabilities.

On average, TIN-CNN2,2 achieves the best performance.

Table B.1: Forecasting accuracy results of TIN with different CNN architectures on benchmark datasets

with different proportions of missing values (po), forecasting horizon of 24 timestamps, lower scores are

better. Metrics are averaged over five runs. The best model is highlighted in bold.

TIN-CNN TIN-CNN2,2 TIN-CNN3,2 TIN-CNN3,3

po MSE MAE MSE MAE MSE MAE MSE MAE

IL
I

0.0 0.724 0.557 0.719 0.549 0.773 0.560 0.726 0.550

0.2 1.153 0.662 1.148 0.670 1.164 0.682 1.156 0.658

0.6 2.453 1.012 2.391 1.002 2.382 0.985 2.369 0.991

So
la
r 0.0 0.007 0.054 0.007 0.052 0.008 0.058 0.007 0.053

0.2 0.012 0.058 0.010 0.059 0.012 0.059 0.011 0.054

0.6 0.013 0.068 0.012 0.064 0.014 0.066 0.015 0.064

B.2 Benchmark datasets

Table B.2 presents summary information for the benchmark datasets, including the frequency,

number of features and timestamps, and train/validation/test proportions.

Table B.2: Summary of benchmark datasets

Dataset Granularity # of features # of timestamps Train/Val/test split

Simulated7 NA 7 20,000 80/10/10

ILI Weekly 7 966 70/10/20

ETTm2 15 Minute 7 57,600 60/20/20

Exchange Daily 8 7,588 70/20/10

Solar Hourly 32 8,760 60/20/20

Weather 10 Minute 21 52,695 70/10/20

All datasets are public and are available in the following links:

• ILI: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

• Exchange: https://github.com/laiguokun/multivariate-time-series-data

• Solar: https://www.nrel.gov/grid/solar-power-data.html

• ETTm2: https://github.com/zhouhaoyi/ETDataset

• Weather: https://www.bgc-jena.mpg.de/wetter/
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B.3 Simulated dataset

Simulated7is a synthetic dataset that we designed to evaluate forecasting models’ robustness to

missing data and distribution shifts in a controlled environment. It consists of seven time series,

each generated independently as the sum of two cosine functions with different frequencies and

a small Gaussian noise. In particular, it is composed as the sum of the three following elements:

ylow

t = cos(it) , i ∼ U(5, 50) t ∈ [0, 5]

y
high

t = cos(it) , i ∼ U(100, 300) t ∈ [0, 5]

ynoise

t ∼ N(0, 0.001) , t ∈ [0, 5]

(B.2)

Each time series consists of 20,000 timestamps, with regular intervals between [0, 5]. For the

missing data we obfuscate random timestamps following the procedure described in section 3.5,

using s = 10 and po ∈ {0, 0.2, 0.4, 0.6, 0.8}.

B.4 Hyperparameter optimization

TIN-CNN hyperparameters are tuned on the validation set of each dataset using the HYPEROPT

algorithm with 30 iterations; table B.3 presents the hyperparameter grid. To ensure a fair

comparison with baseline models, we also tuned their respective hyperparameters with the same

procedure, as the default configuration in their implementations might not perform well in the

different settings we explore. Next, we detail the hyperparameter grid for each baseline model.

Table B.3: Hyperparameters grid for TIN-CNN.

Hyperparameter Values

Learning rate [0.0001, 0.1]

Training steps {500, 1000}
Batch size {8, 16, 32}
Random seed {1,2,…,10}

GD iterations during training {25, 50}
GD iterations during inference {300, 500}
GD step size {0.2, 1, 2}
Ensemble size {3}
Max degree trend polynomial {3}

Window size (sw) {128, 256, 512}
Kernel size {4, 8}
Stride {4}
Dilation {1}
Convolution filters of two hidden layers (n1,n2) {(256,128), (128, 64)}
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For all models, we tune optimization hyperparameters, including learning rate, number of

iterations, batch size, and random seed for initialization. The number of iterations for Trans-

formers was larger than that of other models, as recommended in the respective papers. For

TIN-CNN, we tune the architecture of the CNN and optimize hyperparameters for the inference

step. For NHITS, we use the hyperparameter grid described in their paper (Challu et al., 2023b).

The NHITSis a generalization of the NBEATS, which is already included in the hyperparam-

eter grid as a possible configuration. For the Informer, Autoformer, FEDformer, and

PatchTST, we explore different values for the dropout probability, number of heads, size of

embedding, and sequence length. Finally, for RNN, we explore different dilations, the number of

layers, and hidden size. For the NHITS/NBEATS, all Transformers, and RNNmodels, we used

the Neuralforecast library (available in PyPI and Conda).

B.5 TIN training algorithm

Algorithm 1 presents the TIN’s training procedure. The model is trained for a fixed number of

iterations niters, randomly sampling b windows in each iteration. Parameters θ are optimized

with Adam optimizer.

Algorithm B.1 Training procedure

Input: Y ∈ Rm×T
, model Fθ, learning iterations niters

Output: Fθ∗ , inferred latent vectors {z∗t , t = 0, ..., T}
Let i← 0, initialize θ
Initialize zt, for t = 0, ..., T
while i < niters do

Sample a random mini-batch of windows: {Yjk−L:jk+H , jk ∼ U(L, T −H), k{1, ..., b}}
z∗jk ← argminz L(Yjk−L:jk , Ŷjk−L:jk(z)), k ∈ {1, ..., b}
Update θ with Adam using z∗ as input.

Store z∗jk , k ∈ {1, ..., b}
i← i+ 1

end while

B.6 Robustness to Distribution Shifts

In this Appendix, we present preliminary evidence on the TIN’s robustness to distribution shifts.

Distribution shifts are changes in the data-generating process over time. In particular, changes

in the behavior of the time series between the training data and the test data (where models are

deployed) can considerably degrade the model’s performance, as the temporal relation between

the input data and the forecast window might differ in both sets. In recent years, we observed

an increase in the occurrence of distribution shifts with the COVID-19 pandemic. Similar to the

case of missing data, designing robust methods that can intrinsically handle distribution shifts
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can provide great benefits by improving their applications in domains where this problem is

predominant (Kuznetsov and Mohri, 2014; Du et al., 2021; Ivanovic et al., 2022).

We define distribution shifts between train and test data as follows. Consider a general

forecasting task where model Fθ is used to forecast variable Y and trained on historical data,

where Y ∼ Dtrain. The model is then evaluated (deployed) on future observations (test set),

with Y ∼ Dtest. A distribution shift occurs when Dtrain ̸= Dtest. We present a real example of a

distribution shift in Figure B.1 showing the ILI dataset. The test set (right of the vertical red

line) exhibits larger and more prolonged spikes than the train set.
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Figure B.1: ILI dataset, the start of the test set marked with a vertical red line.

A TINmodel has the ability to dynamically adjust the forecasts based on the recent temporal

behavior on the reference window, giving the model more robustness to changes in distribution.

In particular, the unconstrained latent factors can extrapolate beyond training regions to produce

forecasts with unseen patterns and scales, such as ILI’s larger spikes.

We first test this hypothesis on synthetic data by perturbing the test set on Simulated7
dataset with two transformations: adding a linear trend with slope 6 and scaling the magnitude
by 0.5. Figure B.2 presents TIN-CNNś forecasts for this setting, and complete forecasts for all

features and baselines are included in Appendix H. The qualitative results are complemented

with Table B.4.

These results on Simulated7 show that our approach has superior robustness to some forms

of distribution shifts between the train and test data compared to current SoTA models. The

results on ILIdataset in Table 3.1 also support this claim, where TIN-CNN reduces forecasting

errors by 50% against the second best alternative. Exploring TIN’s domain adaptation capabil-

ities and related transfer learning applications can be a promising line of research for future

work.
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Figure B.2: Forecasts for the first feature of Simulated7 dataset using TIN with (a) change in trend,

and (b) change in magnitude. Forecasts are produced every 24 timestamps in a rolling window strategy.

We include the last 1,000 of the train set to show the change in distribution.

Table B.4: Forecasting accuracy on Simulated77 dataset with distribution shifts between the train and

test sets, forecasting horizon of 24 timestamps. Lower scores are better. Metrics are averaged over five

runs, with the best model highlighted in bold.

TIN-CNN NHITS Informer Autoformer StemGNN RNN
po MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Normal 0.0 0.004 0.041 0.001 0.015 0.008 0.079 0.017 0.096 0.036 0.122 0.001 0.022

Trend 0.0 0.025 0.130 0.427 0.443 2.821 1.410 0.060 0.19 1.354 0.952 1.214 0.859

Magnitude 0.0 0.005 0.038 0.009 0.059 0.020 0.094 0.043 0.168 0.060 0.192 0.089 0.248

B.7 Forecasts on Simulated7

Figure B.3 presents the complete forecasts on the test set for TIN-CNN, NHITS, Informer,

and RNNmodels. TIN-CNN is the only model that can accurately forecast with up to 80%

missing data and changes in distribution.

B.8 Additional occlusion experiments

We present additional occlusion experiments to analyze the case where the missing data regime
(how much or for how long missing data occurs) differs between the training and test sets. In
this setting, we train models on complete data and inject missing values only during
inference on the test set. The following table presents TIN and NHITS(best baseline) results

on the Simulated7 dataset. TIN-CNN performance is almost identical to the original results,

demonstrating the method’s robustness to changes in the behavior of the presence of missing

data.

85



0 250 500 750 1000 1250 1500 1750

1

0

1

m
1 True

Forecast

0 250 500 750 1000 1250 1500 1750

1

0

1

m
2

0 250 500 750 1000 1250 1500 1750

1

0

1

m
3

0 250 500 750 1000 1250 1500 1750

1

0

1

m
4

0 250 500 750 1000 1250 1500 1750

1

0

1

m
5

0 250 500 750 1000 1250 1500 1750

1

0

1

m
6

0 250 500 750 1000 1250 1500 1750

Timestamp

1

0

1

m
7

(a) Missing values - TIN-CNN
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(b) Trend - TIN-CNN
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(c) Magnitude - TIN-CNN
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(d) Missing values - NHITS
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(e) Trend - NHITS
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(f) Magnitude - NHITS
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(g) Missing values -

Informer
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(h) Trend - Informer
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(i) Magnitude - Informer
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(j) Missing values - RNN
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(k) Trend - RNN
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(l) Magnitude - RNN

Figure B.3: Forecasts on the test set for all features of Simulated7 dataset with 80% of missing data

(missing regions in grey), change in trend, and change in magnitude. Forecasts are produced every 24

timestamps in a rolling window strategy.

B.9 Complete experimental results

Table B.6 presents the extended main forecasting experimental results, reporting accuracy as

measured with MSE for all baselines and datasets. MSE is averaged over five runs, varying

the random seed for the HYPEROPT algorithm (different configurations are sampled), and the
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Table B.5: Forecasting accuracy on Simulated7 dataset with missing values only on the test set,

forecasting horizon of 24 timestamps. Lower scores are better. Metrics are averaged over five runs, with

the best model highlighted in bold.

TIN-CNN NHITS
po MSE MAE MSE MAE

0.2 0.008 0.079 0.013 0.146

0.4 0.017 0.085 0.031 0.224

0.6 0.021 0.097 0.257 0.384

0.8 0.029 0.124 0.463 0.562

standard deviation is reported in parenthesis. CSDI+N and CSDI+P refer to CSDI+NHITS and

CSDI+PatchTST, respectively. MAE is omitted for simplicity; results are consistent with the

MSE metric.

B.10 Computational complexity during prediction

Section 5.4 showed that TIN-CNN has training times similar to current SoTA baselines. In

this Appendix, we present an analysis of the performance/time trade-off of the number of

iterations to infer latent factors during prediction (forecasting). While training usually domi-

nates the overall computational cost and time (for example, training times for TIN-CNN on

Simulated7was around 150 seconds, compared to only 2 seconds to forecast the complete test

set), some applications require performing fast predictions, especially on high-frequency data.

The main TIN’s hyperparameter to control prediction times is the number of iterations of the

gradient descent algorithm to infer latent factors. Figure B.4 presents how TIN-CNN’s perfor-

mance and prediction times vary with the number of iterations, compared toCSDI+NHITS(best

baseline) and other selected baselines, on Simulated7 with p0 = 0.6. First, TIN-CNN can

match CSDI+NHITS performance with only 20 iterations, with a decrease in prediction times

of 75%. More importantly, with 100 iterations, our approach can reduce the forecasting error by

more than 50% compared to CSDI+NHITSwhile maintaining shorter prediction times. While

standalone baselines such as NHITS (fastest baseline) and Informer have very short prediction

times, their hindered performance limits their applicability to settings with missing values.

These results also demonstrate that the number of iterations for inference can be controlled

to tailor the model behavior to the particular needs and constraints of the application. For

example, if resources are constrained during the prediction stage, the number of iterations can

be decreased to reduce computation and forecasting times while preserving SoTA performance.
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Figure B.4: Analysis of TIN-CNN performance and prediction times against the number of iterations to

infer latent factors on Simulated7 dataset with p0 = 0.6. TIN-CNN achieves the best performance
with shorter forecasting times.
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Table B.6: Main forecasting accuracy results measured with MSE on benchmark datasets with different

proportions of missing values (po), forecasting horizon of 24 timestamps, lower scores are better. Metrics

are averaged over five runs, and the standard deviation is in brackets, the best model highlighted in

bold.

p0 TIN-CNN CSDI+N CSDI+P NHITS PatchTST Informer Autoformer FEDformer StemGNN RNN

Si
m
ul
at
ed

77

0.0 0.004 - - 0.001 0.004 0.008 0.017 0.013 0.036 0.001

(0.0003) - - (0.0002) (0.0009) (0.0012) (0.0023) (0.0015) (0.0018) (0.0001)

0.2 0.009 0.010 0.082 0.012 0.162 0.071 0.319 0.141 0.097 0.069

(0.0003) (0.0004) (0.0061) (0.0016) (0.0042) (0.0085) (0.0455) (0.0092) (0.0062) (0.0008)

0.4 0.011 0.018 0.123 0.022 0.368 0.095 0.591 0.276 0.181 0.172

(0.0005) (0.0009) (0.0156) (0.0028) (0.0310) (0.0079) (0.0682) (0.0106) (0.0095) (0.0054)

0.6 0.018 0.095 0.196 0.133 0.479 0.231 0.752 0.409 0.362 0.357

(0.0008) (0.0012) (0.0307) (0.0082) (0.0598) (0.0163) (0.0711) (0.0351) (0.0381) (0.0439)

0.8 0.023 0.216 0.395 0.365 0.515 0.372 0.925 0.586 0.436 0.500

(0.0012) (0.0252) (0.0351) (0.0260) (0.0611) (0.0254) (0.0740) (0.0493) (0.0474) (0.0592)

IL
I

0.0 0.724 - - 1.379 1.228 4.265 2.249 2.103 4.013 3.852

(0.080) - - (0.073) (0.062) (0.327) (0.147) (0.106) (0.293) (0.249)

0.2 1.153 1.946 1.837 2.028 2.737 3.624 3.250 3.241 4.372 3.647

(0.102) (0.092) (0.095) (0.119) (0.107) (0.339) (0.155) (0.138) (0.315) (0.258)

0.4 1.646 3.110 2.837 3.248 4.180 3.908 4.308 4.197 4.752 4.360

(0.116) (0.137) (0.103) (0.130) (0.155) (0.360) (0.293) (0.190) (0.396) (0.293)

0.6 2.453 3.552 3.409 3.871 4.355 3.991 4.571 4.853 5.170 5.561

(0.175) (0.184) (0.167) (0.234) (0.200) (0.352) (0.310) (0.247) (0.352) (0.316)

0.8 3.136 3.878 4.126 5.102 5.676 4.180 4.745 4.866 5.337 5.063

(0.193) (0.206) (0.217) (0.279) (0.294) (0.384) (0.390) (0.251) (0.370) (0.375)

Ex
ch

an
ge

0.0 0.048 - - 0.031 0.024 0.472 0.049 0.048 0.102 0.086

(0.003) - - (0.002) (0.002) (0.070) (0.004) (0.004) (0.008) (0.005)

0.2 0.091 0.072 0.093 0.295 0.362 1.013 0.758 0.643 1.021 0.871

(0.008) (0.006) (0.006) (0.024) (0.028) (0.112) (0.092) (0.083) (0.095) (0.124)

0.4 0.158 0.163 0.160 0.321 1.057 1.162 0.782 0.968 0.826 0.694

(0.015) (0.013) (0.019) (0.029) (0.073) (0.135) (0.102) (0.133) (0.102) (0.084)

0.6 0.367 0.492 0.503 0.549 1.451 1.564 1.346 1.450 1.991 1.432

(0.025) (0.029) (0.028) (0.037) (0.084) (0.149) (0.145) (0.139) (0.127) (0.105)

0.8 1.125 1.308 1.217 1.792 2.890 2.530 2.520 2.672 2.778 2.791

(0.043) (0.064) (0.053) (0.081) (0.165) (0.188) (0.176) (0.182) (0.150) (0.163)

So
la
r

0.0 0.007 - - 0.008 0.008 0.011 0.018 0.016 0.015 0.012

(0.0001) - - (0.0001) (0.0001) (0.0009) (0.0010) (0.0008) (0.0007) (0.0004)

0.2 0.012 0.015 0.017 0.016 0.018 0.016 0.025 0.020 0.016 0.015

(0.0003) (0.0002) (0.0003) (0.0002) (0.0003) (0.0008) (0.0012) (0.0010) (0.0009) (0.0004)

0.4 0.012 0.017 0.021 0.017 0.023 0.020 0.023 0.022 0.023 0.017

(0.0004) (0.0005) (0.0004) (0.0004) (0.0005) (0.0011) (0.0014) (0.0014) (0.0015) (0.0008)

0.6 0.013 0.020 0.022 0.022 0.025 0.021 0.027 0.024 0.031 0.026

(0.0007) (0.0010) (0.0009) (0.0012) (0.0009) (0.0019) (0.0013) (0.0012) (0.0019) (0.0013)

0.8 0.014 0.025 0.025 0.025 0.035 0.035 0.036 0.033 0.065 0.028

(0.0009) (0.0011) (0.0015) (0.0015) (0.0013) (0.0021) (0.0026) (0.0025) (0.0031) (0.0013)

ET
Tm

2

0.0 0.136 - - 0.116 0.107 0.366 0.171 0.156 0.154 0.179

(0.005) - - (0.003) (0.003) (0.054) (0.020) (0.021) (0.013) (0.041)

0.2 0.155 0.145 0.140 0.656 0.542 0.895 0.512 0.472 0.963 0.574

(0.009) (0.008) (0.008) (0.042) (0.044) (0.073) (0.031) (0.027) (0.055) (0.053)

0.4 0.228 0.211 0.200 1.191 1.154 0.923 1.078 0.998 1.542 0.807

(0.012) (0.009) (0.010) (0.059) (0.053) (0.072) (0.049) (0.045) (0.058) (0.067)

0.6 0.500 0.563 0.535 1.976 1.763 1.784 1.643 1.574 2.151 1.163

(0.024) (0.013) (0.015) (0.066) (0.071) (0.080) (0.062) (0.064) (0.074) (0.061)

0.8 0.725 0.986 0.801 2.019 2.315 1.982 1.992 2.052 2.595 2.085

(0.035) (0.069) (0.054) (0.065) (0.076) (0.083) (0.081) (0.083) (0.096) (0.086)

W
ea
th
er

0.0 0.112 - - 0.109 0.131 0.218 0.186 0.175 0.116 0.124

(0.004) - - (0.002) (0.003) (0.019) (0.012) (0.009) (0.010) (0.012)

0.2 0.154 0.148 0.163 0.181 0.190 0.287 0.324 0.240 0.179 0.189

(0.008) (0.005) (0.005) (0.009) (0.010) (0.021) (0.019) (0.017) (0.016) (0.015)

0.4 0.205 0.216 0.229 0.264 0.292 0.320 3.105 0.307 0.296 0.291

(0.010) (0.006) (0.007) (0.013) (0.013) (0.021) (0.085) (0.018) (0.015) (0.014)

0.6 0.329 0.417 0.431 0.420 0.486 0.761 3.772 0.769 0.495 0.435

(0.016) (0.019) (0.018) (0.025) (0.022) (0.034) (0.096) (0.034) (0.021) (0.023)

0.8 0.439 0.506 0.509 0.517 0.531 0.915 4.204 0.862 0.760 0.480

(0.017) (0.027) (0.025) (0.029) (0.028) (0.037) (0.112) (0.035) (0.038) (0.021)
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Appendix C
NHITS: Long Multi-horizon Forecasting

C.1 Neural Basis ApproximationTheorem

In this Appendix, we prove the neural basis expansion approximation theorem introduced in

Section 4.4.3. We show that the hierarchical interpolation can arbitrarily approximate infinitely

long horizons (τ ∈ [0, 1] continuous horizon), as long as the interpolating functions g are

defined by a projection to informed multi-resolution functions, and the forecast relationships

satisfy smoothness conditions. We prove the case when gw,h(τ) = θw,hϕw,h(τ) = θw,h1{τ ∈
[2−w(h− 1), 2−wh]} are piecewise constants and the inputs y[t−L:t] ∈ [0, 1]. The proof for linear,

spline functions and y[t−L:t] ∈ [a, b] is analogous.

Lemma 1. Let a function representing an infinite forecast horizon be Y : [0, 1]→ R a square

integrable function L2([0, 1]). The forecast function Y can be arbitrarily well approximated by a

linear combination of piecewise constants:

Vw = {ϕw,h(τ) = ϕ(2w(τ − h)) | w ∈ Z, h ∈ 2−w × [0, . . . , 2w]}

where w ∈ N controls the frequency/indicator’s length and h the time-location (knots) around

which the indicator ϕw,h(τ) = 1{τ ∈ [2−w(h− 1), 2−wh]} is active. That is, ∀ϵ > 0, there is a

w ∈ N and Ŷ(τ |y[t−L:t]) = ProjVw
(Y(τ |y[t−L:t])) ∈ Span(ϕw,h) such that

∫
[0,1]

|Y(τ)− Ŷ(τ)|dτ =

∫
[0,1]

|Y(τ)−
∑
w,h

θw,hϕw,h(τ)|dτ ≤ ϵ (C.1)

Proof. This classical proof can be traced back to Haar’s work (1910). The indicator functions

Vw = {ϕw,h(τ)} are also referred in literature as Haar scaling functions or father wavelets.

Details are provided in Boggess and Narcowich, 2015.Let the number of coefficients for the

ϵ-approximation Ŷ(τ |y[t−L:t]) be denoted as Nϵ =
∑w

i=0 2
i
.
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Lemma 2. Let a forecast mapping Y(· | y[t−L:t]) : [0, 1]
L → L2([0, 1]) be ϵ-approximated by

Ŷ(τ |y[t−L:t]) = ProjVw
(Y(τ |y[t−L:t])), the projection to multi-resolution piecewise constants. If

the relationship between y[t−L:t] ∈ [0, 1]L and θw,h varies smoothly, for instance θw,h : [0, 1]L →
R is a K-Lipschitz function then for all ϵ > 0 there exists a three-layer neural network θ̂w,h :
[0, 1]L → R with O (L( K

ε

)
L
)

neurons and ReLU activations such that∫
[0,1]L
|θw,h(y[t−L:t])− θ̂w,h(y[t−L:t])|dy[t−L:t] ≤ ϵ (C.2)

Proof. This lemma is a special case of the neural universal approximation theorem that states

the approximation capacity of neural networks of arbitrary width (Hornik, 1991). The theorem

has refined versions where the width can be decreased under more restrictive conditions for the

approximated function (Barron, 1993; Hanin and Sellke, 2017).

Theorem 1. Let a forecast mapping be

Y(· | y[t−L:t]) : [0, 1]L → F , where the forecast functions F = {Y(τ) : [0, 1] → R} =
L2([0, 1]) representing a continuous horizon, are square integrable.

If the multi-resolution functions Vw can arbitrarily approximateL2([0, 1]). And the projection

ProjVw
(Y(τ)) varies smoothly on y[t−L:t]. Then the forecast mapping Y(· | y[t−L:t]) can be

arbitrarily approximated by a neural network learning a finite number of multi-resolution

coefficients θ̂w,h.

That is ∀ϵ > 0,∫
|Y(τ | y[t−L:t])− Ỹ(τ | y[t−L:t])|dτ

=

∫
|Y(τ | y[t−L:t])−

∑
w,h

θ̂w,h(y[t−L:t])ϕw,h(τ)|dτ ≤ ϵ
(C.3)

Proof. For simplicity of the proof, we will omit the conditional lags y[t−L:t]. Using both the

neural approximation Ỹ from Lemma 2, and Haar’s approximation Ŷ from Lemma 1,∫
|Y(τ)− Ỹ(τ)|dτ =

∫
|(Y(τ)− Ŷ(τ)) + (Ŷ(τ)− Ỹ(τ))|dτ

By the triangular inequality:∫
|Y(τ)− Ỹ(τ)|dτ ≤

∫
|Y(τ)− Ŷ(τ)|

+ |
∑
w,h

θw,hϕw,h(τ)−
∑
w,h

θ̂w,hϕw,h(τ)|dτ

By a special case of Fubini’s theorem∫
|Y(τ)− Ỹ(τ)|dτ ≤∫
|Y(τ)−

∑
w,h

Ŷ(τ)|dτ +
∑
w,h

∫
τ

|(θw,h − θ̂w,h)ϕw,h(τ)|dτ
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Using positivity and bounds of the indicator functions∫
|Y(τ)− Ỹ(τ)|dτ ≤∫
τ

|Y(τ)−
∑
w,h

Ŷ(τ)|dτ +
∑
w,h

|θw,h − θ̂w,h|
∫
τ

ϕw,h(τ)dτ

<

∫
τ

|Y(τ)−
∑
w,h

Ŷ(τ)|dτ +
∑
w,h

|θw,h − θ̂w,h|

To conclude, we use both arbitrary approximations from the Haar projection and the approx-

imation to the finite multi-resolution coefficients∫
|Y(τ)− Ỹ(τ)|dτ ≤∫
|Y(τ)− Ŷ(τ)|dτ +

∑
w,h

|θw,h − θ̂w,h| ≤ ϵ1 +Nϵ1ϵ2 ≤ ϵ

C.2 Computational Complexity Analysis

We consider a single forecast of length H for the following complexity analysis, with a NBEATS
and a NHITS architecture of B blocks. We do not consider the batch dimension. We consider

most practical situations, the input size L = O(H) linked to the horizon length.

The block operation described by Equation (4.2) has complexity dominated by the fully

connected layers of O(H Nh), with Nh the number of hidden units that we treat as a constant.

The depth of stacked blocks in the NBEATS-G architecture that endows it with its expressivity

is associated with a computational complexity that scales linearly O(HB), with B the number

of blocks.

The block operation described by Equation (4.2) has complexity dominated by the fully

connected layers ofO(H Nh), withNh the number of hidden units that we treat as a constant. The

depth of stacked blocks in the NBEATS-G architecture, which endows it with its expressivity,

is associated with a computational complexity that scales linearly O(HB), with B the number

of blocks.

In contrast, the NHITS architecture that specializes in each stack in different frequencies,

through the expressivity ratios, can greatly reduce the number of parameters needed for each

layer. When we use exponentially increasing expressivity ratios through the depth of the archi-

tecture blocks, it allows us to model complex dependencies while controlling the number of

parameters used on each output layer. If the expressivity ratio is defined as rℓ = rl then the

space complexity of NHITS scales geometrically O(
∑B

l=0Hr
l) = O

(
(H(1− rB)/(1− r)

)
.
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Table C.1: Computational complexity of deep learning forecasting methods as a function of the output

size H . For simplicity, we assume that the input size L scales linearly with respect to H . For NHITS and

NBEATS we also consider the network’s B blocks.

Model Time Memory

LSTM O(H) O(H)
ESRNN O(H) O(H)
TCN O(H) O(H)
Transformer O(H2) O(H2)
Reformer O(H logH) O(H logH)
Informer O(H logH) O(H logH)
Autoformer O(H logH) O(H logH)
LogTrans O(H logH) O(H2)

NBEATS-I O(H2B) O(H2B)
NBEATS-G O(HB) O(HB)
NHITS O(H(1− rB)/(1− r)) O(H(1− rB)/(1− r))

C.3 Datasets and Partition

Figure C.1 presents one time series for each dataset and the train, validation, and test splits from

Table 6.1.

C.4 Hyperparameter Exploration

All benchmark neural forecasting methods optimize the length of the input {96, 192, 336, 720}
for ETT, Weather, and ECL, {24, 36, 48, 60} for ILI, and {24, 48, 96, 192, 288, 480, 672} for

ETTm. The Transformer-based models: Autoformer,Informer,LogTrans, andReformer
are trained with MSE loss and ADAM of 32 batch size, using a starting learning rate of 1e-4,

halved every two epochs, for ten epochs with early stopping. Additionally, for comparability of

the computational requirements, all use two encoder layers and one decoder layer.

We use the adaptation to the long-horizon time series setting provided by Wu et al. 2021

of the Reformer (Kitaev et al., 2020), and LogTrans (Li et al., 2019c), with the multi-step

forecasting strategy (non-dynamic decoding).

The Autoformer (Wu et al., 2021) explores with grid-search the top-k auto-correlation

filter hyper-parameter in {1, 2, 3, 4, 5}. And fixes input L = 96 for all datasets except for ILI
in which they use L = 36. For the Informer (Zhou et al., 2020) we use the reported best

hyperparameters found using a grid-search that includes dimensions of the encoder layers

{6, 4, 3, 2}, the dimension of the decoder layer {2}, the heads of the multi-head attention layers

{8, 16} and its output’s {512}.
We considered other classic models, including the automatically selectedARIMAmodel (Hyn-

dman and Khandakar, 2008). The method is trained with maximum likelihood estimation under

normality and independence. It integrates root statistical tests with model selection performed
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Figure C.1: Datasets partition into the train, validation, and test sets used in our experiments (ETTm2,

ECL, Exchange, ILI, Traffic-L, and Weather). All use the last 20% of the total observations as the test

set (marked by the second dotted line), and the 10% preceding the test set as validation (between the first

and second dotted lines), except for ETTm2 that also use 20% as validation. Validation provides the

signal for hyperparameter optimization. We construct test predictions using rolling windows.

with Akaike’s Information Criterion. For the univariate forecasting experiment, we consider

Prophet (Taylor and Letham, 2018), an automatic Bayesian additive regression that accounts

for different frequencies of non-linear trends, seasonal and holiday effects, for this method we

tuned the seasonality mode {multiplicative, aditive}, the length of the inputs.

Finally, as mentioned in Section 4.4.3 for NHITS main results, we limit the exploration to

a minimal space of hyperparameters. We only consider the kernel pooling size for multi-rate

sampling from Equation (4.1), the number of coefficients in Equation (4.2) and the random seed

from Table C.2.
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Table C.2: Hyperparameters of the NHITS model

Hyperparameter Considered Values

Initial learning rate. {1e-3}
Training steps. {1000}
Random seed for initialization. DiscreteRange(1, 10)

Input size multiplier (L=m*H). m ∈ {5}
Batch Size. {256}
Activation Function. ReLU

Learning rate decay (3 times). 0.5

Pooling Kernel Size. [k1, k2, k3] ∈ {[2,2,2], [4,4,4], [8,8,8],

[8,4,1], [16,8,1]}
Number of Stacks. S ∈ {3}
Number of Blocks in each stack. B ∈ {1}
MLP Layers. {2}
Coefficients Hidden Size. Nh ∈ {512}
Number of Stacks’ Coefficients. [r−1

1 , r−1
2 , r−1

3 ] ∈ {[168,24,1], [24,12,1]

[180,60,1], [40,20,1],

[64,8,1] }
Interpolation strategy g(τ, θ) ∈ {Linear}

C.5 Main results standard deviations

Table 4.1 reports the average accuracy measurements to comply with page restrictions. Here, we

complement the Table’s results with the standard deviation associated with the eight runs of the

forecasting pipeline composed of the training and hyperparameter optimization methodologies

described in Section 4.4.3. Overall, the standard deviation of the forecasting pipelines accounts

for 2.9% of the MSE measurements and 1.75% of the MAE measurements. The small standard

deviation verifies the robustness of the results and accuracy improvements of NHITS predictions.

We observed that the Exchange accuracy measurements present the most variance between

each run.

For the completeness of our empirical evaluation, we include in Table C.3 the comparison

with the concurrent research including ETSformerand Preformer(Woo et al., 2022b; Du

et al., 2022). Table C.3 shows that NHITS maintains MAE 11% and MSE 9% performance

improvements across all the benchmark datasets and horizons versus the second-best alternative.

The only experiment setting where a concurrent research model outperformsNHITS predictions

is short-horizon Exchange where ETSformer reports MSE improvements of 9% and MAE

improvements of 4%.

C.6 Univariate Forecasting

As a complement of the main results from Section 4.4.4, in this Appendix, we performed

univariate forecasting experiments for the ETTm2 and Exchange datasets. This experiment

allows us to compare closely with other methods specialized in long-horizon forecasting that

also considered this setting (Zhou et al., 2020; Wu et al., 2021).

For the univariate setting, we consider the Transformer-based (1) Autoformer (Wu

et al., 2021), (2) Informer (Zhou et al., 2020), (3) LogTrans (Li et al., 2019c) and (4)
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Table C.3: Main empirical results in long-horizon forecasting setup, lower scores are better. Metrics are

averaged over eight runs and standard deviation in brackets, best results are highlighted in bold, second

best results are highlighted in blue.

NHITS (Ours) Autoformer Informer LogTrans Reformer ARIMA FEDformer ETSformer Preformer

Horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

2

96 0.176 0.255 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 0.225 0.301 0.203 0.287 0.183 0.275 0.213 0.295

(0.003) (0.001) (0.020) (0.020) (0.062) (0.047) (0.071) (0.020) (0.121) (0.021) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.245 0.305 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827 0.298 0.345 0.269 0.328 - - 0.269 0.329

(0.005) (0.002) (0.027) (0.025) (0.109) (0.050) (0.124) (0.049) (0.106) (0.012) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.295 0.346 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972 0.370 0.386 0.325 0.366 - - 0.324 0.363

(0.004) (0.002) (0.018) (0.015) (0.173) (0.056) (0.168) (0.054) (0.146) (0.0) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.401 0.413 0.422 0.419 3.379 1.388 3.048 1.328 2.631 1.242 0.478 0.445 0.421 0.415 - - 0.418 0.416

(0.013) (0.009) (0.015) (0.010) (0.143) (0.037) (0.140) (0.023) (0.126) (0.014) (-) (-) (-) (-) (-) (-) (-) (-)

EC
L

96 0.147 0.249 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402 1.220 0.814 0.183 0.297 0.187 0.302 0.180 0.297

(0.002) (0.002) (0.003) (0.004) (0.004) (0.003) (0.002) (0.002) (0.003) (0.004) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.167 0.269 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433 1.264 0.842 0.195 0.308 0.196 0.311 0.189 0.302

(0.005) (0.005) (0.003) (0.004) (0.009) (0.007) (0.005) (0.004) (0.004) (0.005) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.186 0.290 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433 1.311 0.866 0.212 0.313 0.215 0.330 0.201 0.319

(0.001) (0.001) (0.006) (0.004) (0.007) (0.004) (0.006) (0.001) (0.004) (0.003) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.243 0.340 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.42 1.364 0.891 0.231 0.343 0.236 0.348 0.232 0.342

(0.008) (0.007) (0.007) (0.008) (0.034) (0.024) (0.003) (0.002) (0.002) (0.002) (-) (-) (-) (-) (-) (-) (-) (-)

Ex
ch

an
ge

96 0.092 0.02 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 0.296 0.214 0.139 0.276 0.083 0.202 0.148 0.282

(0.002) (0.002) (0.019) (0.012) (0.150) (0.060) (0.177) (0.027) (0.070) (0.013) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.208 0.322 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.056 0.326 0.256 0.369 0.180 0.302 0.268 0.378

(0.025) (0.020) (0.020) (0.016) (0.149) (0.061) (0.232) (0.029) (0.041) (0.008) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.301 0.403 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 2.298 0.467 0.426 0.464 0.354 0.433 0.447 0.499

(0.042) (0.030) (0.041) (0.016) (0.036) (0.014) (0.122) (0.015) (0.027) (0.010) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.798 0.596 1.447. 0.941 2.478 1.310 1.941 1.127 1.510 1.016 20.666 0.864 1.090 0.800 0.996 0.761 1.092 0.812

(0.041) (0.013) (0.084) (0.028) (0.198) (0.070) (0.327) (0.030) (0.071) (0.008) (-) (-) (-) (-) (-) (-) (-) (-)

Tr
affi

c-
L

96 0.402 0.282 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423 1.997 0.924 0.562 0.349 0.614 0.395 0.560 0.349

(0.005) (0.002) (0.028) (0.012) (0.150) (0.060) (0.177) (0.027) (0.070) (0.013) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.420 0.297 0.616 0.382 0.696 0.379 0.685 0.39 0.733 0.42 2.044 0.944 0.562 0.346 0.629 0.398 0.565 0.349

(0.002) (0.003) (0.042) (0.020) (0.050) (0.023) (0.055) (0.021) (0.013) (0.011) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.448 0.313 0.622 0.337 0.777 0.420 0.733 0.408 0.742 0.42 2.096 0.960 0.570 0.323 0.646 0.417 0.577 0.351

(0.006) (0.003) (0.009) (0.003) (0.069) (0.026) (0.012) (0.008) (0.0) (0.0) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.539 0.353 0.660 0.408 0.864 0.472 0.717 0.396 0.755 0.423 2.138 0.971 0.596 0.368 0.631 0.389 0.597 0.358

(0.022) (0.012) (0.025) (0.015) (0.026) (0.015) (0.030) (0.010) (0.023) (0.014) (-) (-) (-) (-) (-) (-) (-) (-)

W
ea
th
er

96 0.158 0.195 0.266 0.336 0.300 0.384 0.458 0.49 0.689 0.596 0.217 0.258 0.217 0.296 0.189 0.272 0.227 0.292

(0.002) (0.002) (0.007) (0.006) (0.013) (0.013) (0.143) (0.038) (0.042) (0.019) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.211 0.247 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638 0.263 0.299 0.276 0.336 0.231 0.303 0.275 0.322

(0.001) (0.003) (0.024) (0.022) (0.045) (0.028) (0.151) (0.032) (0.048) (0.029) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.274 0.300 0.359 0.395 0.578 0.523 0.797 0.652 0.064 0.596 0.330 0.347 0.339 0.380 0.305 0.357 0.324 0.352

(0.009) (0.008) (0.035) (0.031) (0.024) (0.016) (0.034) (0.019) (0.030) (0.021) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.351 0.353 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792 0.425 0.405 0.403 0.428 0.352 0.391 0.394 0.393

(0.020) (0.016) (0.017) (0.014) (0.096) (0.042) (0.045) (0.093) (0.084) (0.055) (-) (-) (-) (-) (-) (-) (-) (-)

IL
I

24 1.862 0.869 3.483 1.287 5.764 1.677 4.480 1.444 4.4 1.382 5.554 1.434 2.203 0.963 2.862 1.128 3.143 1.185

(0.064) (0.020) (0.107) (0.018) (0.354) (0.080) (0.313) (0.033) (0.177) (0.021) (-) (-) (-) (-) (-) (-) (-) (-)

36 2.071 0.934 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 6.940 1.676 2.272 0.976 2.683 1.029 2.793 1.054

(0.015) (0.003) (0.139) (0.025) (0.248) (0.067) (0.251) (0.023) (0.138) (0.023) (-) (-) (-) (-) (-) (-) (-) (-)

48 2.134 0.932 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 7.192 1.736 2.209 0.981 2.456 0.986 2.845 1.090

(0.142) (0.034) (0.151) (0.037) (0.295) (0.059) (0.233) (0.021) (0.122) (0.016) (-) (-) (-) (-) (-) (-) (-) (-)

60 2.137 0.968 2.770 1.125 5.264 1.564 5.278 1.56 4.882 1.483 6.648 1.656 2.545 1.061 2.630 1.057 2.957 1.124

(0.075) (0.012) (0.085) (0.019) (0.237) (0.044) (0.231) (0.014) (0.123) (0.016) (-) (-) (-) (-) (-) (-) (-) (-)

Reformer (Kitaev et al., 2020) models. We selected other well-established univariate forecast-

ing benchmarks: (5) NBEATS (Oreshkin et al., 2020), (6) DeepAR (Salinas et al., 2020) model,

which takes autoregressive features and combines them with classic recurrent networks. (7)
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Prophet (Taylor and Letham, 2018), an additive regression model that accounts for different

frequencies of non-linear trends, seasonal and holiday effects, and (8) an auto ARIMA (Hyndman

and Khandakar, 2008).

Table C.4 summarizes the univariate forecasting results. NHITS significantly improves over

the alternatives, decreasing in MAE and in MSE across datasets and horizons with respect to the

best alternative. As noticed by the community, recurrent-based strategies, such as ARIMA, tend

to degrade due to the concatenation of errors phenomenon.

Table C.4: Empirical evaluation of long multi-horizon univariate forecasts. Mean Absolute Error (MAE)

and Mean Squared Error (MSE) for predictions averaged over eight runs, the best result is highlighted in

bold (lower is better).

NHITS Autoformer Informer Reformer NBEATS DeepAR ARIMA
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

2

96 0.066 0.185 0.065 0.189 0.088 0.225 0.131 0.288 0.082 0.219 0.099 0.237 0.211 0.362

192 0.087 0.223 0.118 0.256 0.132 0.283 0.186 0.354 0.120 0.268 0.154 0.310 0.261 0.406

336 0.106 0.251 0.154 0.305 0.180 0.336 0.220 0.381 0.226 0.370 0.277 0.428 0.317 0.448

720 0.157 0.312 0.182 0.335 0.300 0.435 0.267 0.430 0.188 0.338 0.332 0.468 0.366 0.487

Ex
ch

an
ge

96 0.093 0.223 0.241 0.299 0.591 0.615 1.327 0.944 0.156 0.299 0.417 0.515 0.112 0.245

192 0.230 0.313 0.273 0.665 1.183 0.912 1.258 0.924 0.669 0.665 0.813 0.735 0.304 0.404

336 0.370 0.486 0.508 0.605 1.367 0.984 2.179 1.296 0.611 0.605 1.331 0.962 0.736 0.598

720 0.728 0.569 0.991 0.860 1.872 1.072 1.280 0.953 1.111 0.860 1.890 1.181 1.871 0.935

C.7 Ablation Studies

This section performs ablation studies on the validation set of five datasets that share horizon

lengths, ETTm2, Exchange, ECL, Traffic-L, and Weather. The section’s experiments control

for NHITS settings described in Table C.2, only varying a single characteristic of interest of the

network and measuring the effects in validation.

Pooling Configurations

2 5 8 5 2 5 6 2 10 6 9 3

8 5 10 9

5 4 6 6

(a) MaxPool

(b) AveragePool

Figure C.2: Proposed pooling configurations
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In Section 4.3.1, we described the multi-rate signal sampling enhancement of the NHITS
architecture. Here, we conduct a study to compare the accuracy effects of different pooling

alternatives on Equation (4.1). We consider the MaxPool and AveragePool configurations.

As shown in Table C.5, the MaxPool operation consistently outperforms the AveragePool

alternative, with MAE improvements up to 15% and MSE up to 8% in the most extended horizon.

On average, the forecasting accuracy favors the MaxPool method across the datasets and

horizons.

Table C.5: Empirical evaluation of long-horizon multivariate forecasts for NHITS with different pooling

configurations. All other hyperparameters were kept constant across all datasets. MAE and MSE for

predictions averaged over eight seeds; the best result is highlighted in bold (lower is better). Average

percentage difference relative to average pooling in the last panel.

MaxPool AveragePool

MSE MAE MSE MAE

ET
Tm

2

96 0.185 0.265 0.186 0.262
192 0.244 0.308 0.257 0.315

336 0.301 0.347 0.312 0.356

720 0.429 0.438 0.436 0.447

EC
L

96 0.152 0.257 0.181 0.290

192 0.172 0.275 0.212 0.320

336 0.197 0.304 0.238 0.343

720 0.248 0.347 0.309 0.400

Ex
ch

an
ge

96 0.109 0.232 0.112 0.238

192 0.280 0.375 0.265 0.371
336 0.472 0.504 0.501 0.502
720 1.241 0.823 1.610 0.942

Tr
affi

c-
L 96 0.405 0.286 0.468 0.332

192 0.421 0.297 0.490 0.347

336 0.448 0.318 0.531 0.371

720 0.527 0.362 0.602 0.400

P
.
D

i
ff

.

96 -8.911 -6.251 0.000 0.000

192 -7.544 -6.085 0.000 0.000

336 -8.740 -4.575 0.000 0.000

720 -15.22 -8.318 0.000 0.000

Interpolation Configurations

In Section 4.3.3, we described the hierarchical interpolation enhancement of the multi-step

prediction strategy. Here, we conduct a study to compare the accuracy effects of different

interpolation alternatives. To do it, we change the interpolation technique used in the multi-step

forecasting strategy of the NHITS architecture. The interpolation techniques considered are

nearest neighbor, linear, and cubic. We describe them in detail below.

Recalling the notation from Section 4.3.3, consider the time indexes of a multi-step prediction
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τ ∈ {t + 1, . . . , t + H}, let T = {t + 1, t + 1 + 1/rℓ . . . , t + H} be the anchored indexes in

NHITS layer ℓ, and the forecast ŷτ,ℓ = g(τ, θfℓ ) and backast ỹτ,ℓ = g(τ, θfℓ ) components. Here

we define different alternatives for the interpolating function g ∈ C0, C1, C2. For simplicity, we

skip the ℓ layer index.

Nearest Neighbor. In the simplest interpolation, we use the anchor observations in the

time dimension closest to the observation we want to predict. Specifically, the prediction is

defined as follows:

ŷτ = θ[t∗] with t∗ = argmint∈T {|t− τ |} (C.4)

Linear. An efficient alternative is the linear interpolation method, which uses the two closest

neighbor indexes t1 and t1, and fits a linear function that passes through both.

ŷτ =

(
θ[t1] +

(
θ[t2]− θ[t1]
t2 − t1

)
(τ − t1)

)
(C.5)

Cubic. Finally we consider the Hermite cubic polynomials defined by the interpolation

constraints for two anchor observations θt1 and θt1 and its first derivatives θ
′
t1

and θ
′
t1

.

ŷτ = θ[t1]ϕ1(τ) + θ[t2]ϕ2(τ) + θ
′
[t1]ψ1(τ) + θ

′
[t2]ψ2(τ) (C.6)

With the Hermite cubic basis defined by:

ϕ1(τ) = 2τ 3 − 3τ 2 + 1 (C.7a)

ϕ2(τ) = −2τ 3 + 3τ 2 (C.7b)

ψ1(τ) = τ 3 − 2τ 2 + τ (C.7c)

ψ2(τ) = τ 3 − τ 2 (C.7d)

The ablation study results for the different interpolation techniques are summarized in

Table C.6, we report the average MAE and MSE performance across the five datasets. We found

that linear and cubic interpolation consistently outperform the nearest neighbor alternative and

show monotonic improvements relative to the nearest neighbor technique along the forecasting

horizon.

The linear interpolation improvements over nearest neighbors are up to 15.8%, and up to

7.0% for the cubic interpolation. When comparing between linear and cubic, the results are

inconclusive as different datasets and horizons have slight performance differences. On average,

across the datasets, both the forecasting accuracy and computational performance favor the

linear method, with which we conducted the main experiments of this work with this technique.

Order of Hierarchical Representations

Deep Learning in classic tasks such as computer vision and natural language processing is known

to learn hierarchical representations from raw data that increase complexity as the information

flows through the network. This automatic feature extraction phenomenon is believed to drive
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Table C.6: Empirical evaluation of long multi-horizon multivariate forecasts for NHITS with different

interpolation configurations. All other hyperparameters were kept constant across all datasets. MAE

and MSE for predictions averaged over eight seeds; the best result is highlighted in bold (lower is better).

Percentage difference relative to n. neighbor in the last panel, average across datasets.

Linear Cubic N.Neighbor

MSE MAE MSE MAE MSE MAE

ET
Tm

2

96 0.185 0.265 0.179 0.256 0.180 0.259

192 0.244 0.308 0.241 0.303 0.252 0.315

336 0.301 0.347 0.314 0.358 0.302 0.351

720 0.429 0.438 0.439 0.450 0.442 0.455

EC
L

96 0.152 0.257 0.149 0.252 0.151 0.255

192 0.172 0.275 0.174 0.279 0.175 0.279

336 0.197 0.304 0.190 0.295 0.211 0.318

720 0.248 0.347 0.256 0.353 0.263 0.358

Ex
ch

an
ge

96 0.109 0.232 0.1307 0.254 0.126 0.248

192 0.280 0.375 0.247 0.357 0.357 0.416

336 0.472 0.504 0.625 0.560 0.646 0.560

720 1.241 0.823 1.539 0.925 1.740 0.973

Tr
affi

c-
L 96 0.405 0.286 0.402 0.282 0.405 0.359

192 0.421 0.297 0.417 0.295 0.419 0.201

336 0.448 0.318 0.446 0.315 0.445 0.253

720 0.527 0.362 0.540 0.366 0.525 0.318

W
ea
th
er

96 0.164 0.199 0.162 0.203 0.161 0.360

192 0.224 0.255 0.225 0.257 0.218 0.928

336 0.285 0.311 0.285 0.304 0.298 0.988

720 0.366 0.359 0.380 0.369 0.368 1.047

P
.
D

i
ff

.

96 -0.907 -0.717 0.146 1.61 0.000 0.000

192 -5.582 -3.259. -7.985 -4.332 0.000 0.000

336 -10.516 -4.199 -2.108 -1.455 0.000 0.000

720 -15.800 -7.042 -5.480 -1.579 0.000 0.000

to a large degree the algorithms’ success (Bengio et al., 2012). Our approach differs from the

conventions in the sense that we use a Top-Down hierarchy where we prioritize in the synthesis

of the predictions to low frequencies and sequentially complement them with higher frequencies

details, as explained in Section 4.3. We achieve this with NHITS’ expressiveness ratio schedules.

Our intuition is that the Top-Down hierarchy acts as a regularizer and helps the model to focus

on the broader factors driving the predictions rather than narrowing its focus at the beginning

on the details that compose them. To test these intuitions, we designed an experiment where we

inverted the expressiveness ratio schedule into Bottom-Up hierarchy predictions and compared

the validation performance.

Remarkably, as shown in Table C.7, the Top-Down predictions consistently outperform the

Bottom-Up counterpart. Relative improvements in MAE are 4.6%, in MSE of 7.5%, across horizons

and datasets. Our observations match the forecasting community practice that addresses long-

horizon predictions by first modeling the long-term seasonal components and then its residuals.
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Table C.7: Empirical evaluation of long multi-horizon multivariate forecasts for NHITS with different

hierarchical orders. All other hyperparameters were kept constant across all datasets. MAE and MSE for

predictions averaged over eight seeds, the best result is highlighted in bold (lower is better). Average

percentage difference relative to ascending hierarchy in the last panel.

Top-Down Bottom-Up

MSE MAE MSE MAE

ET
Tm

2

96 0.185 0.265 0.191 0.266

192 0.244 0.308 0.261 0.320

336 0.301 0.347 0.302 0.353

720 0.429 0.438 0.440 0.454

EC
L

96 0.152 0.257 0.164 0.270

192 0.172 0.275 0.186 0.292

336 0.197 0.304 0.217 0.327

720 0.248 0.347 0.273 0.369

Ex
ch

an
ge

96 0.109 0.232 0.114 0.242

192 0.280 0.375 0.436 0.452

336 0.472 0.504 0.654 0.574

720 1.241 0.823 1.312 0.861

Tr
affi

c-
L 96 0.405 0.286 0.410 0.292

192 0.421 0.297 0.427 0.305

336 0.448 0.318 0.456 0.323

720 0.527 0.362 0.557 0.379

W
ea
th
er

96 0.164 0.199 0.163 0.200

192 0.224 0.255 0.219 0.252
336 0.285 0.311 0.288 0.311

720 0.366 0.359 0.365 0.355

P
.
D

i
ff

.

96 -2.523 -2.497 0.000 0.000

192 -12.296 -6.793 0.000 0.000

336 -11.176 -5.507 0.000 0.000

720 -4.638 -3.699 0.000 0.000

C.8 Multi-rate sampling and Hierarchical Interpolation
beyond NHITS

Empirical observations let us infer that the advantages of theNHITS architecture are rooted in its

multi-rate hierarchical nature, as both the multi-rate sampling and the hierarchical interpolation

complement the long-horizon forecasting task in MLP-based architectures. In this ablation

experiment, we quantitatively explore the effects and complementarity of the techniques in an

RNN-based architecture.

This experiment follows the Table 4.2 ablation study, reporting the average performance

across ETTm2, ECL, Exchange, Traffic-L, and Weather datasets. We define the following

set of alternative models: DilRNN1, our proposed model with both multi-rate sampling and

hierarchical interpolation, DilRNN2 only hierarchical interpolation, DilRNN3 only multi-rate
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sampling, DilRNN with no multi-rate sampling or interpolation (corresponds to the original

DilRNN (Chang et al., 2017)).

Tab. C.8 shows that the hierarchical interpolation technique drives the main improvements

(DilRNN2), while the combination of both proposed components (hierarchical interpolation

and multi-rate sampling) sometimes results in the best performance (DilRNN1), the difference

is marginal. Contrary to the clear complementary observed in Table 4.2, the DilRNN does not

improve substantially from the multi-rate sampling techniques. We find an explanation in the

behavior of the RNN that summarizes past inputs and the current observation of the series, and

not the complete whole past data like the MLP-based architectures.

A key takeaway of this experiment is that NHITS’ hierarchical interpolation technique

exhibits significant benefits in other architectures. Despite these promising results, we decided

not to pursue more complex architectures in our work as we found that the interpretability of

the NHITS predictions and signal decomposition capabilities was not worth losing.

Table C.8: Empirical evaluation of long multi-horizon multivariate forecasts for DilRNN with/without

enhancements. Average MAE and MSE for five datasets. The best result is highlighted in bold, and the

second best is in blue (lower is better).

DilRNN1 DilRNN2 DilRNN3 DilRNN

A
.
M

S
E

96 0.346 0.331 0.369 0.347

192 0.539 0.528 0.545 0.561

336 0.647 0.691 0.705 0.723

720 0.765 0.762 0.789 0.800

A
.
M

A
E

96 0.343 0.335 0.352 0.347

192 0.460 0.444 0.462 0.468

336 0.513 0.537 0.539 0.649

720 0.585 0.566 0.600 0.598

C.9 Hyperparameter Optimization Resources

Computational efficiency has implications for the prediction’s accuracy and the cost of de-

ployment. Since forecasting systems are constantly retrained to address distributional shifts,

orders-of-magnitude improvements in speed can easily translate into orders-of-magnitude price

differences deploying the models. This section explores the implications of computational effi-

ciency in the accuracy gains associated with hyperparameter optimization and training economic

costs.

Hyperparameter Optimization. Despite all the progress in improving the computation

efficiency of Transformer-based methods, see Figure 4.4, their speed and memory requirements

make exploring their hyperparameter space unaffordable in practice, considering the amount of

GPU computation they still require.

For this experiment, we report the iterations of the hyperparameter optimization phase, de-

scribed in Section 4.4.3, where we explore the hyperparameters from Table C.2 usingHYPEROPT,
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Figure C.3: NHITS performance improvement over Autoformer as a function of explored hyperpa-

rameter configurations.

a Bayesian hyperparameter optimization library (Bergstra et al., 2011). As shown in Figure C.3 the

exploration exhibits monotonic relative performance gains of NHITS versus the best reported

Autoformer (Wu et al., 2021) in the ablation datasets.

Training Economic Costs. We measure the train time for NHITS, NBEATS-G and

Transformer-based models on the six main experiment datasets and 8 runs. We rely on an AWS

g4dn.2xlarge, with an NVIDIA T4 16GB GPU.

We differentiate betweenNHITS1, our method with a singleHYPEROPT iteration randomly

sampled from Table C.2, and NHITS20 to our method after 20 HYPEROPT iterations. For the

Transformer-based models, we used optimal hyperparameters as reported in their repositories.

Table C.9 shows the measured train time for the models, NHITS1 takes 1.5 hours while more

expensive architectures such as the Autoformer or Informer take 92.6 and 62.1 hours

each. Based on hourly prices from January 2022 for the g4dn.2xlarge instance, USD 0.75,

the main results of the paper would cost nearly USD 70.0 with Autoformer, USD 46.5 with

Informer, while NHITS1 results can be executed under USD 1.5 and NHITS20 with USD

22.8. Figure C.3, shows that NHITS1 achieves a 17% MSE average performance gain over

Autoformer with 1.6% of a single run cost, and NHITS20 almost 25% gain with 33% of a

single run cost. A single run does not consider hyperparameter optimization.

ExptPrice = GPUPrice× HyperOptIters× TrainTime× Runs
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Table C.9: Train time hours on a g4dn.2xlarge instance.

Horizon NHITS1 NHITS20 Autoformer Informer NBEATS-G

A
.
T

i
m

e

96/24 0.183 3.66 12.156 9.11 0.291

192/36 0.257 5.14 16.734 11.598 0.462

336/48 0.398 7.96 22.73 15.237 0.674

720/60 0.682 13.64 40.987 26.173 1.249

Total 1.523 30.46 92.607 62.118 2.676
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[145] Kin G Olivares, Cristian Challú, Federico Garza, Max Mergenthaler Canseco, and Artur

Dubrawski. “NeuralForecast: User friendly state-of-the-art neural forecasting models”.

In: PyCon Salt Lake City, Utah, US 2022 (2022), p. 6 (cit. on p. 76).

[146] Kin G. Olivares, Cristian Challu, Grzegorz Marcjasz, Rafal Weron, and Artur Dubrawski.

“Neural basis expansion analysis with exogenous variables: Forecasting electricity prices

with NBEATSx”. In: International Journal of Forecasting 39.2 (2022), pp. 884–900 (cit. on

pp. 5, 24).

[147] Harry Rubin-Falcone, Joyce M Lee, and Jenna Wiens. “Forecasting with Sparse but

Informative Variables: A Case Study in Predicting Blood Glucose”. In: KDD ’22: The 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington, DC,

USA: ACM, 2022. url: https://kdd-milets.github.io/milets2022/papers/MILETS 2022

paper 0765.pdf (cit. on pp. 55, 56, 58).

[148] Siyuan Shan, Lamtharn Hantrakul, Jitong Chen, Matt Avent, and David Trevelyan.

“Differentiable Wavetable Synthesis”. In: ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 4598–4602 (cit. on

p. 30).

[149] Fan-Keng Sun and Duane S Boning. “Fredo: frequency domain-based long-term time

series forecasting”. In: arXiv preprint arXiv:2205.12301 (2022) (cit. on p. 39).

[150] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. “Etsformer:

Exponential smoothing transformers for time-series forecasting”. In: arXiv preprint
arXiv:2202.01381 (2022) (cit. on pp. 39, 40).

[151] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. “ETS-

former: Exponential Smoothing Transformers for Time-series Forecasting”. In: Comput-
ing Research Repository abs/2202.01381 (2022). arXiv: 2202.01381. url: https://arxiv.org/

abs/2202.01381 (cit. on p. 95).

[152] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. “Anomaly Transformer: Time

Series Anomaly Detection with Association Discrepancy”. In: International Conference
on Learning Representations. 2022. url: https://openreview.net/forum?id=LzQQ89U1qm

(cit. on p. 21).

[153] Yi Xu, Lichen Wang, Yizhou Wang, and Yun Fu. “Adaptive Trajectory Prediction via

Transferable GNN”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 6520–6531 (cit. on p. 3).

[154] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. “Are transformers effective for time

series forecasting?” In: arXiv preprint arXiv:2205.13504 (2022) (cit. on p. 38).

[155] Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Rong Jin, et al. “Film: Fre-

quency improved legendre memory model for long-term time series forecasting”. In:

arXiv preprint arXiv:2205.08897 (2022) (cit. on p. 38).

[156] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. “Fedformer:

Frequency enhanced decomposed transformer for long-term series forecasting”. In:

International Conference on Machine Learning. PMLR. 2022, pp. 27268–27286 (cit. on

pp. 32, 39, 40, 46).

117

https://kdd-milets.github.io/milets2022/papers/MILETS_2022_paper_0765.pdf
https://kdd-milets.github.io/milets2022/papers/MILETS_2022_paper_0765.pdf
https://arxiv.org/abs/2202.01381
https://arxiv.org/abs/2202.01381
https://arxiv.org/abs/2202.01381
https://openreview.net/forum?id=LzQQ89U1qm_


[157] Cristian Challu, Peihong Jiang, Ying Nian Wu, and Laurent Callot. “SpectraNet: Mul-

tivariate Forecasting and Imputation under Distribution Shifts and Missing Data”. In:

ML4IoT Workshop at ICLR, Oral. 2023 (cit. on p. 5).

[158] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mer-

genthaler Canseco, and Artur Dubrawski. “Nhits: Neural hierarchical interpolation for

time series forecasting”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 37. 6. 2023, pp. 6989–6997 (cit. on pp. 5, 31, 32, 35, 66, 83).

[159] Azul Garza and Max Mergenthaler-Canseco. “TimeGPT-1”. In: arXiv preprint arXiv:2310.03589
(2023) (cit. on pp. 72, 78).

[160] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, and Andrey Kan.

“Unsupervised Model Selection for Time-series Anomaly Detection”. In: 11th International
Conference on Learning Representations, ICLR 2023, Oral. 2023 (cit. on p. 21).

[161] Albert Gu and Tri Dao. “Mamba: Linear-time sequence modeling with selective state

spaces”. In: arXiv preprint arXiv:2312.00752 (2023) (cit. on p. 73).

[162] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A Time Series
is Worth 64 Words: Long-term Forecasting with Transformers. 2023. arXiv: 2211.14730

[cs.LG] (cit. on p. 66).

[163] Willa Potosnak, Cristian Challu, Kin G Olivares, and Artur Dubrawski. “Forecasting

Response to Treatment with Deep Learning and Pharmacokinetic Priors”. In: Findings
Track at ML4H (2023) (cit. on p. 5).

[164] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopou-
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