
Acoustic Scene Recognition with Deep Learning

Wei Dai

Machine Learning Department Carnegie Mellon University

Abstract

Background. Sound complements visual inputs, and is an important modality for
perceiving the environment. Increasingly, machines in various environments have the
ability to hear, such as smartphones, autonomous robots, or security systems. This
work applies state-of-the-art Deep Learning models that have revolutionized speech
recognition to understanding general environmental sounds.
Aim. This work aims to classify 15 common indoor and outdoor locations using envi-
ronmental sounds. We compare both conventional and Deep Learning models for this
task.
Data. We use a dataset from the ongoing IEEE challenge on Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE). The dataset contains 15 diverse indoor
and outdoor locations, such as buses, cafes, cars, city centers, forest paths, libraries,
and trains, totaling 9.75 hours of audio recording.
Methods. We extract features using signal processing techniques, such as mel-frequency
cepstral coefficients (MFCC), various statistical functionals, and spectrograms. We ex-
tract 4 feature sets: MFCCs (60-dimensional), Smile983 (983-dimensional), Smile6k
(6573-dimensional), and spectrograms (only for CNN-based models). On these fea-
tures we apply 5 models: Gaussian Mixture Models (GMMs), Support Vector Machines
(SVMs), Deep Neural Networks (DNNs), Recurrent Neural Networks (RNNs), Recur-
rent Deep Neural Networks (RDNNs), Convolutional Neural Networks (CNNs), and
Recurrent Convolutional Neural Networks (RCNNs). Among them GMMs and SVMs
are popular conventional models for this task, while RDNNs, CNNs, and RCNNs are,
to our knowledge, the first application of these models in the context of environmental
sound.
Results. Our experiments show that model performance varies with features. With
a small set of features (MFCCs and Smile983) temporal models (RNNs, RDNNs) out-
perform non-temporal models (GMMs, SVMs, DNNs). However, with large feature
sets (Smile6k) DNNs outperform temporal models (RNNs and RDNNs) and achieve
the best performance among all studied methods. The GMM with MFCC features, the
baseline model provided by the DCASE contest, achieves 67.6% test accuracy, while
the best performing model (a DNN with the Smile6k feature) reaches 80% test accu-
racy. RNNs and RDNNs generally have performance in the range of 68∼77%, while
SVMs vary between 56∼73%. CNNs and RCNNs with spectrogram features lag in
performance compared with other Deep Learning models, reaching 63∼64% accuracy.
Conclusions. We find that Deep Learning models compare favorably to conventional
models (GMMs and SVMs). No single model outperforms all other models across
all feature sets, showing that model performance varies significantly with the feature
representation. The fact that the best performing model is a non-temporal DNN is
evidence that environmental sounds do not exhibit strong temporal dynamics. This is
consistent with our day-to-day experience that environmental sounds tend to be ran-
dom and unpredictable.

1



1 Introduction

Recent developments in Deep Learning have brought significant improvements to automatic
speech recognition (ASR) (Hannun et al. (2014)) and music characterization (Van den
Oord et al. (2013)). However, speech is only one of many types of sounds, and humans
often rely on a broad range of environmental sounds to detect danger and enhance scene
understanding, such as when one crosses a busy street or navigates in a bustling office.
More broadly, sound is a useful modality complementing visual information such as videos
and images, with the advantage that audio can be more easily collected and stored.

Increasingly, machines in various environments can hear, such as smartphones, security
systems, and autonomous robots. The prospect of human-like sound understanding could
open up a range of applications, including intelligent monitoring system of equipment using
acoustic information, acoustic surveillance, cataloging, and search in audio archives (Ranft
(2004)).

This broad range of environmental sounds also poses different challenges than speech recog-
nition. Compared with speech, environmental sounds are more diverse and span a wide
range of frequencyies Moreover, they are often less well-defined. For example, there is
no standard dictionary for environmental sound events analogous to sub-word dictionary
phonemes in speech, and the duration of environmental sounds could vary widely. While
sound analysis traditionally falls within the signal processing domain, recent advances in
machine learning and Deep Learning hold the promise to improve upon existing signal
processing methods.

In this work we focus on the task of acoustic scene identification, which aims to characterize
the acoustic environment of an audio stream by selecting a semantic label for it. Existing
work for this task largely uses conventional classifiers such as GMMs and SVMs, which do
not have the feature abstraction found in deeper models. Furthermore, conventional models
do not model temporal dynamics, but rely on feature extraction pipelines to capture local
temporal dynamics. For example, the winning solution by Roma et al. (2013) for the last
IEEE challenge on Detection and Classification of Acoustic Scenes and Events (DCASE)
challenge, extracts MFCC and temporal features using Recurrence Quantification Analysis
over a short time window. The actual SVM classifier does not explicitly model temporal
dynamics.

We apply state-of-the-art Deep Learning (DL) models to various feature representations
generated from signal processing methods. Specifically, we use the following architectures:
(1) Deep Neural Networks (DNNs); (2) Recurrent Neural Networks (RNNs); (3) Recurrent
Deep Neural Networks (RDNNs); (4) Convolutional Neural Networks (CNNs); (5) Recur-
rent Convolutional Neural Networks (RCNNs). Additionally, we compare DL models with
Gaussian Mixture Models (GMMs), and Support Vector Machines (SVMs). We also use
several feature representations based on signal processing techniques: mel-frequency cep-
stral coefficients (MFCC), spectrograms, other conventional features such as the pitch, the
energy, the zero-crossing rate, the mean crossing rate, etc. To our knowledge this is the
first comprehensive study of a diverse set of deep architectures on acoustic scene recognition
task, borrowing ideas from signal processing as well as recent advancements in automatic
speech recognition.

We use a dataset from the currently ongoing IEEE challenge on Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE). The dataset contains 15 diverse indoor
and outdoor locations, such as buses, cafes, cars, city centers, forest paths, libraries, trains,

2



totaling 9.75 hours of audio recording (see section 3.1 for detail). Our system has entered
the DCASE 2016 contest, which runs from February 8 to June 30, 2016, at which point the
final ranking of the contestants will be announced.

2 Background
2.1 Signal Processing Pipeline

Finding an appropriate representation of the audio signal is a crucial step in acoustic scene
recognition. We consider several feature extractions based on digital signal processing
methods. Some of those, such as statistical functionals, provide more succinct representa-
tion than others, such as spectrograms, but could throw away more information. In our
experiments we consider some combinations of these features.

Figure 1: Left: A visualization of the spectrogram of a 30-second audio clip recorded in a grocery
store. Red represents high intensity while blue is low. Right: a visualization of 20 mel-frequency
cepstral coefficients (MFCC) from the same audio clip.

MFCCs: Mel-frequency cepstral coefficients uses the mel-frequency, which is a frequency
scale based on human perception experiments. As pitch becomes higher, larger frequency
gaps produce a perceptually similar difference in pitch, thus squashing the difference at
high frequency (Hasan et al. (2004)). MFCCs are the coefficients obtained from the cepstral
analysis of signals in mel-frequency.

Spectrogram: A spectrogram is a visual representation of discretized frequencies (spec-
trum) at each time interval. Figure 1 (left) is a spectrogram of a 30 second long recording
in a grocery store. One has the option to tune the window shape of how to incorporate
neighboring time intervals in calculating spectrum, as well as how fine-grained the spectra
are.

Statistical Functionals: We employ OpenSmile by Eyben et al. (2010) to compute various
conventional statistical features, such as: Zero crossing rate: Zero crossings are the
points at which amplitude is 0. Zero crossing rate is the rate at which a signal switches
between negative and positive. FFT magnitude phase: This is a magnitude-phase pairs
representation of complex coefficients from Fourier transforms. Energy: The energy is the
logarithm of energy in each frame. Pitch: The pitch computes the probability of human
voicing and pitch using auto-correlation functions.

Temporal Dynamics: Based on previous features, we can compute velocity and acceler-
ation features. One way is to simply take the first and second order differences between
consecutive frames. Another way is to perform local smoothing, which is a common practice

3



in conventional speech recognition systems such as used in Young et al. (1997). Given a
1-dimensional time series {x1, ..., xT }, we can compute dt the smoothed first order difference
at time t following

dt =

∑W
i=1 i(xt+i − xt−1)

2
∑W

i=1 i
2

(1)

where W is half of the window size used in smoothing. Unless otherwise stated, we use
W = 2 throughout. The second order difference could be computed using Eq. 1, with input
{d1, ..., dT }, the first order difference.

2.2 Gaussian Mixture Models (GMMs)

Gaussian Mixture Models (GMMs) have long been the model of choice for acoustic and
speech modeling, as they are flexible (GMMs can approximate complex density by increasing
the number of mixture components) and computationally efficient to train. GMMs have
been used in speaker verification (Reynolds et al. (2000)), and in the form of GMM-based
Hidden Markov Models (HMMs) to model the latent speaker state in speech recognition
(Gales and Young (2008)).

A GMM models the distribution as a linear superposition of Gaussians:

p(x) =
K∑
k=1

πkN (x|µk,Σk)

where x,µk ∈ Rd, d is the input feature dimension, K is the number of mixtures, and {πk}
lies on the (K − 1)-simplex (0 ≤ πk ≤ 1,

∑
k πk = 1), and N (µ,Σ) denotes a Gaussian

distribution with associated mean and covariance. GMMs can be efficiently trained using
the Expectation-Maximization (EM) algorithm (Bishop (2006)).

Here we use GMMs as a baseline system for acoustic scene recognition. Each audio clip is
represented as a bag of acoustic features extracted from audio segments, and for each class
label (scene location) j, a GMM pj(x) is trained on this bag of acoustic features using only
audio clips from class j. At the test time the test audio clips are processed to the same
bag of n segments i = 1...n as during the training time. We compute the class likelihood
pij , j = 1...J for each class using the trained GMMs. p̂j :=

∑
i p

i
j gives the likelihood of

class j for the test audio clip, and the class with the highest likelihood is the predicted
label.

2.3 Support Vector Machines (SVMs)

SVMs are commonly used in acoustic modeling. In fact in the previous run of DCASE
challenge in 2013, 8 out of 11 solutions involves SVM. We use Liblinear (Fan et al. (2008)),
which implements binary linear SVM. Given an i.i.d. dataset (xi, yi), yi ∈ {−1, 1}, i =
1, ..., N , it solves the following L2-SVM optimization objective:

min
w

1

2
wTw + C

N∑
i=1

max(1− yiwTxi, 0)2 (2)

where C > 0 is a tuning parameter, which we tune by cross validation. For a multi-class
problem Liblinear uses the one-vs-rest scheme. Liblinear solves Eq. 2 using the primal trust
region Newton method (Fan et al. (2008)).

4



2.4 Deep Neural Networks (DNNs)

Deep Neural Networks (DNNs), or the multi-layer perceptron, have recently been suc-
cessfully applied to speech recognition and audio analysis and show superior performance
than GMMs (Graves et al. (2013)). Whereas GMMs are trained with generative objective,
DNNs are trained discriminatively and thus can be statistically more efficient. By build-
ing a deeper architecture, DNNs can also parameterize diverse nonlinearity more efficiently
than GMMs which can only model nonlinearity by adding mixture components (Hinton
et al. (2012)).

Figure 3 left shows an example feed-forward DNN. Each layer consists of a number of
“neurons”, represented by a circle, and is connected densely to the previous layer and the
next layer. Except the input layer, all neurons are endowed with some non-linear transforms,
which gives rise to the non-linearity. Common forms of transforms include sigmoid, tanh,
rectified linear units (ReLU), and softmax. Here for intermediate layers we use rectified
linear units (ReLU) (Zeiler et al. (2013)). We also tried parametric rectified linear unit (He
et al. (2015)) and exponential linear units (ELU) (Clevert et al. (2015)) but did not find
an improvement over ReLU. We optimize DNNs using stochastic gradient descent (SGD)
with momentum and Nesterov momentum (Sutskever et al. (2013)), using cross entropy as
the loss function.

2.4.1 Batch Normalization

Figure 2: Convergence over epoch with and with-
out Batch Normalization. With all other parame-
ters fixed, training with Batch Normalization con-
verges much faster and to a lower loss given the
studied horizon.

Deeper architectures often suffer from van-
ishing gradients and are sensitive to the
learning rate. This is due to the so-
called the “internal covariate shift” (Ioffe
and Szegedy (2015)). To understand this,
we can view each layer of the DNN as some
transform function, whose output becomes
the input of the next layer. Mathemati-
cally,

` = F2(F1(u,Θ1),Θ2)

where F1, F2 represent, respectively, the
first and second layer transform, and Θ1,Θ2

are the weights parameters associated with
layer 1 and 2, respectively. As we perform
gradient descent, both Θ1 and Θ2 are up-
dated. Now, because Θ1 is changing, the
distribution of F1(u,Θ1), i.e. the input to F2 (the second layer), is also changing, which
is called internal covariate shift. Overall this slows down the convergence. The deeper the
network is, the more manifest the internal covariate shift. Batch Normalization introduces
a simple linear transform for each parameter to compensate for the covariate shift and thus
reduces the distribution shift of the output of each layer. Empirically we observed that
Batch Normalization significantly speeds up convergence per iteration for DNN training,
reducing the number of iteration needed by a factor of 5∼10. We apply Batch Normalization
in all our Neural Network models.

5



Figure 3: Left: A Deep Neural Network. It is a feed-forward network of 2 hidden layers. Right:
An illustration of the Recurrent Neural Network.

2.5 Recurrent Neural Networks (RNNs)

The DNNs take as input a single i.i.d. instance, but cannot handle sequence data where
the length of a training instance varies with linear (temporal) dependency. The Recurrent
Neural Networks (RNNs) are suitable models as they explicitly account for the temporal
dependencies with latent states. The RNNs have been shown to be excellent in tasks such as
speech recognition (Hannun et al. (2014)), image captioning (Vinyals et al. (2015)), machine
translation (Bahdanau et al. (2014)), and language modeling (Mikolov et al. (2011)). Here
we use RNNs to model the temporal dynamics of adjacent audio segments extracted as
described in section 2.1. Figure 3 (right) is a high-level representation of an RNN. At each

Figure 4: Left: Bidirectional Recurrent Neural Networks. The two layers are only connected at
the softmax layer. Right: Recurrent Deep Neural Networks. To avoid clutter we only show one
layer RNN, but our experiments use bi-directional RNN as shown in the left panel.

time point t, the recurrent block A takes as input latent activations from the previous time
step ht−1, the observation from the current time step xt, and emits the next latent state ht
after some nonlinear transforms. Thus at a high level A is just a function that performs a
(nonlinear) transform

f(xt, ht−1; Θ) = ht (3)

where Θ denotes parameters associated with A.

However, even though in theory it should be able to represent arbitrarily complex tempo-
ral dependencies given sufficient number of neurons in Θ, it has been observed that this
straightforward instantiation of RNNs in practice is unable to capture long-range depen-
dencies (Bengio et al. (1994)). We therefore opt for a gated unit within recurrent block A
proposed by Cho et al. (2014), called Gated Recurrent Unit (GRU), which is a variant of the
popular “Long Short Term Memory” (LSTM) recurrent unit (Hochreiter and Schmidhuber
(1997)). Both units are designed to maintain cell of long term memories (though GRU
does not maintain those cells explicitly). Mathematically, Eq. (3) consists of the following

6



operations within a GRU unit

zt = σ(Wz · [ht−1, xt])

rt = σ(Wr · [ht−1, xt])

h̃t = tanh(W · [rt ◦ ht−1, xt])

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t

where σ(·) is the sigmoid function, ◦ denotes element-wise product, and [a, b] is the concate-
nation of vectors, and W,Wz,Wr are parameters to be learned. We use RMSProp (Hinton
(2012)), a variant of gradient descent to learn the weights of GRU-RNN.

In our experiments we use bi-directional RNNs (Figure 4 left). Bi-directional RNNs provide
the long-range context in both input directions, and is generally the preferred architecture
in speech recognition (Hannun et al. (2014)). Through cross validation we also found that
it performs as well or better than uni-directional RNNs.

2.6 Recurrent Deep Neural Networks (RDNNs)

The Recurrent Deep Neural Networks combines an RNN and a DNN (Figure 4). The idea
is that the DNN can potentially extract useful feature representations more effectively than
stacking RNNs, as stacked RNNs output only one hidden state to both the next time step as
well as next layer, thus entangling the temporal embedding with the layer-wise embedding.
From the RNN’s perspective the DNN performs feature dimension reduction (or expansion
if there are more neurons than the input dimension), while from the DNN’s perspective it
gains a temporal dependency. This architecture is inspired by speech recognition pipelines
which connect a Convolutional Neural Network (CNN) with an RNN (Hannun et al. (2014)),
and to our knowledge this is the first time this architecture has been explored on acoustic
data. Previous works achieved depth in architecture only with stacked RNNs (Graves et al.
(2013)). We train RNN+DNN jointly using RMSProp.

2.7 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have achieved extraordinary performance in the
visual domain, sometimes even surpassing human-level performance. Examples include
image classification (He et al. (2015)), face recognition (Taigman et al. (2014)), handwritten
digit recognition, and recognizing traffic signs (Ciresan et al. (2012)). Lately, CNNs have
been applied to speech recognition using spectrogram features (Hannun et al. (2014)) and
achieve state-of-the-art speech recognition performance. We therefore apply CNNs to see
if CNNs can extract useful acoustic features for our task.

Recent state-of-the-art CNN architecture suggests that it is advantageous to use small
receptive fields to reduce the number of parameters at each layer and increase the number
of layers. Our architecture design follows the VGG network (Simonyan and Zisserman
(2014)) and uses 3 × 3 2D receptive fields. We found that, unlike the case of natural
images, the pooling layer does not improve the performance on spectrogram features and is
therefore not employed in our architecture. We train CNN using stochastic gradient descent
with momentum and Nesterov momentum (Sutskever et al. (2013)).

2.8 Recurrent Convolutional Neural Networks (RCNNs)

Recurrent Convolution Neural Networks (RCNNs) have been used in video understanding
such as scene labeling (Pinheiro and Collobert (2013)). Here instead of natural images we

7



use an audio spectrogram. RCNNs have similar overall architecture as RDNNs (Figure 4
left), but with the DNN replaced by the CNN. Similar to RDNNs, RCNNs rely on the CNN
to extract features from spectrogram, and uses RNN to model the temporal dynamics. We
train RCNNs using stochastic gradient descent with momentum and Nesterov momentum.

3 Experiments

3.1 Dataset

We use a dataset from the currently ongoing IEEE challenge on Detection and Classification
of Acoustic Scenes and Events (Mesaros (2016)). The dataset contains 15 diverse indoor
and outdoor locations (labels), totaling 9.75 hours of recording and 8.7GB in wav format.
The recording is 24-bit audio in 2 channels, with sampling rate at 44100 Hz, and each
recording is 30 seconds long. The classes are:

• Bus: traveling by bus in the city (ve-
hicle)

• Cafe or Restaurant: small cafe or
restaurant (indoor)

• Car: driving or traveling as a passen-
ger, in the city (vehicle)

• City center (outdoor)

• Forest path (outdoor)

• Grocery store: medium size grocery
store (indoor)

• Home (indoor)

• Lakeside beach (outdoor)

• Library (indoor)

• Metro station (indoor)

• Office: multiple people, typical work
day (indoor)

• Residential area (outdoor)

• Train (traveling, vehicle)

• Tram (traveling, vehicle)

• Urban park (outdoor)

There are 1170 30 second long audio clips. We use the evaluation split from the contest
and withhold 290 audio clips for testing (25%), leaving 880 audio clips for training. Since
there is more than one audio clip from each location, we make sure no one location appears
in both training and testing sets. Note that this test set we use is part of the development
set from the contest, not the final test set (which has not yet been released). Therefore our
results might be different from the final contest result.

Figure 5: Class distribution of training and test data, which are fairly uniform across all classes.
Each class has 18–21 test samples.

8



Within the 880 audio clip training set we perform 8-fold cross validation for model selection
and parameter tuning, and again we made sure that no one location appears in both training
set and validation set to have better generalization accuracy estimates.

3.2 Features

Using signal processing techniques (Section 2.1), we create 4 sets of features:

• MFCCs: We take 20 mel-frequency cepstral coefficients over windows of 0.04 second.
We augment the feature with first and second order differences, resulting in a 60-
dimensional vector.

• Smile983: We use OpenSmile (Eyben et al. (2010)) to generate MFCCs, Fourier
transforms, the zero crossing rate, the energy, and the pitch, among others. We also
compute first and second order dynamics features. After removing features with all
zeros, this results in 6573 features. We select 983 features recommended by domain
experts to create Smile983 feature (983 dimensional). Note this is much larger feature
set than MFCC features and each feature represents a time windows of 0.1 second.

• Smile6k: This is the full 6573-dimensional feature set extracted from OpenSmile as
described above.

• Spectrograms: We compute spectrograms (section 2.1) and truncate at frequency
750Hz (the recordings were recorded with up to 44100Hz). This is to speed up CNN
computation by reducing the input size, and also most audible patterns have frequen-
cies below 750Hz.

All features are standardized to have zero mean and unit standard deviation on the training
set. The same standardization is applied at the validation and the test time.

For each audio clip (training or testing), our processing pipeline consists of the following:
1) Segment the audio clips into windows of 4∼100ms segments. 2) Apply transforms to
each audio clips to extract feature representation. 3) For non-temporal models such as
GMMs, we treat each feature as a training example. For temporal models such as RNNs,
we consider a sequence of features as one training example; 4) At the test time we apply
the same pipeline as during training. The likelihood of a class label for a test audio clip is
the sum of predicted class likelihood for each segment of a test example. The class with
the highest predicted likelihood is the predicted label for the test audio clip.

3.3 Hyperparameter Tuning

Hyperparameter tuning is one of the most time-consuming aspects of using Deep Learning.
Within each model class there are numerous important tuning knobs: the network archi-
tecture (the number of layers, the number of neurons in each layer, activation functions,
dropout units), and optimization algorithms such as stochastic gradient descent, RMSProp
(Hinton (2012)), Adam (Kingma and Ba (2014)) as well as numerical hyperparameters like
the number of feature maps for the CNN, the L2 and L1 regularization parameters, the
dropout rate, and the learning rate, among others. Generally, architectural changes are the
most fundamental and could potentially have the largest impact on the results. Sometimes
architectural changes could also speed up training, such as employing Batch Normalization
layers (section 2.4.1). Overall we conducted over 500 cross validation experiments. Here we

9



Figure 6: The effect of sequence length on RNNs using the Smile983 feature. There is a sweet spot
around length 10–30, which corresponds to 1–3 seconds of audio segment. Error bars are standard
deviation from bootstrap on the test set.

briefly discuss the important parameters for each model, and present the models we select
from cross validation to use on the test data in Table 1 and 2.

DNN: The number of layers and the number of neurons are the most significant hyper-
parameters. Dropout layers and the dropout rate also play a role. We found that adding
a dropout layer after each layer works better than adding a dropout layer right before the
output layer. In terms of activation functions, parametric rectified linear (PReLU) units
do not perform as well as rectified linear units (ReLU), and exponential linear units (ELU)
perform similarly to ReLU with Batch Normalization.

RNN: The bi-directional RNNs generally performs better than uni-directional counter-
parts. We did not use LSTM (section 2.5) as LSTM empirically has similar model charac-
teristics as GRU but is slower to train due to a more complex gating mechanism. We use
only 2 layers (one direction per layer), as cross validation experiments show that deeper
RNN networks beyond 2 layers are difficult to train to good accuracy. Figure 6 shows the
effect of sequence length on the RNN performance, with other parameters fixed. It is inter-
esting to note that the RNN performance actually degrades with too small or large sequence
length, indicating that long-range temporal dynamics in the dataset is limited.

RDNN: We start with optimal architectures from the DNN and RNN experiments, and
explore ways to reduce model capacity (since combining a DNN and an RNN increases the
number of model parameters). This can be done by reducing the number of DNN layers or
increasing L2 regularization strength, or by reducing the number of neurons.

CNN: We employ architectures similar to the VGG net (Simonyan and Zisserman (2014))
to keep the number of model parameters small. We use rectified linear units (ReLU) to
model non-linearity. We also found that pooling layers do not help but only slow down
computation, so we do not include them in most experiments. The dropout layer sig-
nificantly improves performance, which is consistent with the CNN behaviors on natural
images. Overall CNN takes a lot longer to train than RNNs, DNNs, and RDNNs due to
the convolutional layers. We did not try 1D convolution layers as we believe 2D layers are
more general and introduce very few additional parameters.

RCNN: We start with the well-tuned CNN model and bi-directional RNN. Due to the
expensive training procedure for RCNN, we only tune the number of neurons in RNN.

10



Experiences from RDNN suggest that further tuning could have only limited benefit given
a well tuned CNN component.

System Configuration: We train our Deep Learning models with the Keras library (Chol-
let (2015)) built on Theano (Bastien et al. (2012)), using 4 Titan X GPU on a 64GBmemory,
Intel Core i7 node.

3.4 Results

Figure 7 shows the test accuracy for 5 classifiers over 3 features. The model parameters
are selected via cross validation and are detailed in Table 1. We perform 10000 bootstrap
repetitions on the test set to estimate the standard deviations, and the difference between
the test errors are statistically significant within each feature group using the unpaired T-
test. We point out that the GMM with MFCC features is the official baseline provided in
IEEE challenge on Detection and Classification of Acoustic Scenes and Events (DCASE),
which achieves a mean accuracy of 67.6%, while our best performing model (DNN with the
Smile6k feature) achieves a mean accuracy of 80%.

Figure 7: The test accuracies of GMMs, SVMs, RNNs, DNNs, and RDNNs on three features:
MFCCs, Smile983, and Smile6k feature. The model parameter details are in Table 1. Except
GMMs, all other models exhibit higher accuracy with increasing feature dimensions (dimensions of
MFCC, Smile983, Smile6k features are, 60, 983, 6573, respectively). Also the DNNs outperform
temporal models (RNNs, RDNNs) on the Smile6k feature, but on other features temporal models
yield higher accuracies. Generative model GMMs suffer the curse of dimensionality when using
higher dimensional features. All models perform above the chance performance (6.7%). Note that
for the Smile6k feature Liblinear SVM could not finish computation in a reasonable amount of time
(∼12 hours) and thus was not included.
In addition to the 5 models in Figure 7, CNN using spectrogram features achieves test
accuracy of 0.6377. RCNN has test accuracy of 0.641.

Figure 8 is the confusion matrix of the test result between 15 classes using the DNN with
the Smile6k feature, which is the best performing setting from Figure 7.

3.5 Discussion

Figure 7 shows that feature representation is critical for classifier performance. For each
Neural Networks models (RNNs, DNNs, RDNNs) higher dimensional features extracted

11



Feature Model # of
layers

model
size

Description

MFCC

GMM 2.5k 20 mixture components, diagonal covariance matrix
SVM 61 C = 1
RNN 4 50k 2 layers of GRU in opposite directions (bi-directional)

with 64 units (neurons) each, no regularization, 1 Batch
Normalization layer, 1 softmax layer. RNN sequence
length is 10 (10 frames in a sequence).

DNN 16 1.1M 5 hidden dense layers (512 units, regularized with L2 =
0.1), 5 dropout layers (0.2 dropout rate), 5 Batch Nor-
malization layers, and 1 softmax layer.

RDNN 19 2.7M 5 hidden dense layers (256 units, regularized with L2 =
0.1), 5 dropout layers (0.25 dropout rate), 5 Batch Nor-
malization layers, and 2 RNN layers in opposite direc-
tions (bi-directional GRU) with 512 units each, regular-
ized by L2 = 0.1, 1 Batch Normalization layer, and 1
softmax layer. RNN sequence length is 10.

Smile983

GMM 40k 20 mixture components, diagonal covariance matrix
SVM 984 C = 0.1
RNN 4 4.6M 2 layers of GRU in opposite directions (bi-directional)

with 512 units (neurons) each, L2 = 0.01, 1 Batch Nor-
malization layer, and 1 softmax layer. RNN length is
30.

DNN 10 1M 3 hidden dense layers (512 units, regularized with L2 =
0.01), 3 dropout layers (0.2 dropout rate), 3 Batch Nor-
malization layers, and 1 softmax layer.

RDNN 13 4.2M 3 hidden dense layers (512 units, regularized with L2 =
0.01), 3 dropout layers (0.25 dropout rate), 3 Batch
Normalization layers, and 2 RNN layers in opposite di-
rections (bi-directional GRU) with 512 units each, regu-
larized by L2 = 0.01, 1 Batch Normalization layer, and
1 softmax layer.

Smile6k

GMM 262k 25 mixture components, diagonal covariance matrix
DNN 16 4.4M 5 hidden dense layers (256 units, regularized with L2 =

0.1), 5 dropout layers (0.2 dropout rate), 5 Batch Nor-
malization layers, and 1 softmax layer.

RNN 4 2.6M bi-directional GRU with 64 units (neurons), regularized
with L2 = 0.01. 1 Batch Normalization Layer, and 1
softmax layer. RNN length is 10 (10 frames in a se-
quence).

RDNN 13 2.6M 3 hidden dense layers (256 units, regularized with L2 =
0.2), 3 dropout layers (0.25 dropout rate), 3 Batch Nor-
malization layers, and 2 RNN layers in opposite direc-
tions (bi-directional GRU) with 256 units each, regu-
larized by L2 = 0.2, 1 Batch Normalization, 1 softmax
layer. RNN sequence length is 10.

Table 1: Models selected from cross validation for each model-feature combination. Model
size denotes the number of model parameters.

12



Feature Model # of
layers

model
size

Description

Spectrogram

CNN 12 218k 4 convolutional layers (32 feature maps each), 4 Batch
Normalization layers, 1 fully connected layer, 1 Batch
Normalization layer, 1 dropout layers (0.5 dropout
rate), and 1 softmax layer. (Not counting padding lay-
ers)

RCNN 14 1.67M 4 convolutional layers (32 feature maps each), 4 Batch
Normalization layer, 2 RNN layers (64 neurons, in op-
posite directions), 1 fully connected layer, 1 Batch Nor-
malization layer, 1 dropout layer (dropout rate 0.2), and
1 softmax layer.

Table 2: CNN and RCN selected from cross validation using spectrogram feature.

Figure 8: Confusion Matrix of the test results using the DNN with the Smile6k feature (the top
performing setting). A perfect classification would result in only diagonal entries, in which the
predicted labels (x-axis) agree with the ground truths (y-axis). The darker the off-diagonal entries,
the more challenging it is for the classifier to distinguish the two classes. Note that each class has
18–21 test samples, and the color gradient spans this (unnormalized) range.

from signal processing pipeline improves performance. Among the Neural Network models,
it is interesting to note that temporal models (RNNs and RDNNs) outperform DNNs using
MFCC and Smile983 features, but DNNs outperform RNNs and RDNNs on Smile6k features
and achieve the best accuracy among all models. It is possible that with the limited
feature representation (e.g., MFCC and Smile983 features), modeling temporally adjacent
pieces enhances local feature representation and thus improves performance in those cases.
However, with sufficiently expressive features (e.g., Smile6k), temporal modeling becomes
less important. It becomes more effective to model local dynamics rather than long-range
dependencies.

13



This observation is somewhat surprising as we originally expected temporal models to
outperform static models (e.g. DNNs) because sound is time-series data. A more careful
consideration reveals that, unlike speech, which has long-range dependencies (a sentence ut-
terance could span 6∼20 seconds), environmental sounds generally lack a coherent context,
as events in the environment occur more or less randomly from the listener’s perspective. To
put it another way, a human listener of environmental noise is unlikely able to predict what
sound will occur next. (Even though there are speeches and chatters in the environment,
it is the presence of the speech rather than the content of the speech that is instrumental
for our task.) This weak global dependency property in a time series data is not unique
to this problem setting. Kim et al. (2015) made a similar observation in the context of
facial expression synthesis based on speech. They find that even though the facial motion
is temporal, it is more beneficial to simply model the local dynamics with the decision tree,
which outperforms HMM, LSTM, and other temporal models. Another example is edge
detection in the image. While different parts of an image could be related to each other,
Dollár and Zitnick (2013) shows that it is more beneficial to model local patch dynamics
than to consider the picture as a whole in performing edge detection.

The performance of CNNs and RCNNs using spectrogram features is lower than all other
Neural Network models. This is somewhat unexpected as the state-of-the-art speech pipeline’s
acoustic model uses spectrogram directly as input (Hannun et al. (2014)). We hypothesize
that the main reason for the poor performance of CNN-based models is due to the small
data size. In Hannun et al. (2014) they train on thousands of hours of labeled data, which is
further augmented with background noise. It is likely that there is simply not enough data
for the CNN to learn good features for it to be competitive with well-tuned hand-crafted
signal processing features.

Regarding the non-Neural Network models, the performance of GMMs decreases with in-
creasing feature dimensions, which is expected due to the “curse of dimensionality”. That
is, in high dimensional space the volume grows exponentially while the number of available
data stays constant, leading to highly sparse sample. SVM’s performance is very poor
with MFCC features, as the linear SVM has a limited model capacity with low dimen-
sional features. By increasing the feature dimension and using the Smile983 features SVM
performance improves.

Finally, the confusion matrix in Figure 8 shows that many locations are relatively easy to
identify, such as the beach, the bus, and the car. However, some locations are fairly difficult
to distinguish, such as parks and the residential areas, or home and libraries. These are
consistent with our intuition that these less distinguishable locations would sound like each
other (parks could be close to residential areas; both home and library could be rather
quiet). This is evidence that the classifiers we train indeed learn the characteristics of the
environmental sounds.

4 Limitations

Since our results could be due to the limited data, data augmentation is expected to be very
helpful. However, data augmentation in the context of environmental sound recognition is
trickier than in speech recognition, because noise is often part of the environmental sound,
and simply adding noise could change the label. One possible way to avoid that is to
change the playback speed without changing the frequency using Phase Vocoder. Another
possibility to enhance data is to use other environmental sound data to perform joint
training on the two datasets. For example we can let two tasks share the same feature

14



extraction and DNN pipeline, but use separate classifiers or softmax layers at the end for
each task. While we can’t use external data for the purpose of DCASE contest, it would
still be an interesting direction to improve performance with the (labeled) data outside of
the competition.

5 Conclusion

In this work we apply 7 models to acoustic scene recognition: Gaussian Mixture Models
(GMMs), Support Vector Machines (SVMs), Deep Neural Networks (DNNs), Recurrent
Neural Networks (RNNs), Recurrent Deep Neural Networks (RDNNs), Convolutional Neu-
ral Networks (CNNs), and Recurrent Convolutional Neural Networks (RCNNs). We use
4 sets of features extracted using signal processing techniques: MFCCs (60-dimension),
Smile983 (983-dimension), Smile6k (6573-dimension), and spectrograms.

Our contributions are three-folds. 1) We show that Deep Learning models compare fa-
vorably with conventional models. A well-tuned DNN achieves 80% accuracy, compared
with SVMs and GMMs with accuracies below 75%. 2) We show that with a sufficient fea-
ture representation non-temporal models outperform temporal models. In our experiments
DNNs outperform RNNs and RDNNs on the Smile6k feature, which is an extensive feature
set with 6573 dimensions. 3) We show that for the environmental sound recognition task,
signal processing features outperform spectrogram features with visual models like CNNs.
Overall our work suggests that variants of DNNs and signal processing features are pre-
ferred tools for modeling environmental sound and helps narrow down the model-feature
search space substantially for future works in this domain.

6 Comments on the IEEE Contest

Just like most machine learning contests, feature engineering has large effects on accu-
racy. Better features give larger boosts than better models, though both feature and model
choices are important for achieving good results. In terms of the features, supervised
features extraction through CNNs and RCNNs do not outperform hand-crafted signal pro-
cessing features, likely due to the limited data size. More extensive trials on various signal
processing features could be beneficial. In terms of the models, the DNNs are the model of
choice, with the caveat that careful tuning is needed for them to work well.

Another thing to note is that the labels in the contest dataset are rather coarse-grained. The
dataset provides only the class label for each 30-second audio clip, whereas each audio clip
could contain many events. Without resorting to external data (which is disallowed by the
contest) and working within limited data size, it is unlikely to build more intelligent models
to have levels of understanding akin to how humans understand the sound. Human listeners
generally have strong prior knowledge of sound events (like bar code scanner beeping sound
in the grocery store) to guide their classification. Enabling machines to understand these
higher level features (e.g., from a large amount of unlabeled environmental sound recordings)
could be a step closer to the human-level understanding of the environmental sounds.

7 Acknowledgement

We thank Bosch Research and Technology Center for valuable discussions and providing
the computation resources to conduct the experiments.

15



References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard,
N., Warde-Farley, D., and Bengio, Y. (2012). Theano: new features and speed improve-
ments. arXiv preprint arXiv:1211.5590.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

Chollet, F. (2015). keras. https://github.com/fchollet/keras.

Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural networks for
image classification. In Computer Vision and Pattern Recognition (CVPR), 2012, pages
3642–3649. IEEE.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

Dollár, P. and Zitnick, C. (2013). Structured forests for fast edge detection. In Proceedings
of the IEEE International Conference on Computer Vision, pages 1841–1848.

Eyben, F., Wöllmer, M., and Schuller, B. (2010). Opensmile: the munich versatile and
fast open-source audio feature extractor. In Proceedings of the 18th ACM international
conference on Multimedia, pages 1459–1462. ACM.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear: A
library for large linear classification. J. Mach. Learn. Res., 9:1871–1874.

Gales, M. and Young, S. (2008). The application of hidden markov models in speech
recognition. Foundations and trends in signal processing, 1(3):195–304.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recur-
rent neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 6645–6649. IEEE.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R.,
Satheesh, S., Sengupta, S., Coates, A., et al. (2014). Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567.

Hasan, M. R., Jamil, M., and Rahman, M. G. R. M. S. (2004). Speaker identification using
mel frequency cepstral coefficients. variations, 1:4.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1026–1034.

Hinton, G. (2012). Neural networks for machine learning. http://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf.

16



Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Van-
houcke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. Signal Pro-
cessing Magazine, IEEE, 29(6):82–97.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Kim, T., Yue, Y., Taylor, S., and Matthews, I. (2015). A decision tree framework for spa-
tiotemporal sequence prediction. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 577–586. ACM.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mesaros, A. (2016). 2016 dcase challenge. http://www.cs.tut.fi/sgn/arg/dcase2016/.

Mikolov, T., Kombrink, S., Deoras, A., Burget, L., and Cernocky, J. (2011). Rnnlm-
recurrent neural network language modeling toolkit. In Proc. of the 2011 ASRU Work-
shop, pages 196–201.

Pinheiro, P. H. and Collobert, R. (2013). Recurrent convolutional neural networks for scene
parsing. arXiv preprint arXiv:1306.2795.

Ranft, R. (2004). Natural sound archives: past, present and future. Anais da Academia
Brasileira de Ciências, 76(2):456–460.

Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. (2000). Speaker verification using
adapted gaussian mixture models. Digital signal processing, 10(1):19–41.

Roma, G., Nogueira, W., Herrera, P., and de Boronat, R. (2013). Recurrence quantification
analysis features for auditory scene classification. IEEE AASP Challenge: Detection and
Classification of Acoustic Scenes and Events, Tech. Rep.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initializa-
tion and momentum in deep learning. In Proceedings of the 30th international conference
on machine learning (ICML-13), pages 1139–1147.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap to
human-level performance in face verification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1701–1708.

Van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music
recommendation. In Advances in Neural Information Processing Systems, pages 2643–
2651.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural image
caption generator. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3156–3164.

17



Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell,
J., Ollason, D., Povey, D., et al. (1997). The HTK book, volume 2. Entropic Cambridge
Research Laboratory Cambridge.

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q. V., Nguyen, P., Senior,
A., Vanhoucke, V., Dean, J., et al. (2013). On rectified linear units for speech process-
ing. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 3517–3521. IEEE.

18


