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Abstract

Background:
Recent advances in neural recording technology have allowed experimenters to record
from tens of neurons simultaneously, and many analysis techniques have been developed
to leverage the co-variations between neurons. One promising techinique, dimensional-
ity reduction, has been applied in various brain areas to study the activity of populations
of neurons. However, no systematic study of the dimensionality (i.e., the number of di-
mensions of the reduced space) of population activity has been carried out. Thus, before
assessing dimensionality in brain areas where less is known about the properties of single
neurons, an important first step is verifying that the outputs of dimensionality reduction
are interpretable in a brain area where much is known about single-neuron properties.

Objective:
Our objective is to develop a framework which provides a solid foundation for interpreting
the outputs of dimensionality reduction applied to population activity. This framework
should be applicable to population activity recorded from many brain areas across different
experimental conditions.

Method:
To assess dimensionality, we applied principal component analysis (PCA) to trial-averaged
neural activity in macaque primary visual cortex (V1) in response to different visual stim-
uli, including sinusoidal gratings, a natural movie, and white noise. Dimensionality reduc-
tion was applied for each stimulus, separately. Since we also sought to compare population
activity basis patterns between stimuli, we developed a novel statistical method to compute
the similarity of basis patterns across different stimuli and time. We also used this same
framework on outputs of well-established V1 receptive field models.

Data:
We recorded spiking activity from 60-80 neurons of five monkeys (recorded in primary
visual cortex, V1) in response to individual drifting sinusoidal gratings and movies of
sinusoidal gratings differing in orientation, a natural scene, and white noise. We repeated
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presentations of each stimulus for hundreds of trials, and trial-averaged the spike counts,
taken in 20 ms bins. We also considered the visual stimuli themselves, converting images
into vectors of pixel intensities. Lastly, our data include outputs from common receptive
field models (with the same number of neurons and time points as that of the neural data)
in response to the same visual stimuli presented to each monkey.

Results:
We found that the neural dimensionality increased as stimulus complexity increased, and
that the population activity occupies similar dimensions to encode different stimuli. These
results were consistent with known properties of single neurons and with the results of
the receptive field models, suggesting that the outputs of dimensionality reduction reflect
many different single-neuron properties in a unified manner. However, there were notable
discrepancies between real data and model, and our dimensionality results indicated im-
provements that could be made to the models.

Conclusion:
We showed that our dimensionality reduction framework was interpretable and consistent
with many single-neuron properties in a well-known area. Future work is to apply this
framework to population activity recorded in brain areas where less is known about how
populations of neurons encode sensory and task information.

Introduction

Dimensionality reduction has been applied to neural population activity to study decision mak-
ing [1, 2], motor control [3, 4], olfaction [5], working memory [6, 7], visual attention [8], audition
[9], rule learning [10], speech [11], and more [for review, see 12]. In many cases, dimensionality
reduction is applied in brain areas for which the relationship between neural activity and external
variables, such as the sensory stimulus or behavior, is not well characterized. This is indeed the
setting in which dimensionality reduction may be most beneficial because it allows one to relate
the activity of a neuron to the activity of other recorded neurons, without needing to assume a
moment-by-moment relationship with external variables.

To aid in interpreting the outputs of dimensionality reduction in such settings, it is important
to systematically vary the inputs to a brain area and ask whether the outputs of dimensionality
reduction change in a systematic way. This is most readily done for a brain area close to the sensory
periphery, such as the primary visual cortex (V1). Here, we apply dimensionality reduction to V1
and ask two fundamental, population-level questions. First, how is neural complexity related to
task complexity? Previous studies using dimensionality reduction analyze population activity in
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Figure 1: Conceptual illustration of dimensionality and basis patterns. A: The activity of three neurons can be plotted
in a 3-d population firing rate space, where each axis represents the firing rate of one neuron. The population activity
evolves over time (blue trace), and occupies a 2-d plane (blue shade). The basis patterns are axes of this 2-d plane.
B: The activity of three neurons can also be represented as time-varying firing rates or peri-stimulus time histograms,
PSTHs. The activity can be decomposed into a weighted sum of basis patterns (red and green) and a mean offset (gray).
Each basis pattern is weighted by a time-varying latent variable. Note that basis patterns are mutually orthogonal, by
definition. C: The activity of the same three neurons as in A, but for a different stimulus. Same conventions as in A.

a reduced space [e.g., 5, 3, 4]. Implicit in these studies is the appropriate dimensionality of the
reduced space, which is a measure of neural complexity. It is currently unknown how neural
complexity scales with task complexity for a given population of neurons [13]. Second, how
does a neural circuit flexibly encode (or “multiplex”) the representation of the vast number of
stimuli encountered in the natural world? Recent studies suggest that it may be possible to take
advantage of the multi-dimensional properties of the population activity space [14, 6, 2, 15, 16]. In
particular, the population activity representing different stimuli might occupy similar dimensions
of the population activity space [9, 4]. It is currently unknown how the similarity of the dimensions
being occupied by the population activity changes with the similarity of the stimuli.

The concept of dimensionality is illustrated in Fig. 1. Consider a high-dimensional space
(termed the population firing rate space) in which each axis represents the firing rate of a recorded
neuron (Fig. 1A). The goal of dimensionality reduction is to identify i) how many dimensions are
occupied by the neural population activity (Fig. 1A, blue), i.e., the dimensionality of the popu-
lation activity, and ii) how these dimensions are oriented within the population firing rate space
(Fig. 1A, basis patterns). In this three-neuron example, the population activity is two-dimensional,
where the dimensions are defined by the orthogonal basis patterns. Equivalently, we can think of
dimensionality reduction in terms of decomposing the population activity as a weighted sum of
basis patterns and a mean offset (Fig. 1B). A basis pattern describes a characteristic way in which
activity of the neurons covaries. Each basis pattern is fixed and is weighted by a time-varying
latent variable, which represents the contribution of the basis pattern at each point in time.
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We can compare the outputs of dimensionality reduction for two different stimuli (Fig. 1B and
1C). The population activity for stimulus 1 is two-dimensional because it can be described by
two basis patterns (Fig. 1B), whereas that for stimulus 2 is three-dimensional (Fig. 1C). Thus, the
population response to stimulus 2 would be deemed more complex than the population response
to stimulus 1. In addition, we can ask whether the population responses to different stimuli occupy
similar dimensions within the population firing rate space. This is assessed by comparing the basis
patterns across stimuli. In this example, there is one basis pattern that is shared by both stimuli
(red), one basis pattern that is similar between stimuli (green), and one basis pattern (black) that is
employed only by stimulus 2.

In this work, we systematically characterize how neural complexity varies with stimulus com-
plexity in macaque V1 by applying principal components analysis (PCA) to the trial-averaged neu-
ral responses to different classes of visual stimuli, including sinusoidal gratings, a natural movie,
and white noise. In addition, we develop a new method (termed the pattern aggregation method)
to measure how the basis patterns extracted from the population responses to each stimulus relate
to each other. This provides a systematic characterization of how the similarity of the dimensions
being occupied by the population activity changes with the similarity of the stimuli. A key ad-
vantage of studying these questions in V1 is that there are well-established receptive field (RF)
models. By applying the same dimensionality reduction methods to the outputs of RF models, we
can more deeply understand the relationship between the outputs of dimensionality reduction and
known properties of V1 neurons. The results described in this work provide a solid foundation
upon which to interpret the outputs of dimensionality reduction applied to other brain areas.

Materials and Methods

Neural recordings

Details of the neural recordings have been described previously [17, 18]. We recorded from
the primary visual cortex (V1) of anesthetized, paralyzed macaque male monkeys. V1 has been
studied for decades, and single-neuron properties are well-known ([19]). Thus, it is an appriopri-
ate area from which to record for our study, as we desire to interpret the dimensionality results.
Anesthesia was administered throughout the experiment with a continuous intravenous infusion
of sufentanil citrate (6-18 µg/kg/hr). This anelgesic drug targets higher cortical areas, but does
not directly affect the synaptic receptors of neurons in V1. Previous studies have confirmed that
trial-averaged neural activity under anesthesia strongly resembles that of an awake monkey [e.g.,
20]. Thus, we believe the dimensionality results found here also characterize data recorded from
an awake monkey. Eye movements were minimized with a continuous intravenous infusion of
vecuronium bromide (100-150 µg/kg/hr). Experiments typically lasted 5-7 days. All experimental
procedures followed guidelines approved by the Institutional Animal Care and Use Committee of
the Albert Einstein College of Medicine at Yeshiva University, and were in full compliance with
the guidelines set forth in the US Public Health Service Guide for the Care and Use of Laboratory
Animals.

Neural activity was recorded using 96-channel multi-electrode arrays (Blackrock Microsys-
tems, Salt Lake City, Utah), which covered 12.96 mm2 (about an eighth the size of a penny) and
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had an electrode length of 1 mm. After the monkey was anesthetized, we removed a small portion
of skull, and implanted the array through the dura (the thick layer of membrane that protects the
brain). The electrodes were inserted to a nominal depth of 0.6 mm to confine recordings mostly
to layers 2-3. Recordings were performed in parafoveal V1, with RFs within 5 degrees of the
fovea. While implantation is invasive and may cause damage to brain tissue, this damage is typi-
cally minimal for short-term recordings (less than a month). There is more concern for long-term
recordings (greater than a month) in which the build-up of scar tissue and jostling of the array
can deteriorate neural recordings. However, our experiment was short-term (7 days), anesthesia
prevented any jostling of the array, and our recorded activity strongly resembles that of previous
studies. Thus, we are confident that our results reflect those of an awake, un-implanted monkey.

Acquisition of spike trains

Our goal was to extract the times of spiking events of the neurons from the recorded voltage
traces. From cellular studies, the “spike” of the neuron (in which the voltage of the neuron rapidly
depolarizes, then has a refactory period of hyperpolarization before returning to a baseline level)
is the most salient property of a neuron, and allows the neuron to communicate with other neurons
through the release of neurotransmitters. Thus, by analyzing the spikes of neurons, we discard the
small fluctuations of the voltage traces as a layer of abstraction. This abstraction is rooted from
the findings of many previous studies, which have correlated the timing of spikes with behavior
[e.g., ? ], encoding of stimulus information [e.g., 21], and even learning [4].

To obtain the spiking events, we set a voltage threshold separately for each electrode channel,
based on the magnitudes of the depolarizing spikes. When the voltage trace surpassed the thresh-
old, we saved a 1 ms segment of the voltage waveform which ensured that we captured the voltage
dynamics of the spike (which occur within 1 ms). Because one electrode can record from multi-
ple neurons (where each neuron has a unique spike waveform segment), we used semi-automated
spike-sorting software [18] that applies PCA to the spike waveforms and then performs cluster-
ing. The sorts of the waveforms are then manually verified and re-sorted to discard classified
waveforms that appear to be noise artifacts rather than neural in nature. This process yields single
“unit” activity (i.e., spikes that we believe are from a single neuron) and multi-unit activity (i.e.,
spikes that we believe are from mulitple neurons that could not be differentiated). For all analyses,
we used both single units and small clusters of units (see [22] for comparison of these signals).
We included as a unit any waveform with a signal-to-noise ratio (SNR) greater than 1.5, where
SNR is defined as the ratio of the average waveform amplitude to the standard deviation of the
waveform noise [23]. This SNR level was chosen a priori of viewing the data to obtain as many
units as possible to analyze. We also removed neurons with mean firing rates less than 1 spike per
second to prevent ill-conditioned matrices when performing dimensionality reduction, where we
chose this threshold a priori.

Visual stimuli

We used two sets of visual stimuli. The first set (termed the individual gratings set) consisted
of individual presentations of drifting sinusoidal gratings with different orientations. The second
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set (termed the movies set) consisted of different classes of visual stimuli, including a sequence
of drifting sinusoidal gratings with different orientations, a contiguous sequence of natural scenes,
and white noise. All stimuli were presented on a CRT monitor with a frame rate of 100 or 120 Hz,
and had mean luminance of approximately 40 cd/m2. We used a look-up table for all stimuli to
correct for the nonlinearity between input voltage and output luminance in the monitor.

Individual gratings. Full-contrast (100%) drifting sinusoidal gratings with 12 equally-spaced ori-
entations (30° between adjacent orientations, covering 360°) were presented. We use “orientation”
to refer to the angle of drift and “direction” to refer to two orientations that are 180° apart (i.e.,
opposing drift) [24]. Spatial frequency (1.3 cpd) and temporal frequency (6.25 Hz) were chosen
to evoke robust responses from the population as a whole, and the position and size (8-10 de-
grees) were sufficient to cover the RFs of all recorded neurons. Gratings were block-randomized
across the 12 orientations and presented for 1.28 seconds each, followed by a 1.5 second inter-
trial interval consisting of an isoluminant gray screen. We conducted 200 trials for each of the 12
orientations.

Movies. We presented three different 30-second grayscale movies: gratings, natural, and noise,
as described previously [18]. Each movie comprised 750 unique images (each presented for four
consecutive video refreshes of the CRT, for an effective framerate of 25 Hz). The movie frames
were surrounded by a gray field of average luminance.

The gratings movie was a pseudo-randomly chosen sequence of full-contrast drifting sinu-
soidal gratings with 98 equally-spaced orientations (3.67° between adjacent orientations, covering
360°). The presentation of each drifting grating of a particular orientation lasted 300 ms. Spatial
frequency (1.3 cpd), temporal frequency (6.25 Hz), position and size (8 degrees or 640 pixel di-
ameter circular aperature) were chosen to evoke high firing rates and to sufficiently cover RFs of
all recorded neurons. Two 300 ms periods of blank screen frames were included at a randomly-
chosen position in the sequence, bringing the total to 100 stimuli in a block lasting 30 seconds. A
30-second movie with the same random sequence of gratings and blank screens was repeated 120
times.

The natural movie was a 30 second consumer film of a contiguous sequence of natural scenes
converted to grayscale (a monkey wading through water). The movie was displayed in a square of
5 degrees (400× 400 pixels) to cover all RFs, and repeated 120 times.

The noise movie was 30 seconds of white noise, where each 4 degree (320× 320 pixel) frame
comprised a 40× 40 grid of 8-pixel squares. Each 8× 8-pixel square displayed a random intensity
drawn from a uniform distribution independently (in space and time) of other squares. The entire
40 × 40 grid was randomly shifted or “jittered” k pixels (1 ≤ k ≤ 8) horizontally and vertically
between consecutive frames to avoid high-contrast grid effects. One noise movie was randomly
generated, and the same movie was repeated 120 times.

Preprocessing of population activity and visual stimuli

Population activity for individual gratings. We presented the individual gratings stimulus set to
three monkeys (101r, 102l, 103r). After removing neurons that did not satisfy the SNR and firing
rate criteria, the lowest number of neurons across monkeys was 61. Because measurements of
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dimensionality can be influenced by the size of the recorded population, we selected a random
subset of 61 neurons from the data sets with larger populations, in order to combine results across
monkeys (dimensionality trends were similar across monkeys for all analyses). We considered
neural activity in a 1 second window starting at stimulus onset (discarding the remaining 0.28
seconds of response). Results were similar for a 1 second window starting 100 ms after stimulus
onset to avoid onset transient effects. For each neuron and orientation, we took spike counts
in 20 ms bins and averaged them across trials to create a peri-stimulus time histogram (PSTH),
yielding 50 time points. Because a step in PCA subtracts from each PSTH the mean across the 50
time points, we can compare (across different orientations) fluctuations of trial-averaged activity
around its mean.

Population activity for movies. We presented the movies stimulus set to two monkeys (monkey 1:
103l, 61 neurons, monkey 2: 102l, 81 neurons). For each neuron, we took spike counts in 20 ms
bins during the 30-second movie presentation and averaged them across trials to create a PSTH.
For each movie, this yielded a PSTH with 1,500 time points for each neuron. PCA then centers
each PSTH by subtracting its mean, enabling the study of fluctuations of the firing rate around
the mean. We ensured the neural activity was centered just once for all analyses (i.e., for non-
overlapping one-second time windows, the “local” mean was not subtracted again). In this way,
all dimensionality measurements are made using a common reference frame, thereby allowing
comparison of dimensionality across different time windows (analysis of Fig. 6B).

Visual stimuli for movies. To relate neural complexity to stimulus complexity, we performed PCA
on the movie stimuli. This required the following pre-processing steps in order to match the
sizes of images across stimuli and remove incidental spatial correlations in the noise movie. The
processed movies were only used for PCA analysis; the original, unprocessed movies were shown
to subjects. We first cropped the grating and natural image frames to 320 x 320 pixels to match
the size of the noise images. The noise movie had two incidental spatial correlations from the
experimental design that prevented it from being “true” white noise: spatial correlations caused
by noise images being comprised squares of 8 × 8 pixels with identical intensities and spatial
correlations caused by jittering the squares to avoid grid effects. To weaken these correlations,
we converted the images of all movies to 8 × 8 pixel squares. The average pixel intensity was
computed for each pixel square, and each image was compressed from a matrix of 320 × 320
values to a matrix of 40 × 40 values. Because we averaged over fixed pixel squares, we did
not eliminate all incidental spatial correlations in the noise movie, as the borders between the
8 × 8 pixels with identical intensities were jittered randomly from frame-to-frame. Thus, the red
eigenspectrum curve in Fig. 4B is not perfectly diagonal, which is expected from true white noise.
Each 40 × 40 pixel image was then reshaped into a vector (with size 1, 600 × 1). Each movie
stimulus was therefore represented as 750 vectors (one for each image) in a 1,600-dimensional
space, where each axis corresponds to the average intensity of one pixel block.

Assessing dimensionality and similarity of patterns

Assessing dimensionality. We describe here how we assessed the dimensionality of the population
activity and that of the visual stimuli. Conceptually, the dimensionality is the number of basis
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patterns needed to describe the population activity (Fig. 1) or the pixel intensities of the visual
stimuli. There are many ways to assess dimensionality, including linear [25] and nonlinear [26, 27]
methods. Here, we consider the most basic linear dimensionality reduction method, principal
component analysis (PCA). PCA is appropriate for use with trial-averaged neural activity because
trial averaging removes much of the Poisson-like spiking variability, consistent with PCA’s implicit
assumption of no observation noise [12]. PCA has also been applied to pixel intensities in previous
studies [28, 16].

Dimensionality was assessed throughout this study as the number of basis patterns needed to
explain 90% of the variance in the population activity or visual stimuli. The threshold of 90%
is arbitrary, and we verified that the results were qualitatively similar for other high-percentage
thresholds (e.g., 70% and 80%). It is possible to use a data-driven approach to determine the
variance threshold [16]. Under this approach, data which require a small or large number of di-
mensions to explain the majority of the variance can be deemed low-dimensional. To aid in inter-
preting dimensionality comparisons, we chose to use a pre-determined (90%) variance threshold
in this work. It is important to note that the dimensionality depends on many factors, including
the dimensionality reduction method (here, PCA), metric for assessing dimensionality (here, 90%
variance explained), the number of neurons, and the number of data points used. Thus, we do not
attempt to interpret the dimensionality in an absolute sense. Rather, we make relative comparisons
of dimensionality across experimental conditions, while keeping these other factors fixed. We also
considered fixing the mean firing rate by removing neurons that showed large differences in mean
firing rates across stimuli. Presumably, this would allow us to measure how much dimensionality
changes for a fixed number of spikes. However, it is unclear how the remaining neurons are rep-
resentative of the entire recorded population. For example, when assessing dimensionality across
sinusoidal gratings with different orientations, this procedure would remove neurons whose firing
rates are modulated by orientation. We would most likely be left with neurons who have low firing
rates for all orientations.

Assessing similarity of patterns. In addition to computing the number of basis patterns needed for
each condition, we sought to compare the patterns across conditions. The following is the intuition
for performing this comparison. Consider two sets of patterns: condition A requires kA patterns
and condition B requires kB patterns, where kA > kB. At one extreme, the space spanned by
the condition A patterns includes the space spanned by the condition B patterns (i.e., the spaces
overlap). In this case, the joint space is described by kAB = max(kA, kB) = kA patterns. At the
other extreme, the space spanned by the condition A patterns is orthogonal to the space spanned
by the condition B patterns. In this case, the joint space is described by kAB = kA + kB patterns.
In general, kAB will lie between max(kA, kB) and kA+kB. The closer kAB is to max(kA, kB), the
more similar the patterns are. Conversely, the closer kAB is to kA + kB, the more dissimilar the
patterns are.

To compute kAB, we tried several different approaches. In the first approach, we aggregated
the population activity (or visual stimuli) for different conditions, then applied the same PCA
method to find the number of dimensions that explained 90% of the variance. A problem with this
approach is that it does not account for possibly different variances of the population activity (or
visual stimuli) across conditions. The consequence is that kAB obtained by this method can be less
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than max(kA, kB), thereby violating the intuition laid out above. To see this, consider a scenario
where kA > kB and condition B has much larger variance than condition A. The aggregated
population activity (or visual stimuli) would be dominated by condition B, essentially ignoring
the patterns of condition A. As a result, the aggregated dimensionality kAB would be close to
kB, which is less than max(kA, kB) = kA. This motivated us to consider a second approach in
which we normalized the population activity (or visual stimuli) such that the direction of greatest
variance was 1 for each condition. However, there are still scenarios for which kAB obtained by
this method is less than max(kA, kB), due to how the variance is distributed across patterns.

Pattern aggregation method. To overcome the issues described above, we developed an alternative
approach which guaranteed that kAB would be between max(kA, kB) and kA + kB. This method,
termed the pattern aggregation method, is based on first identifying the kA patterns for condition
A (represented by UA : N × kA, whose columns are orthonormal and where N is the number of
pixels or the number of neurons) and kB patterns for condition B (represented by UB : N × kB,
whose columns are orthonormal) separately using PCA. Then, we aggregate the patterns into a
single matrix V = [UAUB] (where V : N × (kA + kB)) and designate kAB to be the effective
column rank (defined below) of V . In the case where kA > kB and the space spanned by the
condition A patterns includes the space spanned by the condition B patterns, then kAB will be
max(kA, kB) = kA. On the other hand, if the space spanned by the condition A patterns is
orthogonal to the space spanned by the condition B patterns, then kAB will be kA + kB. For more
than two conditions, this method is easily extended by aggregating the patterns for all conditions
into V = [UAUBUC . . .].

The effective column rank of V is the number of “large” singular values of V . The definition
of “large” requires setting a threshold (termed the rank threshold, between 0 and 1) for the singular
values. The rank threshold determines how different two basis patterns (cf. Fig. 1, green) need
to be before they define separate dimensions. To gain intuition for the rank threshold, we ran
a simulation where we rotated a 2-d unit vector (vB) from a position of overlap with another
unit vector (vA, 0°) to a position of orthogonality (90°) (Fig. 2A). We varied the rank threshold
for different angles between vA and vB, and assessed the effective column rank of V . A rank
threshold t = 0 means that slight deviations of vB away from vA lead to V = [vAvB] having
an effective column rank of two (Fig. 2B). In other words, if two patterns are slightly different,
the dimensionality of the data will be two. On the other hand, a rank threshold t = 1 means
that vB needs to be orthogonal to vA for V to have an effective column rank of two (Fig. 2B).
In other words, two patterns need to be orthogonal for the dimensionality of the data to be two;
else, the dimensionality will be one. As a compromise between the two extremes, we used a rank
threshold t = 0.5 throughout this study. This threshold means that the transition from one to
two dimensions occurs when the angle between vA and vB is near 45 degrees (Fig. 2B). We also
verified that this intuition holds for higher-dimensional spaces by rotating a subspace towards an
orthogonal subspace by taking a convex combination of the two subspaces and measuring the rank
at intermediate rotations.

Computing dimensionality expected by chance. To assess whether two sets of patterns are similar
or dissimilar, it is necessary to compare kAB to a chance level, rather than simply asking whether
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Figure 2: Assessing similarity of basis patterns. A: Conceptual illustration for two neurons, where vA denotes the
basis pattern for one condition and vB denotes the basis pattern for another condition. As vB is rotated away from vA,
the question is at which point do we consider vA and vB to span two dimensions. B: The transition from one to two
dimensions in A depends on the rank threshold t. For t = 0.5, the transition occurs when the angle between vA and
vB is near 45 degrees.

kAB is closer to max(kA, kB) or kA + kB. We compute the chance level by drawing patterns ran-
domly from the N -dimensional space, and compute a distribution of aggregated dimensionalities.
Specifically, we repeatedly draw kA orthonormal patterns and kB orthonormal patterns in an N -
dimensional space, and measure their aggregated dimensionality using the same method as applied
to the data.

The above method makes the implicit assumption that all patterns within the N -dimensional
space can be shown in the data. In some cases, there is reason to believe that not all patterns
in the N -dimensional space can be achieved. For example, the underlying neural circuitry may
constrain the space of activity patterns that a population of neurons is capable of producing [9,
4]. In such settings, the chance level should be computed by drawing patterns randomly from
an M -dimensional space, where M < N . Although the exact value of M that should be used
for a particular neural population is unknown, M should lie between the largest dimensionality
exhibited empirically by the neural population for the stimuli shown and N . Thus, we can assess
whether the results hold for all values of M within this range.

Similarity index. The similarity of two sets of patterns depends on whether kAB is larger or smaller
than the chance level, relative to the two extremes (max(kA, kB) and kA + kB). We summarized
this dependence with a single number, the similarity index. The similarity index is defined as
s = k̂AB−kAB

kA+kB−max(kA,kB)
. Intuitively, we take the difference between the mean chance dimensionality

(k̂AB) and the actual dimensionality for the aggregated patterns of A and B (kAB). Then, we
normalize this difference by the difference between the two extreme dimensionalities, yielding an
index between −1 and 1. A similarity index of s > 0 means that the patterns are more similar
(i.e., more overlapping) than expected by chance, whereas s < 0 means that the patterns are less
similar (i.e., closer to orthogonal) than expected by chance.
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Statistical assessment of dimensionality

Error bars for the dimensionality of the population activity were computed by subsampling
from all time points. We chose subsampling over bootstrapping, since bootstrapping led to biased
estimates due to small sample size relative to the number of neurons. For population responses
to the stimulus movies, we randomly subsampled 750 of the 1,500 time points, computed the
dimensionality of the subsampled points, and repeated this 100 times (Fig. 5C). Similarly, for the
dimensionality analysis in 1 second windows, we randomly sampled 25 of the 50 time points 100
times (Fig. 6A). We did not compute error bars for the visual stimuli because subsampling was
not possible (only 750 available time points), and bootstrapping was not possible due to the small
number of time points relative to the dimensionality (1,600) of the pixel space. All p-values were
computed from 105 runs of a random permutation test.

Receptive field models

We considered three mathematical operations — linear filtering, pointwise nonlinearity, and
divisive normalization — that are common to many RF models of V1 neurons [19]. These partic-
ular models were chosen for their simplicity in interpretation and the build-up of non-linearities.
We applied these operations to the movies stimulus set and examined how the dimensionality of
the outputs of each operation compares to that of the stimuli for non-overlapping one-second time
windows. Note that our goal was not to find the RF model that best reproduces the recorded neural
responses. Rather, our goal was to determine how mathematical operations common to many RF
models alters dimensionality, in a way that informs the relationship between the dimensionality of
the visual stimuli and that of the recorded population activity. The parameters of the operations
were chosen to be representative of the properties of the recorded neurons. For each operation,
we computed model responses based on RF properties measured for multi-unit activity for each
monkey. The results were similar for these different RF ensembles, so we present only the results
using RF properties of monkey 1.

Linear filtering. To explore the consequence of applying V1-like linear filters, we implemented a
bank of Gabor filters, where each Gabor filter is defined by a 2-d Gaussian function multiplied by
a 2-d sine wave [29, 30]. For pixel location (x, y), the Gabor filter value is:

F (xθ, yθ) = exp
(
− x2θ

2σ
− y2θ

2σ/γ

)
sin(

2π

λ
xθ + φ) (1)

where xθ = x cos(θ) + y sin(θ) + xloc and yθ = x sin(θ) + y cos(θ) + yloc. The parameters of the
Gabor filters were chosen to be representative of the recorded neurons. We did this by using the
measured parameters of the RFs for multi-unit activity of each electrode by presenting sinusoidal
gratings (for 250 ms to 1 sec) that varied in spatial location (xloc, yloc) (15 × 15 locations spaced
0.5 degrees apart for monkey 1; 21 × 21 locations for monkey 2), spatial frequency 1/λ (11
different values from 0.098 cpd to 3.125 cpd), and orientation θ ({0°, 45°, 90°, 135°}). For each
electrode, the RF parameters (xloc, yloc, 1/λ, θ) were chosen based on maximal observed counts of
threshold crossings. We used RF spatial sizes (σ) of 0.5-1.0 degrees, consistent with previously
reported RF sizes [31]. The spatial aspect ratio (γ = 0.9) and phase (φ =0°) were fixed.
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We created a Gabor filter whose parameters corresponded with those of each electrode. Then,
to match the number of neurons in the actual recordings (61 neurons for monkey 1), we randomly
selected 61 Gabor filters without replacement for analysis. We then computed the output of each
Gabor filter (F ) for a given input image (I): L =

∑
x

∑
y

F (x, y)I(x, y).

Pointwise nonlinearity. The output of the Gabor filters may be negative, unlike neural responses,
which can only take on non-negative values. Thus, RF models typically pass the output of each
Gabor filter through a pointwise nonlinear function, such as a squaring function, squared hinge
function, or a linear hinge function [19]. For the purposes of assessing dimensionality, we chose
to focus on the squaring function (R = L2) because it appears in the divisive normalization model
described below. We also tried the other nonlinearities listed above, which gave similar results.

Divisive normalizaton. The third operation that we implemented was divisive normalization, where
the activity of each neuron was normalized by the activity of the neighboring neurons. Divisive
normalization is often included in RF models due to its ability to explain basic nonlinear response
properties of V1 neurons [32, 33]. Here, we used the divisive normalization model proposed by
[34]. The normalized response R of a filter is

R =
L2

σ2
L +

M∑
i=1

wiL2
i

(2)

where L is the output of a Gabor-like filter, Li is the output of the ith neighboring Gabor-like filter
(i = 1, . . . ,M ), wi is the weight of the ith neighboring filter, and σ2

L is an offset term.
Details about the model and fitting procedures can be found in [34]. Briefly, we used the same

filter bank (i.e., the steerable pyramid) as in [34], whose filters are qualitatively similar to the
Gabor-like RFs of V1 neurons [34]. The filter bank comprised 104 neighboring filters (25 spatial
locations with ~1/8 cycles/pixel spatial frequency, spaced 3 pixels apart vertically, horizontally,
and diagonally, each with 4 different orientations; and 4 different orientations at the center spatial
location with ~1/16 cycles/pixel spatial frequency). We trained the weights on 1,000 images of
a natural image dataset not used in the neurophysiological recordings [35]. We verified that our
fitting procedure was correct by accurately recovering weights from data generated by a model
where we know the ground truth weights. Further, the values of the fitted weights were reasonable:
for example, a selected filter that was vertically-oriented had weights with large magnitudes for
other vertically-oriented filters that were directly above or below the selected filter’s location. We
then computed the output of 61 filters, where each filter’s RF parameters (spatial location and
orientation) were matched with that of a randomly-selected electrode from the experiment.

Results

Dimensionality of population responses to gratings

We first asked how changing the complexity of the visual stimulus changes the dimensionality
of trial-averaged population responses using the individual gratings. To change the stimulus com-
plexity, we included different numbers of consecutive grating orientations in the analysis (ranging
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from 1 to 12 orientations). For example, the least complex stimulus included a single orientation,
and more complex stimuli included two or five consecutive orientations (Fig. 3A).

We asked how quickly the dimensionality of the population activity grows as the number of
orientations increases. At one extreme, it may be that the population response to each orientation
uses an entirely different set of basis patterns (i.e., dimensions). In this case, the dimensionality for
two orientations would be two times the dimensionality for one orientation. At the other extreme,
it may be that the population response to each orientation resides in the same set of dimensions.
In other words, the population response is formed using the same basis patterns, but linearly com-
bined using different weights for different orientations. In this case, the dimensionality for two
orientations would be the same as the dimensionality for one orientation.

We first computed the basis patterns for the trial-averaged population response (taken in 20 ms
bins) of each orientation individually. Then, to assess dimensionality of the population response to
multiple orientations, we aggregated the basis patterns for each constituent orientation and com-
puted the effective rank (termed the pattern aggregation method, see Methods). Using a 90%
variance threshold, we found that the dimensionality for two orientations was 1.62 times the di-
mensionality for one orientation (Fig. 3B, ‘90%’ curve), and significantly smaller than what would
be expected had the basis patterns been randomly chosen (Fig. 3B, ‘chance 90%’ curve, p < 10−5).
In other words, for consecutive orientations separated by 30°, the population responses share about
half of their basis patterns. As more orientations were included, the dimensionality of population
responses remained lower than expected by chance (Fig. 3B), indicating that population responses
to oriented gratings separated by angles larger than 30° also tend to use similar basis patterns.
Similar trends were found using different variance thresholds (Fig. 3B, ‘70%’, ‘80%’ curves), so
we use a 90% threshold in the rest of this work.

The pattern aggregation method requires a choice for the rank threshold t to determine how
different basis patterns need to be before they define separate dimensions. We repeated the above
analysis for different choices of t and a fixed variance threshold of 90% (Fig. 3C). We found that
the dimensionality trends are similar for rank thresholds t near 0.5, so we use t = 0.5 in the rest
of this work. Because the absolute dimensionality depends on the variance and rank thresholds,
we make no claims about absolute dimensionality. Rather, we focus on relative comparisons of
dimensionality for fixed variance and rank thresholds.

We observed a change in the rate of increase of dimensionality after six orientations (Fig. 3B,
black curve). Because consecutive orientations were separated by 30°, the first and seventh ori-
entations were 180° apart and differed only in their drift direction. Thus, the seventh to twelfth
orientations were identical to the first to sixth orientations respectively, but drifted in opposite
directions. Only a small proportion of V1 neurons are known to be direction selective [36, 24],
so the change in slope of the dimensionality curve might be due to the population activity using
similar basis patterns for opposite drift directions.

To test this possibility, we performed two analyses. First, we assessed the direction selectivity
of each neuron (direction index = 1 - null response / preferred response), and found that only 16
of 183 neurons had a direction index greater than 0.5, consistent with [24]. If none of the neurons
were direction selective, we would expect the dimensionality curve to be flat beyond 6 orienta-
tions in Fig. 3B. The increase in dimensionality after 6 orientations is consistent with the finding
that at least some neurons show direction selectivity. A potential concern is that the increase in
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Figure 3: Dimensionality of population responses to individual gratings. A: The complexity of the stimulus was
varied by combining a different number of consecutive orientations. The least complex stimulus consisted of a single
orientation, and more complex stimuli included two or five orientations. B: Dimensionality of population activity
versus number of orientations. Bottom three curves correspond to the number of dimensions needed to explain 70%,
80%, and 90% of the variance. Top gray curve corresponds to the number of dimensions expected by chance for
the 90% variance threshold. Error bars represent the standard error across monkeys and all possible combinations
of consecutive orientations. C: Varying the rank threshold for a fixed variance threshold (90%). Same data as in B.
Each curve represents the dimensionality of the population response as the number of consecutive orientations varies,
for a particular rank threshold t. Error bars are computed as in B. D: Dimensionality of population activity versus
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are computed as in B. E: Basis patterns describing the largest percentage of variance for the population responses to
three example orientations (90° apart) for one monkey. Each pattern is a unit vector with a norm of 1. Percentages
denote percent variance explained by each pattern.
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dimensionality beyond 6 orientations arises from the fact that a larger number of patterns are being
aggregated for a larger number of orientations. To address this, we performed a control analysis
in which the patterns were randomly drawn from a large pool, and therefore equalized the number
of patterns being aggregated across different numbers of orientations. We found the same trend as
shown in Fig. 3B (results not shown).

Second, we assessed how the dimensionality of the population activity for two orientations
varies with the angular offset between the orientations (Fig. 3D). This indicates how the simi-
larity of the dimensions being occupied by the population activity changes with the similarity of
the stimuli. We found that the dimensionality increases with angular offset up to 90°, indicat-
ing that the population activity differs the most for two orientations with 90°offset. Then, the
dimensionality decreases as the angular offset increases, reaching a minimum at a 180° offset,
where gratings drift in opposite directions. Thus, the population activity uses more similar basis
patterns for gratings drifting in opposite directions (180° offset) than to gratings of different ori-
entations (angular offsets other than 180°). The dimensionality for 180° offset was higher than
that for 0° offset (p < 10−5), indicating that the population activity does not use identical basis
patterns for opposite drift directions. This remained true when we controlled for the number of
patterns being aggregated. This result, combined with the change in slope of the dimensionality
curve (Fig. 3B), indicates that the population activity tends to use similar (but not identical) basis
patterns for opposite drift directions. Taken together, the analyses in Fig. 3B and 3D provide a
systematic characterization of how the outputs of dimensionality reduction vary with the sensory
input to V1.

We also visualized the basis patterns describing the largest percentage of variance for three
different orientations (Fig. 3E). These basis patterns extracted from the trial-averaged population
activity are akin to the hypothetical basis patterns shown in Figure 1 (red, green, black). For a
given basis pattern, the absolute height of each bar indicates the degree to which each neuron
contributes to that basis pattern. The following are two salient properties of the identified basis
patterns. First, most of the neurons in the recorded population contribute to each basis pattern to
a greater or lesser extent. Thus, the basis patterns capture changes in firing rates that are shared
broadly across the population, rather than reflecting the activity of only a small number of neurons.
Second, the basis patterns capture both positive and negative signal correlations between neurons.
A basis pattern describes positive signal correlation between a pair of neurons if the neurons have
coefficients of the same sign. Conversely, a basis pattern describes negative signal correlation for
coefficients of opposite sign. We can relate these basis patterns to the results shown in Fig. 3B-
D by asking how similar are the linear combinations of each set of basis patterns across different
stimulus orientations. This is difficult to assess by eye, and so we rely on the quantifications shown
in Fig. 3B-D to determine how similar are the basis patterns across stimulus orientations.

Dimensionality of population responses to different classes of visual stimuli

We next sought to determine how the dimensionality of the trial-averaged population activity
varies with the complexity of the visual stimulus for a wider range of stimuli. We presented three
movie stimuli (Fig. 4A): a sequence of sinusoidal gratings (‘gratings movie’), contiguous natural
scenes (‘natural movie’), and white noise (‘noise movie’). In contrast to Fig. 3A where the order
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Figure 4: Dimensionality of movie stimuli and population responses to those movies. A: Example frames of the
movies for the gratings movie, natural movie, and noise movie. B: For each stimulus, cumulative percent variance
of the stimulus pixel intensities explained by different numbers of dimensions. Dashed line corresponds to 90% of
the variance explained. Inset: summed variance of the pixel intensities, normalized by the maximum variance across
movies. C: For each stimulus, cumulative percent variance of the population activity explained by different numbers of
dimensions. Dashed lines correspond to 90% of variance explained. Left panel: monkey 1, 61 neurons. Right panel:
monkey 2, 81 neurons. Insets: summed variance of each neuron’s activity, normalized by the maximum variance
across movies.

of stimulus complexity is clear (i.e., a larger number of orientations is more complex), here we
needed first to assess the relative complexity of the three movie stimuli. By applying PCA to the
pixel intensities, we found that 40 dimensions could explain nearly 100% of the variance of the
pixel intensities for the gratings movie (Fig. 4B). For the natural movie, the top few dimensions
explained a large percentage of the variance due to overall contrast changes caused by zooming
and panning the camera, and a large number of additional dimensions were needed to explain the
remaining variance. For the noise movie, each dimension explained only a small percentage of the
total variance. We summarized these cumulative percent variance curves by finding the number
of dimensions (gratings movie: 24, natural movie: 64, noise movie: 459) needed to explain 90%
of the variance (Fig. 4B, dashed line). Based on these values, the gratings movie was least com-
plex, followed by the natural movie, then the noise movie. Similar results were obtained when
first transforming the pixel intensities using V1 receptive field models, then applying PCA (see
“Comparing to V1 receptive field models”). We further asked how much the pixel intensities var-
ied for each movie stimulus, and found that the noise movie had a smaller variance than the other
two movie stimuli (Fig. 4B, inset). Together, this indicates that the distribution of pixel intensities
for the gratings movie and natural movie is akin to an elongated ellipsoid (low dimensionality,
high variance), whereas that for the noise movie is akin to a small ball (high dimensionality, low
variance).

Having measured the relative complexity of the movie stimuli, we then asked how the di-
mensionality of the population responses to the movie stimuli varies with stimulus complexity.
We found that the dimensionality of the trial-averaged population responses (20 ms bins) was or-
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dered in the same way as the stimulus complexity (Fig. 4C); namely, the population responses to
the gratings movie had the lowest dimensionality, followed by the natural movie, then the noise
movie. This ordering did not simply follow from the ordering of the mean population firing rates
for the different movies (monkey 1: 4.2, 6.4, 5.4 spikes/sec, monkey 2: 6.6, 8.2, 6.7 spikes/sec
for gratings, natural, and noise movies, respectively). We also assessed how much the firing rates
varied in response to each movie stimulus. Note that this measures how much the mean firing rate
(averaged across experimental trials) varies over time. As with pixel intensities, we found that the
population response to the noise movie had the smallest variance, followed by the gratings movie,
then the natural movie (Fig. 4C, inset). Overall, the dimensionality and variance ordering in the
visual stimuli and the population responses were the same, indicating that the population activity
in V1 retains much of the statistical structure present in the visual stimuli themselves.

Basis patterns of population responses

Having compared the dimensionality of the population activity across stimuli, we next asked
how the basis patterns of the population activity (corresponding to the dimensions being occupied
by the population activity) compare across stimuli. Previous studies have found that the ability of
a RF model to predict a neuron’s response can depend on the stimulus class on which the model
was trained [37, 38, 39], suggesting that the population activity might use somewhat distinct basis
patterns for different stimulus classes. On the other hand, if basis patterns are influenced by
the shared underlying network structure [9, 4], then we would expect them to be shared across
responses to different stimuli.

We first asked whether there are qualitative differences in the coefficients of the basis patterns
for population responses to the stimulus movies (Fig. 5A). As in Fig. 3E, we found that most
of the basis patterns represented activity across a large number of neurons and described both
positive and negative signal correlations. However, there were two notable exceptions. First,
the basis pattern describing the most variance for the population response to the gratings and
noise movies involved primarily two neurons (neuron indices 26 and 27). For these movies, the
two neurons had the highest firing rate modulation (maximum - minimum firing rate) across the
recorded population. Second, the basis pattern describing the most variance for the population
response to the natural movie had coefficients of the same sign. This is due to the entire population
increasing or decreasing its firing rates together in response to overall contrast changes prevalent
in natural movies. Other than the similarity of the top basis pattern for the gratings and noise
movies, it was difficult to determine by eye whether the basis patterns were being shared across
stimuli. Thus, we used the pattern aggregation method to quantitatively assess the similarity of the
identified basis patterns.

As a baseline, we assessed the extent to which the visual stimuli themselves reside in the same
dimensions in pixel space. We compared the dimensionalities of the individual movies (Fig. 5B,
teal dots, consistent with Fig. 4B) to those of combinations of movies (Fig. 5B, orange and purple
dots). If the stimuli reside in overlapping dimensions, then the resulting dimensionality would be
the maximum of the dimensionalities for the individual movies. However, if the stimuli reside in
completely non-overlapping (i.e., orthogonal) dimensions, then the resulting dimensionality would
be the sum of the dimensionalities for the individual movies. There are two main observations.
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First, the dimensions occupied by the gratings movie overlap with those for the natural movie. To
see this, note that the dimensionality for the gratings and natural movies together (80 dimensions)
was less than the sum of the individual dimensionalities for the two movies (88 dimensions). To
ensure that the overlap in patterns was meaningful, we confirmed that the aggregated dimension-
ality of 80 was less than the dimensionality (88 dimensions) that would be expected by combining
randomly-chosen dimensions (Fig. 4B, gray, p < 10−5). Second, the dimensions occupied by the
noise movie include many of the dimensions for the other two stimuli. This is indicated by the fact
that the dimensionality corresponding to any combination of stimuli that included the noise movie
(gratings + noise: 472, natural + noise: 495, and gratings + natural + noise: 500 dimensions) was
less than the dimensionality that would be expected by chance (p < 10−5 for all cases). Note that,
in all cases, the chance dimensionality was near the maximum dimensionality (indicating orthog-
onality between the two sets of randomly-chosen patterns) because the dimensionality of the pixel
space (1,600 dimensions) was much larger than the dimensionalities of the individual movies.

We used the same approach to analyze the population responses as we did the visual stimuli.
We compared the dimensionality of the population responses to individual movies (Fig. 5C, teal
dots, consistent with Fig. 4C) to that of population responses to combinations of movies (Fig. 5C,
orange and purple dots). We found that the relationship of the basis patterns employed by the
population activity across stimuli (Fig. 4C) was similar to the relationship between the stimuli
themselves (Fig. 4B). First, the dimensions occupied by the population responses to the gratings
movie are overlapping with those for the natural movie. This is indicated by the fact that the ag-
gregated dimensionality for the population responses to the gratings and natural movies (monkey
1: 25, monkey 2: 38) was less than the dimensionality if the patterns were orthogonal (top of the
black brackets) and the dimensionality expected by chance (p < 10−5). Second, the dimensions
occupied by the population response to the noise movie include most of the dimensions for the
other two stimuli. This is indicated by the fact that the dimensionality corresponding to any com-
bination of stimuli that included the noise movie was less than the dimensionality expected by
chance (p < 10−5 in all cases), and close to entirely overlapping.

The chance dimensionality in Fig. 4C is computed by assuming that any population activity
pattern within the N -dimensional population firing rate space can be achieved (where N=61 for
monkey 1 andN=81 for monkey 2). Previous studies indicate that the population activity may only
be able to occupy a subset of dimensions due to underlying network constraints [9, 4]. Although
it is unknown exactly how many dimensions can be occupied by the population activity, it can
occupy at least M dimensions (where M = 39 for monkey 1 and M = 52 for monkey 2), which
is the largest dimensionality observed in response to any combination of stimuli (Fig. 4C). If the
chance level is computed instead by drawing random patterns from this M -dimensional space, we
still find that the population activity tends to occupy more similar dimensions than expected by
chance for all pairs of movies (p < 0.05). This is a conservative assessment because larger values
of M would only make the comparison more highly significant.

These results are summarized by the schematic in Fig. 5D, where the size of each ellipse
represents the dimensionality (i.e., number of basis patterns) of the population response to the
corresponding stimulus and the overlap between ellipses represents the extent to which the popu-
lation responses share basis patterns. We found that the basis patterns for the gratings movie were
overlapping with those of the natural movie, and that the basis patterns for the noise movie largely
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contain the basis patterns for the other two stimuli. However, there were a small number of basis
patterns that were unique to each stimulus, shown by the small areas of non-overlap among the
ellipses. Overall, this suggests that a neural circuit is capable of expressing a limited repertoire
of basis patterns, and that a subset of those basis patterns is expressed for any given stimulus.
Furthermore, the statistical properties of the visual stimuli are largely maintained in their neural
population representation in V1.

Time-resolved dimensionality of population responses to movie stimuli

In the preceding sections, the analyses of the movie stimuli and the corresponding neural ac-
tivity used the entire 30-second movie (i.e., 750 time points) together. Here, we consider time-
resolved measurements of dimensionality using one second windows, each comprising 25 time
points. This allows us to assess how dimensionality changes over time, and compare the basis
patterns employed by the trial-averaged population activity during different parts of the 30-second
movies.

For the visual stimuli (Fig. 6A, left panel) and the population responses (Fig. 6A, center and
right panels), we found that the dimensionality corresponding to the noise movie was higher than
the dimensionality corresponding to the gratings and natural movies in each one-second window,
consistent with the results of analyzing each 30-second movie in its entirety (Fig. 4). However, the
dimensionality of the natural movie was not greater than that of the gratings movie (cf. colored
triangles in Fig. 6A, which indicate average dimensionality over time), in contrast to Fig. 4. We
hypothesized that this was due to temporal correlations in the natural movie, in which frames
within a one-second window tend to be self-similar. In contrast, for the gratings and noise movies,
there are at least three different grating orientations and 25 different frames of white noise within
each one-second window.

To reconcile the results for short and long time windows, we performed three analyses. First,
we tested the hypothesis that temporal correlations in the natural movie result in lower dimension-
alities (relative to the other movies) for short time windows. To break the temporal correlations,
we shuffled the time points (20 ms resolution) across each 30 second period and performed the
same analysis as in Fig. 6A. We found that, in a one-second window, the mean dimensionality
corresponding to the natural movie was higher than that corresponding to the gratings movie for
the shuffled data. This was true for the visual stimuli (p < 0.01) and for the population responses
(monkey 1: p < 10−3, monkey 2: p < 0.05). This indicates that the range of basis patterns ex-
pressed by the population responses to the natural movie within a short time window is limited by
the temporal correlations in the natural movie itself.

Second, we asked how the dimensionality grows when increasing the window size progres-
sively from one second to 30 seconds, where each window starts at the beginning of the movie
(Fig. 6B). If the dimensionality increases with window size, this would indicate that new patterns
(of pixels or of population activity) are being used throughout the length of the movie. However,
if the dimensionality plateaus, then the patterns are being reused and no new patterns are being
expressed. The leftmost points on these curves (one-second window) correspond to the leftmost
points on the corresponding curves in Fig. 6A. The rightmost points on these curves (30-second
window) correspond to the dimensionalities shown in Fig. 4. Although the dimensionality cor-
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responses. Error bars denote standard error over similarity indices.

21



responding to the natural movie (green) is lower than that corresponding to the gratings movie
(blue) for short time windows, the dimensionality corresponding to the natural movie grows more
quickly and surpasses that corresponding to the gratings movie for longer time windows. We
found this to be true for both the visual stimuli (Fig. 6B, left panel) and the population responses
(Fig. 6B, center and right panels). This indicates that the patterns for the natural movie tend to
be self-similar within a short time window, and new patterns are expressed over longer time win-
dows. In contrast, the dimensionality corresponding to the gratings movie does not grow as quickly
with window size. This is because once a few different grating orientations are included, patterns
corresponding to additional grating orientations can be represented approximately as linear com-
binations of patterns corresponding to existing grating orientations (both for the visual stimuli and
the population responses), and therefore do not increase the dimensionality appreciably.

Third, we directly measured the similarity of the patterns between different one-second win-
dows using the pattern aggregation method. We computed a similarity index s, for which s > 0
indicates that the patterns are more similar (i.e., more overlapping) than expected by chance and
s < 0 indicates that the patterns are less similar (i.e., closer to orthogonal) than expected by chance
(see Methods). Fig. 6C shows the matrix of similarity values for the population responses to each
of the three movies (monkey 1). By averaging the values of the off-diagonal similarity indices
across the matrix, we found that the patterns corresponding to the gratings movie tended to be
more similar across time than those for the natural and noise movies (Fig. 6D). This was true for
the visual stimuli (left panel), as well as for the population responses (middle and right panels).
This result indicates that new patterns tend to be expressed (for both the visual stimuli and the
population responses) as the movies play out over time more for the natural and noise movies than
for the gratings movie. This result also supports the finding in Fig. 6B that the dimensionality
corresponding to the natural movie grows more quickly than that corresponding to the gratings
movie.

Taken together, these results indicate that the noise movie drives a large number of basis pat-
terns in the population activity in a short time window, relative to the gratings and natural movies.
As the movies play out over time, the noise and natural movies tend to drive new basis patterns,
whereas the grating movie tends to recruit the same patterns.

We also asked whether the second-by-second fluctuations of the dimensionality of the visual
stimulus during the 30-second movie (Fig. 6A, left panel) were related with that of the population
responses (Fig. 6A, middle and right panels) and found weak correlations (mean across movies
ρ = 0.20). Although the dimensionality fluctuations were larger for the natural movie than the
other two movies (Fig. 6A, left panel), the same effect was less salient in the population activity
(Fig. 6A, middle and right panels). These two observations underscore that, although there are
similarities in the statistical properties of the visual stimuli and population responses, there are
also differences that remain to be understood.

Comparing to V1 receptive field models

One of the key advantages of performing this study in V1 is that much is known about the
stimulus-response relationship of individual neurons, as described by the many RF models that
have been proposed in the literature [19]. Although the RF models do not capture every aspect of
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V1 neuronal activity [40, 37, 38, 39], we can apply the same dimensionality reduction methods
to the activity generated by RF models to help interpret the outputs of dimensionality reduction.
We consider it a strength that, in many cases (described below), the outputs of dimensionality
reduction applied to real data show the same trends as when applied to activity from RF models.
It shows how single-neuron properties are reflected in population metrics, such as dimensional-
ity and similarity of basis patterns, which was previously not known. In cases where there are
discrepancies between the outputs of dimensionality reduction for real data and RF models, our
results provide insight into the nature of the discrepancies and can help to improve the RF models.

Although a complete study of the many V1 RF models available is beyond the scope of this
work, here we focus on three mathematical operations that are commonly included in RF models
– linear filtering, pointwise nonlinearity, and divisive normalization. Specifically, we consider
the following three RF models that are increasingly complex (Fig. 7A): i) a bank of Gabor filters
only, ii) a bank of Gabor filters, each with a squaring nonlinearity, and iii) a bank of Gabor-like
filters, each with a squaring nonlinearity, and then divisive normalization [34]. Below are results
for which the RF model parameters were matched to the properties of the recorded neurons for
monkey 1. Similar results were obtained for RF model parameters matched to monkey 2 (not
shown).

For the individual gratings, we observed similar trends between the real data (Fig. 3B and D)
and RF models (Fig. 7B and 7C), with two notable discrepancies. Whereas the dimensionality
continues to grow after 6 orientations in the real data (Fig. 3B), the dimensionality plateaus after
6 orientations for the linear and nonlinear Gabor models, and only slightly increases for divisive
normalization (Fig. 7B). Furthermore, the dimensionality for two orientations with 180° offset
is higher than that for 0° offset in real data (Fig. 3D), but they are not different for the models
(Fig. 7C). Both of these discrepancies can be explained by the fact that none of the models we
implemented capture direction selectivity, which may require extending the models to include
suppressive filters [41].

For the movies, the dimensionalities for the models (Fig. 8A) were lower than the dimensional-
ities for the real data (Fig. 4C, left panel). This can be seen by noting the number of dimensions at
which each curve crosses the 90% variance threshold (dotted line). The linear and nonlinear Ga-
bor models (Fig. 8A, left and middle panels) showed the same dimensionality ordering as the real
data (Fig. 4C, left panel), but the divisive normalization model (Fig. 8A, right panel) did not. The
discrepancy for the divisive normalization model is likely related to the objective of this particular
model [34], which was to make the responses independent across neurons, and not necessarily
representative of all divisive normalization models [33]. None of the models (Fig. 8A, insets) re-
produced the variance trends seen in the real data (Fig. 4C, left panel, inset). However, all models
had high similarity indices (Fig. 8B), consistent with the population responses occupying over-
lapping dimensions for the real data (Fig. 5C, top panel). The similarity of basis patterns for the
model repsonses is to be expected, as neurons are modelled with rigid filters that can capture only
a finite number of dimensions in pixel space. The rigidity in filters overwhelms the ability of the
nonlinearities to express different basis patterns, although we did see that the basis patterns were
less similar for the divisive normalization model (Fig. 8B, right panel) than those for the linear and
nonlinear Gabor models (Fig. 8B, left and middle panels).

For the time-resolved analysis of movies, only the nonlinear Gabor model (Fig. 8C and D,
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middle panels) showed the same dimensionality trends as the real data (Fig. 6A and B, middle
panels). However, the nonlinear Gabor model showed these trends for a different reason than the
real data. Unlike for the real data, shuffling the nonlinear Gabor responses across time kept the
same dimensionality ordering (natural ¡ gratings, p < 0.01) as without shuffling. This indicates
that the dimensionality trends seen in Fig. 8C and D (middle panels) are not due to temporal
correlations in the natural movie, but rather due to properties of the nonlinearity used. Compared
to the linear and nonlinear Gabor models, the divisive normalization model showed higher overall
dimensionalities (Fig. 8C and D, right panels), which better matched that of the real data (Fig. 6A
and B, middle panels). Finally, the linear and nonlinear Gabor models used more similar basis
patterns across time than the real data, as the mean similarity indices were larger for the models
(Fig. 8E, left and middle panels) than for the real data (Fig. 6D, middle panel). However, the
divisive normalization model typically used new basis patterns across time, as its mean similarity
indices were close to zero (Fig. 8E, right panel). None of the models matched the ordering of the
mean similarity indices for the visual stimuli and the population activity.

These results show how altering the properties of single neurons via RF models changes the
outputs of dimensionality reduction. This informs the interpretation of the outputs of dimension-
ality reduction in other brain areas, many of which do not have well-established models of single-
neuron function. In addition, these results show how RF models compare to V1 recordings from
a novel population-level perspective. We found that the RF models reproduce some, but not all,
of the population-level properties of the V1 recordings. Although we chose reasonable model pa-
rameters, we did not finely measure the RF parameters of the recorded neurons, which could be a
source of the discrepancies between the models and real data. Furthermore, there are many model
variants that we did not implement that could resolve these discrepancies [e.g., 38, 41, 42, 43, 39].
Overall, the results presented here should only be interpreted in the context of the particular models
we implemented, and not necessarily representative of all models within each class.

Discussion

In this study, we systematically varied the inputs to V1 and asked whether the outputs of dimen-
sionality change in a systematic way. By applying PCA to trial-averaged population responses to
different classes of visual stimuli, including sinusoidal gratings, a natural movie, and white noise,
we found that the dimensionality of the population responses grows with the stimulus complex-
ity. In addition, we assessed whether the population responses to different stimuli occupy similar
dimensions of the population firing rate space using a novel statistical method (the pattern aggre-
gation method). We found that the population responses to stimuli as different as gratings and
natural movies tended to occupy similar dimensions. For comparison, we applied the same analy-
ses to the outputs of well-established V1 receptive field models to understand how single-neuron
properties are reflected in population metrics.

A recent study showed that the dimensionality of the population activity in prefrontal cortex
collapses during error trials [6], suggesting that a smaller number of distinct variables are encoded
by the neural population during error trials than on correct trials. While this previous work indi-
cates a link between dimensionality and behavior (correct vs. incorrect responses), our work shows
that complexity in V1 – an area tightly linked to the sensory periphery – can be traced to the com-
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plexity of stimulus drive. Thus, our findings demonstrate that dimensionality is a well-behaved
attribute of neural population activity, and lay the foundation for measuring dimensionality in
higher-level brain areas that are not closely coupled to sensory input or motor output.

Different basis patterns may be used by the population activity during different task epochs,
suggesting that certain basis patterns drive downstream areas more effectively than others [15, 44].
Thus, the identification of which basis patterns are used may be critical for understanding how dif-
ferent brain areas interact on a population level [45]. Furthermore, the activity patterns across a
neural population have been used to characterize the effects of normalization [46]. In the present
work, we have developed a statistical framework (the pattern aggregation method) to measure the
similarity of basis patterns across any number of stimulus conditions or time points, and vali-
dated this framework using recordings in V1 and well-established V1 receptive field models. This
framework can be applied broadly to other brain areas.

Many previous studies have compared visual cortical responses to natural and artificial stimuli
on a single-neuron level [e.g., 37, 38, 42, 43, 39]. Their predominant approach was to define a pa-
rameterized RF model to relate a neuron’s activity to the visual stimulus. These studies found that,
although RF models derived from natural stimuli share properties with those derived from artificial
stimuli [37, 42], there can be important differences [37, 38, 39]. Here, rather than relating each
neuron’s activity to the stimulus, we relate the activity of the recorded neurons to each other. We
can then ask how this relationship (i.e., the covariation of trial-averaged activity among neurons)
changes for different classes of visual stimuli. This approach has been adopted for pairs of neu-
rons (i.e., signal correlation) [47], and we extend this work to characterize the signal correlation
among all pairs of neurons at once. We found that the gratings, natural, and noise stimuli elicit
many common basis patterns, consistent with previous studies showing similarities between RFs
measured with gratings and natural stimuli [37] and those measured with natural and noise stimuli
[42]. Finally, our finding of some unique basis patterns for each stimulus class suggests that esti-
mates of RFs will best capture the responses to the same type of stimulus used in estimating the
RFs, as reported in previous studies [38, 39].

At a population level, several studies have compared visual cortical activity evoked by natural
and artificial stimuli to spontaneous activity [48, 49, 50]. These studies focused on the raw neural
activity, which includes both the trial-averaged component (i.e., the PSTHs) and trial-to-trial vari-
ability. Here, we focused on the trial-averaged component. Because trial-to-trial variability can
be substantial relative to the trial-averaged component [51, 48], it is difficult to directly compare
results of these previous studies to those reported here. Future work investigating the complexity
of the raw neural activity, using methods related to those proposed here, can provide a more direct
comparison.

Although we believe that the results shown here are representative of a wide range of gratings,
natural, or noise stimuli, they should be interpreted in the context of the particular visual stimuli
used. For example, the dimensionality of the gratings movie and its population response could
be increased by including more than one spatial and temporal frequency. Similarly, the dimen-
sionality of the natural movie and its population response likely depends on the particular movie
clip shown. If the scenes in the movie change more quickly (or slowly) over time, then we would
expect the dimensionality over a 30-second time window to be larger (or smaller). For the noise
movie, our results in Fig. 6B indicate that showing more instances of white noise is not likely to
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further increase the dimensionality of the population response. However, changing the statistics
of the noise in the pixels could change the dimensionality of the population response.

The measurement of dimensionality depends on many factors, including the choice of dimen-
sionality reduction method, the metric for assessing dimensionality, the number of neurons, and
the number of data points, as previously mentioned. Two other factors could also influence di-
mensionality. First, dimensionality may be influenced by the locations of the RFs of the recorded
neurons. If two neurons have nearby RFs relative to the spatial frequency content of the stimu-
lus, then the neurons would be driven by similar stimulus patches. This would likely lead to a
lower dimensionality of the population response than if the two neurons had RFs that were far
apart, where the neurons would be driven by different stimulus patches. Second, dimensionality
may be influenced by the size of the visual stimulus. We presented large visual stimuli that ex-
tended outside of the classical RF of most neurons. Previous studies have shown that stimulation
outside of the classical RF tends to increase the sparseness of V1 responses [52, 53, 54], which
may affect the dimensionality of the population response. Sparseness leads to independence in the
responses between neurons [55, 52, 53], as well as increased discriminability of the population
activity [56]. Independence implies that each basis pattern only captures modulations of a single
neuron (i.e., only one element of each pattern is non-zero), and the dimensionality (as assessed
by PCA) depends on the relative variances captured by the basis patterns (in this case, the relative
variances of the neurons). To our knowledge, there is no general relationship between sparseness
and dimensionality. For all these reasons, it is not possible to make absolute statements about the
dimensionality of V1. Instead, we made relative comparisons where all of the factors affecting
dimensionality are fixed, except for the stimulus content.

The quality of most RF models has been evaluated based on their ability to predict the activity
of individual neurons [e.g., 37, 38, 42, 19, 39]. Given that there can be, in some cases, a substan-
tial difference between the predictions of RF models and the recorded neural activity [38, 42, 39],
especially for natural scenes, we need to quantify how they are different in an effort to improve
the RF models. This is often quantified by computing the percent variance of the recorded activity
explained by the model for each neuron individually [38, 19, 39]. Our work provides a com-
plementary way to compare RF models and recorded activity by examining the entire population
together. We can compare the many V1 models that have been proposed by assessing which ones
best reproduce the relative dimensionalities across stimuli and similarity of basis patterns observed
in recorded activity.

Our work lays a solid foundation of to assess the dimensionality and similarily of basis patterns
of neural population activity. Because V1 is a well-studied brain area and is close to the sensory
input, our results can be compared with expectations based on our intuition and well-established
RF models. Moving forward, these methods can be applied broadly to other brain areas and behav-
ioral tasks to examine how the complexity of the population response changes due to conditions
such as attentional state, learning, and contextual modulation.
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