
Automated Coding of Open-Ended Survey Responses

Dallas Card and Noah A. Smith

October 2015

Abstract

Background: Manual coding of open-ended survey responses is time-consuming, expensive,
and error-prone. However, this task can be recast as a multi-label text classification problem, to
which natural language processing and machine learning techniques can be applied.
Aim: The aim of this work is to assess the suitability of various machine learning techniques
to the problem of automated coding of open-ended survey responses, and to explore the use of
techniques to automate the search for an appropriate model.
Data: The data for this project consist of approximately 28,500 manually-coded responses by
2,000 respondents to open-ended survey questions from the 2008 American National Election
Studies survey.
Methods: We compare the application of two types of machine learning methods to this task:
L1-regularized logistic regression, and recurrent neural networks. In an effort to provide a fair
comparison, while minimizing bias in favor of novelty, we make use of Bayesian optimization
to perform an automated search over the configuration space of these two types of models, and
make use of a reusable holdout in an attempt to prevent overfitting.
Results: In the case of a traditional logistic regression model, we find that Bayesian optimization
is an effective way to do feature selection and hyperparameter tuning. For recurrent neural
networks, which involve a much larger space of possible configurations, we have been unable to
produce a consistent improvement over the baseline in performance on this data.
Conclusions: Although we do not presently recommend recurrent neural networks as a effective
or easy-to-use approach to this kind of limited-data multi-label classification problem, we believe
that with further work, recurrent neural networks do have advantages which can be realized
through an automated model selection process.

1 Introduction

Open-ended surveys offer social scientists the opportunity to learn about public opinion in respon-
dents’ own words. They allow discovery of opinions that might be unexpected when preparing, for
example, a list of answer choices in a closed-ended survey. Open-ended surveys, however, have a
high cost in analyzing responses.

The survey data we consider here is from the American National Election Studies (ANES),
which seeks to ascertain the American public’s knowledge of and attitudes about American politics.
As with most data from open-ended survey questions, each of the ANES survey responses has been
manually classified using predefined sets of labels, or “codes”. This process, known as “coding”,
has a number of disadvantages, all of which might be overcome through automation:

• It requires human coders, who in turn require training, pay, and time to complete the task.

• Human coders can lack internal and group consistency, and they make errors. Considerable
overhead is often required to check agreement among coders, synchronize them on coding
conventions, and correct mistakes.

1

• Traditional coding methodology offers no measurement of coder confidence in making a judg-
ment and no way to record rationales for judgments.

Automated coding could, potentially, offer a faster, lower-cost, and more consistent alternative,
with additional information about confidence and rationales.

In this report, we explore and evaluate methods for automated coding of open-ended survey
responses. Our primary focus is on comparing methods in terms of accuracy (measured against
human coders), interpretability, and computational demands. A secondary focus is on describing
the techniques we consider, which are all instances of general-purpose statistical text categorization
models. We begin by reviewing the ANES dataset used in our experiments (Section 2), then present
the methods (Section 3), and finally discuss our experiments (Section 4).

2 Data

Our data is a collection of open-ended questions and responses from the 2008 ANES survey. The
responses are encoded as short textual summaries written by the interviewers, during the interviews.
Prior to this work, the responses were manually coded by professionals (contracted by the designers
of the survey) into a set of predefined codes for each question. To our knowledge, the iterative coding
process followed standard, community-accepted procedures to obtain high intercoder agreement.

Full audio of conversations with survey respondents is recorded during ANES interviews, but—
like the human coders—we do not make use of the audio recordings. This could potentially be
interesting in future work, though we expect large amounts of irrelevant content in the audio stream.
A secondary consideration is preserving respondents’ privacy when sharing audio data, which is
arguably less anonymous than textual summaries.

The 2008 ANES included twenty-one open-ended questions asked of over 2,000 respondents,
dealing with the respondents’ knowledge of and attitudes towards political issues, parties, and
individuals. (For a complete list of questions, see Appendix A.) The number of codes per question
ranges from 12 to 74, though some are never used in this dataset. Although some of these codes
are mutually exclusive, in practice there was no restriction as to which or how many of the codes
associated with a question a coder might give to any particular response.

For some questions, the available codes are quite carefully delineated (distinguishing, for ex-
ample, between “Vice President” and “Vice President of the United States”). Others had more
topical or thematically defined responses, such as “Defense spending,” “Iraq,” and “Terrorism.”
Because these were open-ended questions, there is the possibility of a response which cannot be well
categorized given the predefined coding scheme, so categories such as “Other” are used to account
for this possibility. Two additional responses common to all questions were “I don’t know” and
“Refuse to answer.”

The questions were presented to respondents in a set order in a limited amount of time, thus
not every question was asked of every respondent, and the number of responses per question thus
varied from approximately 100 to 2,100, with a total of 28,500 individual responses.

Because of the nature of this text (generated quickly by interviewers attempting to summarize
responses), it tends to be quite noisy, with frequent and varied misspellings and lack of grammatical
structure. In addition, interviewers made use of shorthand, e.g., “dk” for “don’t know”, and “//”
or “\\” to separate parts of a response. Unfortunately, these conventions were not consistent across
interviewers. Table 1 gives some examples of unedited survey responses to a selection of these
questions.

In what follows, we will use the term question to refer to one of the twenty-one survey questions
(e.g., “Why do you think John McCain lost the Presidential election?”); response refers to the text

2 of 24

Question Responses
Who is Vice President
Dick vp
Cheney? vice prcident

lobbyist/state senater
I DON’T LIKE HIM// SKIP IT//
know him but dont know what he doed
vp, he’s a jerk, dont give him a gun

Why might democrat
you vote good speeker
for he wants 2 end the war
Barack his understanding of the conomy
Obama? for working class, support women, health care issues, democratic

He is a black man. First black president. It going to go down in
history.
I agree with his views on several things, he’s very experienced and

knows what he’s talking about/his views on the war, gay rights,
abortion, the economy right now, health benefits, taxes and
education/i just think he seems like a candidate who can connect
with the people and be a good representation of the nation’s
population/

Why might his inexperience
you vote his views on abortion
against his muslim backround
Barack his issues on abortion and gay marriage;
Obama? some people say that he is the anti christ; some people say he might

be a terrorist
his past ties w/ bill ayres his connection to the rev wright and the

priest fleder. he got a loan from country wide and got a huge
break and as far as i’m concerned this man is the devil

he’s alittle too liberal, i wanted hillary

Table 1: Examples of survey responses. The questions have been paraphrased, but the responses have been
left uncorrected.

3 of 24

written to summarize one respondent’s answer to one question. A label is an element of the set of
a question’s predefined categories that can be assigned to a response. For each response, each label
is associated with a value of 1 (if the label was assigned to the response) or 0 (if it wasn’t). The
(complete) code for a response should be understood as a binary vector in which each dimension is
associated with a label. We will use the term prediction to refer to an automatic coding method’s
code vector for a particular response.

3 Methods

We view the task of automatic survey response coding as a multi-label classification problem. In
particular, for each survey question, determining which codes should be assigned to a particular
response is a list of yes or no decisions. Thus, we can train classifiers to predict, for a new response,
whether each code for the appropriate question should be assigned to the response or not. The
predicted list of yes/no decisions provides a binary code vector.

In order to take advantage of the fact that some questions have identical label sets, we combine
questions that share a label set. This results in ten groups of questions, as described in Appendix A.
We will report, for each group, a single performance score, which can be understood as an average
of per-response F1 scores. Concretely, let z∗i be the binary vector code assigned by human coders to
the ith response in a group, and let ẑi be the binary vector code predicted by an automatic method
for the ith response. Then we report:

1

I

I∑
i=1

2z∗i
>ẑi

‖z∗i ‖1 + ‖ẑi‖1
(1)

where I is the number of responses to the union of questions with the same set of labels.
As usual in machine learning experiments, we split the data into training, validation, and test

datasets. The training dataset is used to select model parameters for any given choice of predictive
model and its hyperparameters. The validation dataset is used to estimate the performance of a
trained model separately from the training dataset, so that we can compare different hyperparameter
settings. To get a clean estimate of performance even after multiple rounds of consultation with
the validation dataset, we turn at the end to the test dataset. In the following, the test dataset is
a random 10% of the responses for each question, and the remainder of the data is divided into five
equal-sized folds, which can alternately be used for training or validation data.

We consider two broad classes of approaches to this classification task: linear models and recur-
rent neural networks. Below, we give a basic explanation of each (Sections 3.1 and 3.2), though the
differences are quickly summarized:

• Linear models are transparently interpretable, making use of words (and perhaps phrases) as
features whose impact on a prediction can be quantified by inspection of the model parameters.
Neural networks are, at present, less straightforward to interpret.

• Neural networks provide a much more expressive space from which to select hypotheses.1 This
might allow greater accuracy at making predictions, but it also means that far more training
examples are needed to learn to generalize well.

• The computational task of training a linear model is very well understood: it is a convex
optimization problem. This is not the case for neural networks, which tend to be much more

1The term hypothesis in machine learning refers to a function from inputs (here, survey response summaries) to
outputs (here, sets of labels).

4 of 24

expensive to train. The convergence properties of neural network training algorithms are not
well understood theoretically, though there is a rich literature of empirical findings.

Of course, many more options are available for classification. We have chosen these two for the
simple reason that one (linear modeling) is a familiar and effective baseline in text classification
tasks (Wang and Manning, 2012), and that the other has recently received a flood of attention in
the computer science community. Our expectation in the long term is that the best methods to be
developed will be hybrids that draw from the ideas underlying both of these families of techniques,
and others as well.

For both kinds of models, there are a number of design decisions to make and hyperparameters
to select. These include numerical choices like the strength of a regularization penalty or the length
of a neural network “hidden” vector, as well as discrete choices like whether to include bigram
features in a linear model or which type of nonlinear function to use in a neural network. (We
call a full configuration of choices a setting.) We therefore rely on Bayesian optimization to resolve
these choices in reasonable ways, under computational budget constraints (Bergstra et al., 2011;
Snoek et al., 2012). In Bayesian optimization, a sequence of settings is explored, with each setting
chosen based on the observed performance of settings in previous rounds, estimated on a validation
dataset. Because this method risks overfitting to the validation set, we use a reusable holdout
technique (Dwork et al., 2015). Bayesian optimization and the reusable holdout are discussed in
greater detail in Appendices B and C, respectively.

3.1 Linear Models (Logistic Regression)

We consider logistic regression (LR), a family of linear models with a probabilistic semantics. The
prediction rule LR uses to decide whether to assign label ` to textual response i is:

ẑi,` =

{
1 if β0 + β>xi ≥ 0
0 otherwise

(2)

where xi is a feature representation of the textual response and 〈β0,β〉 is a vector of label-specific
coefficients estimated through the training procedure to maximize, for each label `:∑

i

log pβ(Z = z∗i,` | xi)− λR(β) (3)

where i here ranges over responses in the training dataset, R is a regularization penalty, and λ is a
hyperparameter. The probability of a label is given by the classic LR parametric form:

pβ(Z = 1 | xi) =
(

1 + exp(−β0 − β>xi)
)−1

(4)

How well LR works depends, of course, on the features. The usual starting point for defining a
feature vector for text classification is a histogram of word occurrences in an instance, so that each
word type gets a coefficient. We also consider consecutive two-word sequences (bigrams), a feature
for the question name, and conjunctions of words with the question type, as well as abstractions
from words (part-of-speech tags, word Brown clusters (Brown et al., 1992),2 and named entities).
The number of instances of each type of feature are shown in Table 2.

2Brown clustering assumes a hierarchical language model which models the probability of a word given its cluster,
and the probability of transitioning to each cluster given the cluster of the previous token. Each word type is assigned
to a single cluster, with the assignments determined by greedily merging clusters to maximize the likelihood of a
corpus of text until the desired number of clusters is reached.

5 of 24

Feature type Number of instantiated features
Basic n-grams:
Unigrams 11,467
Bigrams 65,460
Conjoined n-grams:
Democrat vs. Republican 7,673
Likes vs. Dislikes 11,906
Clinton vs. Obama 4,982
McCain vs. Obama 8,216
Personal vs. Political 5,401
Other
Brown clusters 200
Part-of-speech tags 45
Named entities 13
Question name 16

Table 2: Features considered for logistic regression. The number of instantiated features is given without
thresholding based on the number of times a feature occurs in the data.

The above discussion gives a sense of the kind of information that our LR model can use to
code a response, but there are many more decisions to be made to precisely specify the features
and the training method. These decisions, we argue, are not intuitive or interesting, in the sense
that an understanding of the domain will not shed much light on the best choices. They include:
whether to convert characters to lower case (we do); where exactly to split responses into tokens
(we use whitespace and slashes, and split off punctuation); whether to convert counts into binary
values; whether to throw out features that occur too few times in the training data (and if so, what
frequency threshold); how strongly to regularize (i.e., the value of λ in Equation 3); and whether
to include each type of feature or ignore it. Because we do not have the resources for an exhaustive
exploration of all of these options, we will report the results of two procedures:

1. A baseline in which we include only binarized unigrams, a classic setup that is cheap to
implement, and tune the regularization strength λ.

2. The best setting from 40 rounds of Bayesian optimization, making use of the reusable holdout.

For both of these models, we used five-fold cross validation on the training/validation data to
estimate the generalization performance of each model. Depending on the features used, the number
of parameters in any one LR setting might be between 10,000 and 85,000.

3.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are functions from sequences of vectors to sequences of vectors.
Because our instances are more naturally understood as sequences of symbols, the first step in
applying RNNs to our problem is to map each word to a vector representation. There is a cottage
industry of approaches for doing this, many of which make use of large, unannotated corpora
to “embed” words as vectors. Within our Bayesian optimization setup, we consider a few such
mappings.

Let xj be the vector representation of the jth word token in a given response. (Let J be the
length of that response, in word tokens.) To make a prediction, we use the following recurrence to
define a sequence of “hidden” vectors, which can be thought of as encoding a representation of all

6 of 24

inputs seen sequentially up to that point:

hj = tanh (Wxxj + Whhj−1 + bh) (5)

These vectors are combined to give the “output” vector o:

o = sigmoid

 J∑
j=1

aj � (Wohj + bo)

 (6)

(In the above, the tanh and sigmoid functions are element-wise, and � is the element-wise
(Hadamard) product.)3 The parameters of the model that are trained include all W∗ matrices and
b∗ vectors. The a∗ vectors might select the last element j = J and ignore the rest, or take an
element-wise maximum, or might be defined as another collection of parameters—this is one of the
choices left to the Bayesian optimizer, along with the dimensionality of h∗.

The output vector o will contain values in [0, 1]; we threshold element-wise at 0.5 to decide
which labels are predicted:

ẑ = round(o) (7)

Parameter estimation is carried out by stochastic gradient descent on the logistic loss (similar
to LR) with early stopping when performance does not improve on the validation set for a certain
number of steps (to prevent overfitting). In any setting, the training iterate with the best validation
performance is the one that is used. Because of the large amount of time required to train a single
RNN model, only a single fold of the training data is used as a validation set, with the other four-
fifths used as training data (as opposed to the 5-fold cross validation used for logistic regression).

We consider many variations on the RNN described above, including the long short-term mem-
ory (LSTM) unit (a more complicated, heavily parameterized way of combining xj and hj−1); for
additional details see Appendix D. Our Bayesian optimizer handles a wide range of decisions about
the RNN architecture; see Table 3. The distribution (Dist.) column refers to the type of prior dis-
tribution placed on the hyperparameter in the search space. More details on these hyperparameters
can be found in Appendix E.

Although the size of this configuration space could be made artificially commensurate with
the search space for logistic regression feature selection presented above, the key difference is in
the interactions between settings. Adding or dropping a single feature will generally have a small
impact on the performance of a linear model. The settings for RNNs, by contrast, are highly
interdependent. For the LSTM, in particular, the appropriate learning rate depends on the size of
the hidden nodes, and many other settings, and even a small change could lead to a completely
ineffective model.

Virtually all RNN settings in this search space, however, possess many more parameters to be
learned than the linear models. The most complicated RNN in our search space would have 3,445,475
parameters. This is 40 times more than the largest linear model, and more than 300 times larger
than the unigram model. Given the limited amount of data we have, we are quite skeptical that
good generalization performance can be achieved in such a setting. In our experiments, we report
two types of RNNs: the “basic RNN”, as described by Equations 5–7, and the equivalent network
using LSTM connections (as described in Appendix D).

3This is slightly different from the form that is more commonly seen, which applies the linear transformation after
combining the hidden nodes (i.e. o = sigmoid(Wo(

∑J
j=1 aj � hj) + bo)). The model presented here, however, has

the advantage of being more interpretable, in that the values of Wohj + bo can be directly inspected to determine
the contribution that each hidden node is making to the final prediction. We make use of this to help interpret the
output of these models in section 4.3 below.

7 of 24

Hyperparameter Dist. Range or Choices
Minimum word threshold MN {1, 2, 3, 4}

Word vectors MN
{Google News, ANES,

Reddit, ANES+Reddit}
Extra OOV dimension MN {Y, N}
Use Xavier initialization MN {Y, N}
if not using Xavier init.: Initialization scale U [0, 1]

Input window size MN {1, 3}
Add dataset type MN {Y, N}
Pooling method MN {Max, Last, Learned}
Bidirectional MN {Y, N}
if Bidirectional: Combine layers MN {Max, Mean, Concatenate}

Hidden node dimension (Basic) qU {5, 10, 15, . . . , 200}
Hidden node dimension (LSTM) qU {5, 10, 15, . . . , 100}
Train embeddings MN {Y, N}
Learning rate (Basic) LU [e−4, e−1]
Learning rate (LSTM) LU [e−5, e−1.5]
if Train embeddings: LR embedding factor U [0, 1]

LR decay delay MN {3, 4, 5, 6, 7, 8, 9}
LR decay factor U [0, 1]
Random OOV noise MN {Y, N}
if Random OOV noise: Noise prob LU [e−6, e−3]

Minibatch size MN {1, 4, 16}
Clip gradients MN {Y, N}

Table 3: Configuration space for RNNs. “Dist.” refers to the prior distribution placed on the hyperparameter
in the search space: U = uniform, LU = log-uniform, MN = multinomial, qU = quantized uniform.

4 Experiments

A summary of the main results is shown in Table 4. As can be seen, the more-highly featurized
linear models developed using Bayesian optimization outperform the basic unigram models trained
using cross validation on all but one dataset. The basic RNN models, by contrast, are in most
cases considerably worse than the latter, and sometimes worse than the basic unigram model. The
LSTM models show highly varied performance, sometimes winning out and sometimes performing
quite poorly.

4.1 Which settings are selected?

Readers experienced with text classification will be unsurprised that no consistent pattern emerges
in the best settings found by Bayesian optimization across tasks. Regardless of the type of model
one chooses, the best setting of hyperparameter-like choices is a matter of empirical testing, not
problem-specific or linguistic insight.

For linear models, Table 5 shows that, in addition to unigrams, commonly selected features
include Brown clusters (7 out of 10 datasets), named entities (6 out of 10), part of speech tags (5
out of 10), and bigrams (4 out of 10). Brown clusters in particular are interesting, as they abstract
across similar words, including misspelled variants.

The equivalent table of selected features for the best performing RNNs is shown in Table 6.
Although there is no hyperparameter which is consistently selected in all cases, there are some
dominant patterns which emerge. Settings which were selected in the best model for at least 7 out
of 10 datasest include LSTM networks (as opposed to basic RNNs), including the word embeddings

8 of 24

Dataset General Primary Party Person
Election Election (Dis)likes (Dis)likes Terrorists

Responses 239 288 4407 4684 2100
Labels 41 42 33 34 28
Label cardinality 2.89 2.22 2.29 2.39 1.96
Unigram model 0.485 0.601 0.648 0.689 0.806
Best linear model 0.547 0.667 0.675 0.714 0.811
Best basic RNN 0.415 0.614 0.642 0.681 0.748
Best LSTM 0.313 0.433 0.712 0.668 0.759

Dataset Important Knowledge: Knowledge: Knowledge: Knowledge:
Issues Brown Cheney Pelosi Roberts

Responses 8399 2098 2095 2096 2094
Labels 74 14 12 15 14
Label cardinality 1.33 1.37 1.20 1.37 1.34
Unigram model 0.860 0.930 0.947 0.888 0.927
Best linear model 0.855 0.943 0.956 0.930 0.959
Best basic RNN 0.823 0.921 0.954 0.892 0.930
Best LSTM 0.826 0.922 0.963 0.896 0.946

Table 4: Results (mean F1) for the best of various methods on each group of questions, with the best result
for each dataset shown in bold. Label cardinality refers to the average number of positive labels per response.

Dataset General Primary Party Person
Election Election (Dis)likes (Dis)likes Terrorists

Unigrams X(B4) X(2) X(1) X(1) X(1)
Bigrams X(B5)
Conjoined unigrams X(B2) X(2) n/a
Brown clusters X(B) X(B)
Part-of-speech tags X X
Named entities X X X
Question name X X n/a

Dataset Important Knowledge: Knowledge: Knowledge: Knowledge:
Issues Brown Cheney Pelosi Roberts

Unigrams X(1) X(1) X(B1) X(3) X(4)
Bigrams X(B5) X(B3) X(B3)
Conjoined unigrams n/a n/a n/a n/a
Brown clusters X X X X(B) X
Part-of-speech tags X X(B) X
Named entities X X X
Question name n/a n/a n/a n/a

Table 5: Features selected through Bayesian optimization for logistic regression models. The number in
parentheses is the threshold for number of occurrences in the corpus below which rare words were excluded.
“B” indicates that the counts were binarized.

9 of 24

as parameters in the model, combining hidden nodes through an element-wise maximum, not using
Xavier initialization, replacing random words in the input data with an out-of-vocabulary symbol,
using a minibatch size of 1, and clipping the gradients. 7 out of 10 of the best RNN models were also
bidirectional, with concatenation being the most common way of combining layers, though both
the max and mean operations were also selected. Google’s pre-trained word vectors were the most
commonly selected word vectors, but the custom vectors trained on either the ANES or the Reddit
datasets were also selected.

It is encouraging that we see some consistent patterns, but we are hesitant to draw any conclu-
sions from this. Restricting the search space to some of the more popular options might improve the
results, but for most datasets, there are other, very different networks discovered through Bayesian
optimization that offer nearly equivalent performance. Without additional experimentation, it is
very difficult to give general advice. Our recommendation, instead, is to consider using Bayesian
optimization or similar hyperparameter search methods, and budget as much time as possible for a
search through settings.

4.2 Should we abandon RNNs for this task?

Impressive results have recently been reported on a wide range of NLP (and other) tasks, making use
of RNNs (Bahdanau et al. (2014), Vinyals et al. (2015), Ballesteros et al. (2015)). The open-ended
survey response coding task differs from those success stories in two important ways: complexity
of the task and the hyperparameter search process. First, the amount of training data available is
relatively small (a few thousand instances), and the multi-label output scheme makes learning even
more challenging. Of course, linear models profit from more training data as well. A reasonable
predictor of performance is the amount of training data relative to the number of labels. The best
predictor, however, is the label cardinality – the average number of positive labels per response.

With respect to the first measure, the two Likes / Dislikes datasets are considerable outliers. We
would expect all classifiers to perform better on these datasets given the large amount of data and
relatively small amount of labels. One possible explanation for this is that the four questions being
combined for each for of these datasets contain words that depend on the question being asked. For
example, “Republicans” could either refer to the subject of the question, or the opposition party,
depending on the question. This is further suggested by the fact that these are the only two datasets
to make use of unigrams conjoined with question type as features.

Although the above is somewhat speculative, it also provides a possible explanation for why an
LSTM was able to outperform the best logistic regression model by a reasonable margin on one of
these datasets. Because neural networks are able to potentially make use of arbitrary conjunctions of
features, it is possible that the LSTM is doing a better job of capturing the relevance of particular
words in context. Indeed there are instances for this model where the word “Republican” (in
context) correctly activates the Party label (the party being asked about) or the Another party
label, depending on the question.

On the other hand, our experiments’ forty iterations of Bayesian optimization are almost surely
not enough to find a competitive setting, given the huge space of possible settings that can be
considered.4 If we look at the progress of Bayesian optimization on logistic regression (Figure 1), we
see that most of the improvements come early on (in the first 20 iterations). The few gains after that
tend to be quite small. By contrast, the same plot for RNNs shows both more frequent and larger
gains after the twentieth iteration. This suggests that more iterations of Bayesian optimization

4Bergstra et al. (2011), for example, used 80 iterations of Bayesian optimization. Many papers provide relatively
few details about how hyperparameters were chosen; Weiss et al. (2015), however, demonstrate that there can be large
benefits to devoting extensive (industrial-scale) computational resources to this purpose.

10 of 24

Dataset General Primary Party Person
Election Election (Dis)likes (Dis)likes Terrorists

RNN type Basic Basic LSTM Basic LSTM
Minimum word threshold 2 1 4 2 1
Word vectors Google ANES Google Google ANES
Extra OOV dimension Yes No No No Yes
Use Xavier initialization No No Yes No No
Initialization scale 0.83 0.77 n/a 0.3 0.09
Input window size 1 1 1 3 3
Add dataset type No No Yes Yes n/a
Pooling method Max Max Max Max Max
Bidirectional No Yes Yes No Yes
Combine layers n/a Max Concat n/a Concat
Hidden node dimension 65 170 35 135 65
Train embeddings Yes Yes No Yes Yes
Learning rate 0.21 0.17 0.01 0.23 0.17
LR embedding factor 0.59 0.81 n/a 0.8 0.63
LR decay delay 8 6 6 5 9
LR decay factor 0.43 0.52 0.49 0.44 0.36
Random OOV noise No Yes Yes No Yes
OOV noise prob n/a 0.048 0.003 n/a 0.005
Minibatch size 1 1 1 1 1
Clip gradients Yes Yes No Yes Yes

Dataset Important Knowledge: Knowledge: Knowledge: Knowledge:
Issues Brown Cheney Pelosi Roberts

RNN type LSTM LSTM LSTM LSTM LSTM
Minimum word threshold 1 3 2 3 2
Word vectors Google Google Reddit Google Reddit
Extra OOV dimension No No No Yes Yes
Use Xavier initialization No Yes Yes No No
Initialization scale 0.01 n/a n/a 0.45 0.10
Input window size 1 3 3 1 3
Add dataset type No n/a n/a n/a n/a
Pooling method Learned Max Max Last Max
Bidirectional No Yes Yes Yes Yes
Combine layers n/a Concat Concat Max Mean
Hidden node dimension 75 70 55 45 75
Train embeddings Yes No Yes Yes Yes
Learning rate 0.06 0.14 0.01 0.08 0.09
LR embedding factor 0.79 n/a 0.58 0.84 0.97
LR decay delay 5 9 5 6 8
LR decay factor 0.62 0.98 0.51 0.34 0.65
Random OOV noise Yes Yes Yes Yes Yes
OOV noise prob 0.009 0.018 0.030 0.017 0.036
Minibatch size 1 1 4 4 4
Clip gradients No Yes No Yes Yes

Table 6: Selected features for the best RNNs.

11 of 24

0 5 10 15 20 25 30 35 40

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
va

id
a
ti

o
n

F
1

0

5

10

15

20

25

F
re

q
u
en

cy
o
f

im
p
ro

v
em

en
t

Figure 1: Progress of logistic regression on the 10 datasets across 40 iterations of Bayesian optimization. Each
blue line corresponds to one dataset, and shows the current best validation performance at each iteration.
The vertical grey lines show the number of datasets which improved at that iteration.

would be beneficial. Additional “tricks” that help the RNNs to converge to a good solution for a
given set of hyperparameters also have the potential to improve overall performance.

Neural networks are often billed as a way to avoid manual feature engineering. We believe
our experiments provide a useful illustration that this claim is misleading. Both linear and neural
models require many choices to be made; we have tried to carry out a fair comparison by using the
best-available techniques to automate those choices. Explicitly laying out the space of choices to be
made for each reveals a much larger space of options for RNNs. This is not to say that the search
for a good setting is hopeless, merely that our experiments did not reveal settings competitive with
the best discoverable linear models, in most cases.

There are still more options for training neural networks that our Bayesian optimizer did not
consider, including the use of regularization, dropout, additional layers, different learning rate
schedules, and so on. Because some runs of our learning procedure fail to make any progress
(possibly due to a poor random initialization), the search procedure learns very little from these
iterations. It is possible that better learning regimens, with (for example) more time per iteration
of Bayesian optimization, and, as noted above, increasing the number of iterations of Bayesian
optimization would allow us to discover more competitive RNN settings for this dataset.

Of course, there is no reason we necessarily have to choose one over the other. It is entirely
possible to include the choice between logistic regression and neural networks (or other classifiers)
as yet another part of the configuration space for Bayesian optimization, and thereby automate this
choice as well. When using RNNs, however, it seems as though the time required for training will
tend to be the limiting factor in the search for the best model for the data.

At this juncture, we do not recommend abandoning RNNs for multi-label text classification
problems in general, or the open-ended survey response coding tasks considered here in particular.
We do, however, caution researchers that the daunting space of hyperparameter choices may be
prohibitive to search, even with automated techniques, and linear models remain a good default
from the computational point of view. At the very least, given how easy and cheap it is to train
linear models, they should always be used as a baseline for the purpose of comparison, and an
automated model selection process helps to ensure that this is a reasonable comparison.

12 of 24

0 5 10 15 20 25 30 35 40

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
va

id
a
ti

o
n

F
1

0

5

10

15

20

25

F
re

q
u
en

cy
o
f

im
p
ro

v
em

en
t

Figure 2: Progress of LSTMs on the various datasets across 40 iterations of Bayesian optimization. Each blue
line corresponds to one run of a LSTM on a single dataset, and shows the current best validation performance
at each iteration. The vertical grey lines show the number of datasets which improved at that iteration.

4.3 What about interpretability?

One of the difficulties of working with neural networks, or other non-linear, highly parametrized
models (such as random forests), is that they are generally thought to be difficult to interpret.
Although linear models such as logistic regression might make predictions that seem highly coun-
terintuitive, it is at least easy to determine precisely why a classification was made, simply by
identifying the weights associated with the various features that are present. With RNNs, on
the other hand, there might be thousands of interacting parameters that are relevant for a single
example.

As a way of exploring this issue further, we present one in-depth example from this classification
task, to better understand the differences between the two approaches.

Consider the following response to the question Is there anything in particular that you don’t like
about the Republican party? : “1disaprove of the stance on gay rights issues, energy policy, religion
permiates the rep. party.” This response is typical, in that it contains typos, touches on multiple
issues, and is not entirely grammatical.

Human coders assigned six codes to this response: Party [the Republican Party], Religion,
Policy-Liberty, Policy-Other, Groups, and Other. Both the best LSTM and the unigram model
successfully predicted all of these but “Other”, and predicted no false positives. (The best logistic
regression model found through Bayesian optimization is very similar to the unigram model in this
case, but the latter will be used for simplicity of presentation).

Figure 3 presents an illustration of how this example is processed by the linear model; colors
correspond to β0 + βTxi in equation 2, with strongly positive words in bright blue and strongly
negative words in bright red. As can be seen, for at least four of the labels, there is a single word
which dominates the decision, with obvious relevance to the label.

Figure 4 presents the equivalent picture for the best performing LSTM on this dataset. Because
this network uses a max operation over hidden nodes, there are no “negative” elements, and we have
instead plotted the probability of positive classification for each element in the sequence, from white
(0) to bright blue (1). These values correspond to the output of equation 6 if we don’t perform the
weighted sum over elements (i.e. the values for word j are given by oj = sigmoid(Wohj + bo)).

Also, because this is a bidirectional network with concatenated layers, the value for each element

13 of 24

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

General

Religion

Policy-Liberty

Policy-Other

Groups

Other

Figure 3: Feature (word) weights for the unigram models (for a subset of labels) applied to the phrase
“1disaprove of the stance on gay rights issues, energy policy, religion permiates the rep. party.” In this visu-
alization, blue indicates a positive coefficient, and red indicates a negative one, with bolder colors indicating
greater magnitude.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

1disapprove of the stance on gay rights issues, energypolicy, religionpermiates the rep. party.

General

Religion

Policy-Liberty

Policy-Other

Groups

Other

Figure 4: Output probabilities (for a subset of labels) associated with each element in the sequence from the
best performing RNN (a bidirectional LSTM), applied to the phrase “1disaprove of the stance on gay rights
issues, energy policy, religion permiates the rep. party.” White corresponds to 0, bright blue to 1.

represents not just the corresponding word, but the word in its full context, from the start of the
sentence in one direction, and from the end of the sentence in the other. As a result, for example,
we see that both words of the bigram “gay rights” are prominent for both the Liberty and Groups
labels.

Although most of the positive probabilities here again make sense for each label, the high
probability of the “Policy-Other” label for the word “Religion” seems strange. Moreover, it is
unclear from all of this whether the contribution of each element depends on its context or not. For
example, would “party” cue the General label so strongly if not preceded by “rep.”? Would “gay”
cue Liberty so strongly if not followed by “rights”?

It is possible to investigate these questions by running an altered versions of the sentence through
the final model. Figure 5 shows the result if remove the words “rights” and “rep.”, leaving the se-
mantically similar sentence “1disaprove of the stance on gay issues, energy policy, religion permiates
the party.”

As can be seen, several things have changed. The importance of “party” has dropped off
dramatically without the context of “rep.”, such that the General label would no longer be predicted.

14 of 24

1disapprove of the stance on gay issues , energy policy , religion permiates the party .

1disapprove of the stance on gay issues , energy policy , religion permiates the party .

1disapprove of the stance on gay issues , energy policy , religion permiates the party .

1disapprove of the stance on gay issues , energy policy , religion permiates the party .

1disapprove of the stance on gay issues , energy policy , religion permiates the party .

1disapprove of the stance on gay issues , energy policy , religion permiates the party .

1disapprove of the stance on gay issues , energy policy , religion permiates the party .

General

Religion

Policy-Liberty

Policy-Other

Groups

Other

Figure 5: Modified output probabilities (for a subset of labels) associated with each element in the sequence
from the best performing RNN (a bidirectional LSTM), applied to the modified phrase “1disaprove of the
stance on gay issues, energy policy, religion permiates the party.” White corresponds to 0, bright blue to 1.

Religion and Groups are unaffected, but Policy-Liberty drops effectively to zero, as we would expect,
without the word “rights”. Most surprisingly, the prediction of Policy-Other associated with the
word “religion” has also disappeared, even though that word was three words away from any edits.

This example illustrates that we can to some extent make sense of what is happening with the
internals of RNNs, but that it is difficult to disambiguate the contribution of each element of the
sequence or to predict how the prediction might differ for a slightly different sentence.

4.4 Is the Reusable Holdout working?

As described in (Dwork et al., 2015), the Reusable Holdout (RH) is a technique designed to limit
the probability of overfitting to a validation set, when repeatedly evaluating models in an adaptive
fashion. This makes the technique ideally suited for use with Bayesian optimization, where the next
set of hyperparameter values to try is chosen based on all evaluations of the validation set seen so
far. Full details are provided in Appendix C.

If the RH is working, we would expect that the final test-set performance of the best model from
a model search using the RH would be better than that of the best model found without using it.
Although there was insufficient time to replicate all experiments with and without the RH, we did
replicate the search for the best logistic regression model.

The results of this comparison are shown in Table 7. For 8 out of 10 datasets, making use of
the RH resulted in a model with a final test performance that was equal to or greater than the best
model produced without using the RH, though in most cases the differences are negligible (< 0.01
mean F1). Thus, while it is encouraging that using the RH tends to give slightly better results
most of the time, we have no conclusive evidence that it is actually helping to prevent overfitting.
Note that this is not intended to be a rigorous evaluation of the RH technique, but a secondary
observation on a method we have chosen to use.

One possible explanation for this result is that overfitting is not a serious problem for logistic
regression models with these datasets. On the other hand, it is also possible that because we are
making more evaluations of the validation set that would strictly be allowed by the theory (as do
Dwork et al.), we cannot depend on the guarantees of the RH. In other words, further work is
required to further connect the theoretical and experimental properties of the RH, and additional
experiments are needed to determine empirically how far we can push it beyond its theoretical
limitations.

15 of 24

Dataset General Primary Party Person
Election Election (Dis)likes (Dis)likes Terrorists

With RH 0.547 0.667 0.675 0.714 0.811
Without RH 0.494 0.639 0.670 0.742 0.785

Dataset Important Knowledge: Knowledge: Knowledge: Knowledge:
Issues Brown Cheney Pelosi Roberts

With RH 0.855 0.943 0.956 0.930 0.959
Without RH 0.855 0.941 0.955 0.935 0.955

Table 7: Comparison of results (mean F1) for the best logistic regression model found through Bayesian
optimization with and without using the Reusable Holdout. The better result for each dataset is shown in
bold.

5 Limitations

There were a number of limitations to this project. The first set of limitations have to do with
the data. Although the ANES conducts surveys during every national election, we only had access
to the responses from a single survey, rather than having data from multiple years. In addition,
as described above, we only had access to the interviewer summaries, written during the inter-
views, rather than the full transcripts, which might have been much richer. The errors in these
summaries (spelling and grammar) caused some difficulty, and greater human preprocessing might
have produced improvements. Furthermore, for the annotations, we only had access of the final
agreed-upon annotations from the human coders, rather than the specifics of cases where coders
initially disagreed, which might have been useful in trying to understanding cases where the coding
is ambiguous.

Second, in terms of scope, we only considered two classes of algorithms to apply to this dataset.
Although there are many other options we could have considered, these two served effectively as a
strong baseline, on the one hand, and a chance to explore more recently-developed but promising
methods, on the other. If we were only interested in overall performance, it would make sense
to consider a wider range of options, all of which could be considered within the framework of
Bayesian optimization. Similarly, additional configurations of RNNs could have been considered,
such as using additional layers, or other architectures, such as convolutional neural networks.

Third, in terms of performance, we were limited to some extent by computational considerations.
It is likely that the RNNs in particular would have benefited from additional computational power
(for additional runs of Bayesian optimization), as well as additional refinement of the methods used
for training. Because training time for these models can be quite long, there were only a limited
number of iterations that could be tried on all datasets. Further experience with these methods will
likely produce faster training, but to scale up to much larger datasets would likely require further
investment in processing power.

6 Conclusions

Multi-label text classification remains a fundamental paradigm into which a variety of computational
social science problems can be cast. We have considered the use of two very different approaches
to the automated coding of a modest corpus of open-ended survey responses.

As expected, we find that traditional NLP methods offer reasonable performance on this task,
particularly in the case of large amounts of training data and low label cardinality. Although
reasonable baseline performance can be obtained with a simple unigram model, it is generally
possible to realize gains through the use of additional features, such as bigrams and Brown clusters.

16 of 24

Though recurrent neural networks have recently demonstrated impressive gains on a variety of
NLP tasks, we have largely been unable to demonstrate the same sorts of benefits on this dataset,
potentially as a result of the limited amount of data available for training these complex and highly-
parameterized models.

Nevertheless, the potential for gains is still there, as demonstrated by a sizable performance
improvement on one of the ten datasets examined in this report. We remain optimistic that with
additional refinement, these methods may be widely applicable to a broad range of problems. For
the moment, however, difficulties related to computational demands, interpretability, and the large
number of possible configurations suggest that they are perhaps not yet ready for convenient, off-
the-shelf use in computational social science applications.

Finally, we have fruitfully demonstrated the application of two relatively simple techniques,
which can be combined with any existing machine learning methods for a variety of problems.
In particular, Bayesian optimization provides a general framework to automatically determine the
settings to use for a particular method for good generalization performance. Used in tandem with
Bayesian optimization, the reusable holdout appears to offer some protection against overfitting to
the validation set, to help ensure that the resulting models will truly generalize.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference on Learning
Representations (ICLR), 2014.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved transition-based parsing by modeling
characters instead of words with LSTMs. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2015.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a
Python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1), 2015.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems (NIPS). 2011.

Peter F. Brown, Peter V. de Souza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based N-gram models of natural language. Computational Linguistics, 18(4):467–479, 1992.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Roth.
The reusable holdout: Preserving validity in adaptive data analysis. Science, 349(6248):636–638,
2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

Alex Graves. Supervised sequence labelling with recurrent neural networks, volume 385 of Studies
in Computational Intelligence. Springer, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. 2013. arXiv:1301.3781 [cs.CL].

Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, 2010.

17 of 24

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems (NIPS). 2012.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey E. Hinton.
Grammar as a foreign language. In Advances in Neural Information Processing Systems (NIPS),
2015.

Sida Wang and Christopher D. Manning. Baselines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2012.

David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. Structured training for neural network
transition-based parsing. In Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2015.

A Survey questions

• Dataset 1: General Election

– Why do you think Barack Obama won the Presidential election?

– Why do you think John McCain lost the Presidential election?

• Dataset 2: Primary Election

– Why do you think Barack Obama won the Democratic nomination?

– Why do you think Hillary Clinton lost the Democratic nomination?

• Dataset 3: Party (Dis)likes:

– Is there anything in particular that you like about the Democratic party?

– Is there anything in particular that you like about the Republican party?

– Is there anything in particular that you don’t like about the Democratic party?

– Is there anything in particular that you don’t like about the Republican party?

• Dataset 4: Person (Dis)likes:

– Is there anything in particular about John McCain that might make you want to vote
for him?

– Is there anything in particular about Barack Obama that might make you want to vote
for him?

– Is there anything in particular about John McCain that might make you want to vote
against him?

– Is there anything in particular about Barack Obama that might make you want to vote
against him?

• Dataset 5: Terrorists

– As you know, on September 11th 2001, a group of Terrorists took control of several U.S.
commercial airplanes and crashed them into the World Trade Center in New York and
the Pentagon in Washington. What do you think the Terrorists were trying to accomplish
by their actions?

18 of 24

• Dataset 6: Important Issues

– What has been the most important issue to you personally in this election?

– What has been the second most important issue to you personally in this election?

– What do you think is the most important political problem facing the United States
today?

– What do you think is the second most important political problem facing the United
States today?

• Dataset 7: Political Knowledge: Brown

– What job or political office does Gordon Brown now hold?

• Dataset 8: Political Knowledge: Cheney

– What job or political office does Dick Cheney now hold?

• Dataset 9: Political Knowledge: Pelosi

– What job or political office does Nancy Pelosi now hold?

• Dataset 10: Political Knowledge: Roberts

– What job or political office does John Roberts now hold?

B Bayesian optimization for hyperparameter selection

A critical part of model specification is the selection of hyperparameter settings, such as regular-
ization strength, or the number of layers in a neural network. For complex models, this can involve
choosing values for potentially dozens of inter-dependent hyperparameters. Moreover, training and
evaluating a model for a particular choice of hyperparameters is typically a costly operation. Thus,
only a limited number of choices can realistically be evaluated.

The three main techniques that are typically used for this task are human-guided search, grid
search, and random search. In at least one study (Bergstra and Bengio, 2012), random search was
found to outperform grid search. More recently, a collection of approaches known using Bayesian
optimization have emerged as a strong alternative. Because the true mapping of hyperparameter
settings to performance is complex and unknown, Bayesian optimization replaces this function with
a more manageable surrogate function, which it then tries to optimize.

If we define X as the full space of possible hyperparameters to be searched, and y = f(x) as the
model performance for a particular set of hyperparmater values, x, then the expected improvement
criterion for Bayesian optimization tries to choose new set of value x that will will return the highest
expected increase over the current best result, y∗. More precisely, for the case where we want to
maximize y, the expected improvement is given by:

EIy∗(x) =

∫ ∞
−∞

max(y − y∗, 0)p(y|x)dy

The Tree-structured Parzen Estimator (TPE) is an approach to Bayesian optimization which
attempts to maximize expected improvement by modeling p(x|y) and p(y) (Bergstra et al., 2011).
In particular, given a set of results Y returned so far, TPE take y∗ not as the best, but as some

19 of 24

quantile of these results. p(x|y) is then modeled using two non-parametric density estimators, one
for y < y∗ and one for y ≥ y∗.

The space of X is constructed as a tree (because some hyperparamters depend on particular
settings of others). At each node of the tree, a prior distribution is placed over the possible val-
ues of the corresponding hyperparamter, using one of four probability distributions: uniform (U),
log-uniform (LU), quantized uniform (qU) or a multinomial distribution (MN) for discrete-valued
hyperparameters. Hyperparameter values can be drawn from the tree according to these distribu-
tions, which will be updated throughout the course of optimization. The likelihood is modeled as a
mixture of Gaussians, with one placed at each point explored in the search space. Choosing a new
point to explore in the space is done by randomly drawing many points and choosing the one with
the highest expected improvement, which can be reduced to the ratio between the values of the two
non-parametric densities at that point.

Berstra et al (2011) used this methodology to train two Deep Belief Networks. They generated
30 random trials and then ran 50 trials of Bayesian optimization. Using this method, they found
that the TPE approach outperformed random search, human search, and Gaussian processes, dis-
covering a new state-of-the-art result on one dataset. Even for a large search space, the computation
required to choose the next set of hyperparameter values to try is extremely fast, thus evaluating
the model for those settings will generally be the bottle-neck. Importantly, however, this search
process only considers each hyperparameter in isolation, and does not model interactions between
hyperparameters, except in the case of dependence between parent and child nodes.

For this analysis, we make use of a python package called hyperopt, which carries out the
iterative selection of hyperparameter values using the TPE search on a user-defined search space
(Bergstra et al., 2015).

C Reusable Holdout

Because Bayesian optimization works by repeatedly constructing a classifier and evaluating it on
a validation set, there is an inherent danger of overfitting to this validation set, just as individual
classifiers tend to overfit to the training data. As a counter-weight to this, we make use of a recently-
proposed idea called the reusable holdout (Dwork et al., 2015). Based on an idea from differential
privacy, this technique tries to limit the amount that can be learned about the individual items in
the validation set, and thereby prevent overfitting.

The algorithm is as follows: on each iteration, a noisy threshold is generated, centered on some
positive value. Both the training error and the validation error are then computed, but the later is
not returned directly. Rather, if the difference between the training error and the validation error is
below the current threshold, the training error is returned instead. If it is larger than the threshold,
then some noise is added to the validation error, and that quantity is returned, and the threshold
is reset to the original value plus some noise. Dwork et al. demonstrate that they can bound the
probability of overfitting for a number of evaluations of the validation set which is exponential in
the size of the validation set, even though decisions about the model are being made adaptively.

For this analysis, we apply the reusable holdout using the suggested default parameters to the
values returned from each iteration of Bayesian optimization. These noisy values are then used by
the Bayesian optimizer to choose the next set of hyperparameter values to evaluate. To choose a
final model, we use the true validation values (without noise), and select the model with the best
validation performance. This model is then evaluated on the test data, without any additional
noise.

Although one can calculate a “budget”, the precise number of evaluation of the validation set
which are allowed while controlling the probability of overfitting, Dwork et al. ignore this in their

20 of 24

experiments, and demonstrate that this technique works empirically, even when using an excess
number of evaluations. We do the same here, ignoring the budget, and apply the RH on all rounds
of Bayesian optimization.

Reusable Holdout algorithm (ignoring budget restrictions)

1. Set base threshold T , and noise level σ.

2. Sample γ ∼ Laplace(2 · σ)

3. T̂ ← T + γ

4. For each query:

(a) Compute training and validation performance (Et and Ev)

(b) Sample η ∼ Laplace(4 · σ)

(c) If |Et − Ev| > T̂ + η

i. Sample ξ ∼ Laplace(σ) and γ ∼ Laplace(2 · σ)

ii. T̂ ← T + γ

iii. Output Ev + ξ

(d) Else, output Et

D Long Short-Term Memory (LSTM) networks

One problem with basic RNNs is the so-called “vanishing gradient” problem, in which the gradients
for parameters near the beginning of the recurrent network end up being vanishingly small. A
more complicated model designed to overcome this difficulty is known as the LSTM (Graves, 2012;
Hochreiter and Schmidhuber, 1997). This model involves a drop-in replacement for the way in
which successive hidden nodes are produced from a previous hidden node and the next sequence
element. In particular, the LSTM introduces a “memory node” in parallel to each hidden node,
as well as a series of “gated connections”, which can be conceptualized as controlling the flow of
information among the previous and current hidden nodes, the previous and current memory nodes,
and the next sequence element. These gates are vectors of the same size as the hidden nodes, and
take values in the range [0, 1]d.

As with the other components in an RNN, we introduce additional matrices and vectors to
encode linear transformations. Let cj be the memory node for the jth word in a sequence, let i,
f , and o, be the input, forget, and output gates, respectively, and let g be an intermediate vector
(used to simplify the presentation). The computation of g is identical to the way in which the next
hidden node is usually computed in a basic RNN. The next memory node is then computed as a
(element-wise) weighted combination of g and the previous memory node, weighted by the the input
and forget gates, respectively. The next hidden node is finally computed from the current memory
node, scaled by the output gate. In this way, the memory node can in theory store information
across multiple elements in the sequence, without having to output it to a hidden state.

The equations which govern these connections are as follows:

21 of 24

i = sigmoid (Wxixj + Whihj−1 + Wcicj−1 + bi) (8)

f = sigmoid (Wxfxj + Whfhj−1 + Wcfcj−1 + bf) (9)

o = sigmoid (Wxoxj + Whohj−1 + Wcocj−1 + bo) (10)

g = tanh (Wxgxj + Whghj−1 + bg) (11)

cj = f � cj−1 + i� g (12)

hj = o� cj (13)

(14)

E RNN hyperparameters

Additional details about the hyperparameters used for RNNs are given below.

• Minimum word threshold: words which appear less than this number of times in the corpus
are replaced with an out-of-vocabulary symbol (OOV)

• Word vectors: We consider four possible sets of word vectors, all trained with word2vec

(Mikolov et al., 2013). One is the default vectors provided by Google, trained on Google News
(approximately 100 billion words), which has by far the largest coverage. The other three were
trained using the word2vec implementation from the gensim python package (Řeh̊uřek and
Sojka, 2010).5 One of these was trained on all words in the ANES survey results (this dataset),
which is very small, but captures the full vocabulary. Another was trained on all comments
from the Politics subreddit on reddit.com6, which is much smaller than the Google News
corpus, but larger than the ANES data, similarly informal, and roughly in-domain. The last
used the union of these two. In all cases, the dimensionality of these vectors was 300.

• Extra OOV dimension: If true, the OOV symbol is initialized as a word vector orthogonal
to all others, by adding an extra dimension to the pre-trained word vectors. Otherwise, the
OOV symbol is given a random vector, as are all words that don’t exist in the pre-trained
word vectors.

• Use Xavier initialization: Most parameters7 of the RNN are initialized randomly by drawing
from a uniform distribution in the range (-1, 1). If using Xavier initialization (Glorot and
Bengio, 2010), this draw is scaled by

√
6/(nino), where ni and no are the number of incoming

and outgoing network connections, respectively.

• Parameter initialization scale: If not using Xavier initialization, the random initializations are
scaled by this hyperparameter.

• Input window size: The first layer of the network converts each element of the sequence into
the corresponding word vector. If window size is equal to 3, they are instead replaced by a
concatenation of that word vector with vectors for the preceding and following words.

5word2vec was used with the options min count=1, size=25, hs=0, negative=10.
6https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_

comment/
7The exceptions are all bias vectors, which are initialized to zero, except for the bias term for the forget gate in

the LSTM, which is randomly initialized from a uniform distribution in the range (0.8, 1.0).

22 of 24

• Add dataset type: If true, the characteristics of the dataset (“Likes vs. Dislikes,” “Democrat
vs. Republican,” etc.) are represented as a binary vector and appended to the vector for each
sequence element.

• Pooling method: If “last,” only the last hidden node is used in computing the output. If
“max,” the element-wise maximum across the hidden nodes is used. If “learned,” the vectors
aj , as described in equation 6 are computed from a transformation of the corresponding
hidden nodes using a linear transformation (whose parameters are also learned by the network)
followed by a softmax to created a weighted combination of hidden nodes.

• Bidirectional: If true, two layers of hidden nodes are used, one computing hidden nodes
forward along the sequence, and the other working backwards. The parameters for these
layers are with tied (i.e. the same Wx is used for both the forward and backwards layers).

• Combine layers: For a bidirectional network, the two layers can be combined by concatenating
the corresponding hidden nodes, averaging them, or taking the element-wise maximum.

• Hidden node dimension: The dimensionality of hidden nodes. The LSTM networks were
restricted to smaller hidden nodes (5-100) than the basic RNN (5-200), because the LSTM
involves many more parameters.

• Learning rate: This hyperparameter controls how aggressively the parameters are changed
on each iteration. A value of 0.1 is often reported in the literature as being a robust choice.
Parameters values for the LSTM had a tendency to diverge during learning, so the learning
rate was set to be smaller than for the basic RNN.

• Train embeddings: If true, the initial word vector representations of words will be considered
as parameters that can be updated during learning.

• LR embedding factor: If the word embeddings are being updated, the learning rate for the
word embedding parameters is scaled by this hyperparameter (so that they are changed more
slowly than the rest of the parameters).

• LR decay delay: If this many epochs pass without the performance on the validation set
improving, the network parameters are reset to the previous best values, and the learning rate
is reduced.

• LR decay factor: This is the amount by which the learning rate is reduced after a given
number of epochs have passed with no improvement.

• Random OOV noise: If true, on each epoch, words in each input document are randomly
selected to be replaced by the out-of-vocabulary symbol

• Noise prob: This is the probability with which words are randomly chosen for temporary
replacement by an OOV symbol

• Minibatch size: The number of training examples to use for approximating the gradient at
each iteration

• Clip gradients: If true, the gradients are truncated, element-wise, to be in the range [-1, 1].

23 of 24

If we include the pre-trained word embeddings in the model as parameters that can be udpated
(Train embeddings = Yes), they form by far the largest set of parameters in the model. With a
vocabulary of approximately 10,000 words, and 300 dimensional word vectors, the embeddings alone
account for 3,000,000 parameters.

For a basic bidirectional RNN in a “typical” set up (100-dimensional hidden nodes and approxi-
mately 50 output codes, with a window size of 1), the network itself would contribute an additional
50,000 parameters. If we use an LSTM rather than a basic RNN, this adds an additional 150,000
parameters for all the internal gates. If we use a window size of 3 instead of 1, both sets of pa-
rameters increase by 120%, to approximately 110,000 parameters for the basic network, and an
additional 330,000 parameters for the LSTM.

24 of 24

