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Abstract

Background A goal in computer vision and natural language processing is to
predict high level structure over handwritten algebra data. This is typically done
by clustering or otherwise identifying symbols, then applying a known or learned
grammar to generate dependency trees. However, these methods are often not
generic and require domain knowledge.
Aim The goal of this paper is to determine whether it is practical to predict depen-
dency trees from low level features of handwritten algebra data without the use of
symbol identification, and to determine which algorithms are best suited for this
task.
Data Our data consists of 400 pages of handwritten algebra data collected by one
of our researchers.
Methods We use transition-based parsing to generate dependency trees, and vari-
ous no-regret online imitation learning algorithms to predict transitions.
Results We find that a simple algorithm called greedy transition-based parsing,
which has regretful learning and greedy decoding, gives similar or better results
compared to the no-regret algorithms. This is surprising, as theory suggests no-
regret algorithms should outperform regretful algorithms. We discuss possible
explanations for this discrepancy.
Conclusions We conclude that it is practical to predict dependency trees over
handwritten algebra data without the use of symbol identification.

1 Introduction

In problems involving handwriting, there has been a large focus on clustering. The MNIST database
of handwritten digits [1] lists many approaches for clustering handwritten digits, with error rates as
low as 0.23%. Similarly common are parsers that derive high order structure such as dependency
trees using indicators of symbols or words as features. Examples of such features include the CoNLL
datasets [2] and the Penn Treebank [3]. This paper focuses on a less well-studied topic, that of
learning high order structure from low level features.

In this paper we examine handwritten algebraic equations, and attempt to find dependency trees.
Rather than clustering symbols and and applying parsing algorithms to the cluster identities, we
apply algorithms for finding dependency trees to low level features. We chose this model for several
reasons. First of all, this model is not well studied. Most models in the literature follow either a
pipeline approach, first performing recognition and then parsing, or a joint model where recognition
and parsing are simultaneously performed. By approaching the problem from a different perspective,
and attempting to learn structure without explicit recognition, we hope to gain new insight into
the properties of the data. Additionally, models that perform recognition and parsing separately
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typically require both supervision and domain knowledge. Human effort is usually required to label
the symbols to be recognized, and domain knowledge is often used to construct grammars used in
parsing. By studying models that do not perform explicit recognition, we hope to eventually build
models that require less supervision and less domain knowledge. This will lead to systems with
more general applications.

We chose to study dependency trees because they are a straightforward data structure to work with,
which still being structurally interesting. There exists an easily implemented parsing method called
transition-based parsing, described in section 3.1, which can represent a dependency tree as a time
series of transitions between states. These states and transitions provide natural features and outputs
for online learning algorithms, including both regretful and no-regret algorithms.

1.1 Research goals

Our research group is interested in an important problem in AI research: to uncover high level
structure and make predictions from low level features. In particular, we are interested in time series
data. We hope to develop generic structure prediction algorithms that require less supervision and
less domain knowledge.

The goal of this paper is to determine whether it is feasible to predict structure from low level fea-
tures, and to identify the best algorithms for doing so. We examine whether it is practical to find
dependency trees over handwritten algebra data without explicit symbol recognition. We conclude
that training a greedy transition-based parsing, a regretful algorithm in which we train a support vec-
tor machine to predict transitions and use greedy decoding, gives similar or better results compared
to the no-regret approaches we examine. This is theoretically surprising, as no-regret algorithms
provide guarantees that regretful algorithms do not, but reflects other results in parsing showing that
simple methods can be more effective [4] than more complex methods.

This work may have applications in auto-completion of handwriting. In future work, we hope to
use learned structure to predict future features of time series data. This work also has applications
in education, where a problem of interest is to learn how students solve problems. High level,
representative models are necessary to understand the complex process of learning. We hope to use
the high level structures we predict as a basis for modeling human learning.

1.2 Paper structure

This paper is intended to be self-contained, so we summarize some other papers when describing
the algorithms that we use. First we present a summary of related work in section 2. Next we
describe the algorithms and approaches that we implement in section 3, including a discussion of
transition-based parsing systems in subsection 3.1, a discussion of imitation learning algorithms for
predicting transitions in subsection 3.2, and a discussion of efficiency in terms of time complexity
in subsection 3.3. In section 4 we describe in detail our dataset, and in section 5 we describe the
experiments we performed. We present our results in section 6, and discuss the implications of those
results in section 7.

2 Related work

Typical systems for parsing handwriting proceed by performing some form of recognition on char-
acters, then determining some sort of structure over over the characters, usually incorporating some
form of domain knowledge. An example of such a system is presented by Belaid and Haton
(1984) [5]. They identify characters using domain knowledge, for example the locations where
strokes cross. They then interpret the symbols using a grammar constructed with domain knowledge
of mathematics. Garain and Chaudhuri (2004) [6] employ a similar method.

Belaid and Haton use the interpretation step to correct errors in the identification step by ensuring
that a set of character identities is in the language of the grammar. Similar corrections are also
common in the literature. Toyozumi et al. (2004) [7] use a similar method to improve segmentation
— separating pen strokes from different symbols without breaking a symbol into multiple parts
— by calculating probabilities using a predefined grammar. Shi et al. (2007) [8] and Luo et al.
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(2008) [9] use graphical models over strokes to find the likeliest symbol segmentation and identities
prior to performing structure recognition.

Another common area of research is simultaneously performing symbol recognition and syntax
analysis. Such methods are presented by Yamamoto et al. (2006) [10] and Awal et al. (2009) [11],
(2014) [12].

State-of-the-art methods typically follow the same pattern. Álvaro et al. (2014) [13] use hidden
Markov models for symbol recognition and stochastic 2D context-free grammars for structure recog-
nition, achieving best-in-class at the CROHME 2011 Competition on Recognition of Online Hand-
written Mathematical Expressions [14].

This paper attempts to recognize structure without explicitly performing symbol recognition, a prob-
lem that is not well studied in the literature.

3 Approaches

In this work, we attempt to predict dependency trees from handwriting features. Rather than pre-
dicting a dependency tree directly, we examine transition-based dependency parsing [15]. In
this model a sequence of transitions, for example setting one symbol to be the parent of another, is
applied to a sequence of words or symbols.

We predict the sequence of predictions via imitation learning. In imitation learning, an expert
provides demonstrations of good behavior, which are used to control the behavior of a system [16].
Our goal is to train classifiers to predict the next transition, given the features of symbols and expert-
provided transitions for sample features. The algorithms we describe are online in the sense that they
predict each transition after the previous one is applied, but we allow the use of future symbols as
features of the classifiers.

Our system then consists of two components. The first component is a transition-based dependency
parsing systems. This is used as an expert that provides the training classes for our classifiers. We
implement two transition systems described by Goldberg and Nivre: the arc-eager system and the
arc-hybrid system [15]. These are described in subsection 3.1.

The second component that we require is an imitation learning method. We implement several
no-regret online learning methods described by Ross, Gordon, and Bagnell: forward training,
SMILe, and DAgger [16]. These are described in subsection 3.2. We also implement greedy
transtion-based parsing, which is first introduced in subsection 3.1. We will also discuss the time
complexities of these algorithms in section 3.3.

3.1 Parsing Systems

In the interests of making this paper self-contained, this section is a summary of and largely para-
phrases the relevant portions of Goldberg and Nivre (2013) [15].

The parsing systems developed by Goldberg and Nivre contain two features relevant to our work.
First of all, they encode dependency trees as linear time series of transitions. Having a time series
and a set of classes to predict makes the problem amenable to imitation learning such as DAgger.
Secondly, they provide experts to determine the next transition given the ground truth dependency
tree.

First we will describe the arc-eager and arc-hybrid transition systems. Then we will discuss greedy
transition-based parsing and why it is often insufficient for imitation learning. We then estab-
lish several concepts used by Goldberg and Nivre. Finally, we describe how the transition-based
dependency parsing systems can be used for imitation learning.

3.1.1 Transition systems

We want to construct transition systems that can construct any projective dependency tree by
applying transitions to an ordered sequence. A projective dependency tree is a (non-binary) tree
with vertices in bijection with the elements of an ordered sequence, such that if a vertex is to the left
of a sibling vertex, then its descendents are to the left of the sibling’s descendents.
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Configurations Transition systems for parsing maintain a configuration consisting of a stack σ,
a buffer β, and a set of dependency arcs A. We denote a configuration c = (σ, β,A). We may
also write the top element(s) of the stack and the first element(s) of the buffer to the right and left
respectively, as in c = (σ|s, b|β,A). We write arcs in A as (h, d), where h is the head and d is the
dependent. The system is initialized as σ = ∅, A = ∅, and β = w1, ..., wn where wi is the ith word
or symbol.

We use φ(c) to denote the features of a configuration c, which we will use to train classifiers. Specif-
ically, we use features of the symbols in each of σ, β, and A.

A transition system then requires a set of transitions that can be applied to the initial buffer β0 to
reach any dependency tree. We describe two such transition systems. Other transition systems are
possible, but these two can be shown to have properties that are useful for imitation learning (see
subsection 3.1.3).

Arc-eager transition system The arc-eager system has four transitions. As stated in Goldberg
and Nivre [15], they are:

SHIFT[(σ, b|β,A)] = (σ|b, β,A)
RIGHTlb[(σ|s, b|β,A)] = (σ|s|b, β,A ∪ {(s, b)})
LEFTlb[(σ|s, b|β,A)] = (σ, b|β,A ∪ {(b, s)})
REDUCE[(σ|s, β,A)] = (σ, β,A)

These transitions require that b or s exist as necessary, so for example SHIFT requires that the buffer
is non-empty. To maintain tree structure, LEFTlb requires that s does not already have a parent,
and REDUCE requires that s does already have a parent. Projectivity is maintained because all left
dependents must be collected before a SHIFT or RIGHTl operation, and all right dependents after.
Conversely, all trees may be constructed recursively by processing all left subtrees, collecting the
heads of left subtress as dependents with LEFTlb, performing a SHIFT if the head of the current
subtree is a left depedent and a RIGHTlb otherwise, then processing the right subtrees.

Arc-hybrid transition system The arc-hybrid system has three transitions. As stated in Goldberg
and Nivre [15], they are:

SHIFT[(σ, b|β,A)] = (σ|b, β,A)
RIGHTlb[(σ|s1|s0, β, A)] = (σ|s1, β, A ∪ {(s1, s0)})
LEFTlb[(σ|s, b|β,A)] = (σ, b|β,A ∪ {(b, s)})
As in the arc-eager system, transitions require that b or s exist as necessary. All left dependents must
be collected before a SHIFT operation, and all right dependents after, so as in the arc-eager system
projectivity is maintained and any projective tree can be constructed.

3.1.2 Greedy transition-based parsing, and problems therewith

Since we can construct any projective dependency tree with either transition system, a naive method
of imitation learning called greedy transition-based parsing is as follows.

1. Convert the ground-truth dependency tree for each training sequence W into a sequence of
transitions t1, ..., tm.

2. Starting from the initial configuration c0, apply each transition ti to get the updated config-
uration ci.

3. Train a classifier to predict ti from features φ(ci−1).

The problem with this method is that all ti are predicted by an expert, so when a classifier is trained,
it only sees the features φ(ci−1) of ci resulting from perfect sequences of transitions. However,
to predict a dependency tree, the classifier predicts each transition from an imperfect sequence of
previous transitions. This discrepancy between training and testing can lead to error. More explicitly,
the no-regret online learning algorithms, which deal with this problem, require expert training data
on non-expert sequences. For more details see subsection 3.2.

Since we need to be able to train classifiers on configurations resulting from non-optimal sequences
of transitions, we require parsing systems that can produce optimal expert transitions, given ground
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truth dependency trees and configurations resulting from non-optimal sequences of transitions. The
following subsection establishes such systems based on the arc-eager and arc-hybrid transition sys-
tems.

3.1.3 Dynamic oracles

The method for producing labels in the greedy transition algorithm above can be referred to as a
static oracle. A static oracle os maps a tree T to a sequence of transitions t1, ..., tm. Alternatively,
we write os(ci, T ) = ti+1 or os(t; ci, T ) = true for t = ti+1 and is false otherwise. os is correct
if Am = T for cm = (σm, βm, Am) where cm = tm(tm−1(...(t1(c0)))).

A non-deterministic oracle is an oracle on that may return a set of transitions on(ci, T ) such that if
T is reachable from ci, then for any ti+1 ∈ on(ci, T ), T is reachable from ti+1(ci).

A dynamic non-deterministic oracle is a non-deterministic oracle od such that if T is not reachable
from ci, od(ci, T ) outputs a set of transitions that are optimal by some optimality condition. We will
describe the optimality condition, then establish dynamic oracles for the arc-eager and arc-hybrid
systems.

Optimality condition We begin by defining a cost function C(A, T ) on a set of arcs A and a tree
T . In this case we use the Hamming loss for unlabeled dependency arcs, which is the symmetric
difference of arcs in T and in A. Equivalently, since T and A contain the same number of arcs, we
use the number of arcs in T but not inA. We then define the optimality condition that ti+1 is optimal
for (ci, T ) if minAm:ci Am C(Am, T ) = minA′m:ti+1(ci) A′m C(A′m, T ), where c A means that
A is reachable from c. In other words, ti+1 is optimal if the end arc set A′m that closest to T and
reachable from ti+1(ci) is no farther from T then the end arc set Am that closest to T and reachable
from ci. A dynamic oracle od is an oracle such that od(ci, T ) = {ti+1 | ti+1 is optimal for (ci, T )}.

Arc reachability and arc decomposition We now define several concepts that we will use to find
dynamic oracles for the arc-eager and arc-hybrid systems.

A dependency arc (h, d) is reachable from configuration ci if there exists a sequence of transitions
ti+1, ..., tk such that (h, d) ∈ Ak where Ak is the arc set of tk(...(ti+1(ci))). We write this as
ci  (h, d).

A set A of arcs is reachable if there is a sequence of transitions ti+1, ..., tk such that A ⊆ Ak. We
write this as ci  A.

A set A of arcs is tree consistent if there exists a projective dependency tree T such that A ⊆ T .

A transition system is arc decomposable if, for tree consistent A = {(h1, d1), ..., (hn, dn)} ⊆ T ,
we have ci  (h1, d1), ..., ci  (hn, dn)⇒ ci  A.

Arc decomposability is a useful property.

Suppose configuration ci  A′m, where A′m is the minimizer A′m = arg min
Am:ci Am

C(Am, T ). Sup-

pose also that after applying ti+1, the resulting configuration ti+1(ci)  A′′m, where A′′m is the
minimizer A′′m = arg min

Am:ti+1(ci) Am
C(Am, T ). Then arc decomposability implies that we can de-

compose the change in cost ∆C(ti+1; ci, T ) = C(A′′m, T ) − C(A′m, T ) into a sum over arcs

in T as
∑

(h,d)∈T

(
min

Am:ti+1(ci) Am
C(A′m, (h, d))− min

Am:ci Am
C(Am, (h, d))

)
. Then to calculate

∆C(ti+1), all we need is to calculate the number of arcs that are no longer reachable after applying
transition ti+1.

We state without proof that the arc-eager and arc-hybrid systems are arc decomposable. Readers
may refer to Goldberg and Nivre [15] for more details. We will now construct the corresponding
dynamic oracles.

Arc-eager dynamic oracle Since the arc-eager system is arc decomposable, to calculate
∆C(ti+1) the increase in cost function after applying ti+1, all we need is to calculate the number of
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ground-truth arcs that are no longer reachable after applying transition ti+1. Given a configuration
ci = (σ|s, b|β,A) and T , ∆C(ti+1; ci, T ) can be calculated as

• ti+1 = LEFTlb: The number of base-truth dependents and heads of s in β.

• ti+1 = RIGHTlb: The number of base-truth heads of b in σ∪β plus the number of base-truth
dependents of b in σ that do not already have a (wrong) head in A.

• ti+1 = REDUCE: The number of base-truth dependents of s in b|β.

• ti+1 = SHIFT: The number of base-truth heads of b in σ|s plus the number of base-truth
dependents in σ|s that do not already have a (wrong) head in A.

Then a dynamic oracle for the arc-eager system is one that returns od(ci, T ) = {ti+1 |
∆C(ti+1; ci, T ) = 0}.

Arc-hybrid dynamic oracle Since the arc-hybrid system is arc decomposable, to calculate
∆C(ti+1; ci, T ) the increase in cost function after applying ti+1, all we need is to calculate the
number of arcs that are no longer reachable after applying transition ti+1. Given a configuration
ci = (σ|s1|s0, b|β,A) and base truth dependency tree T , ∆C can be calculated as

• ti+1 = LEFTlb: The number of base-truth dependents of s0 in b|β plus the number of heads
of s0 in {s1} ∪ β.

• ti+1 = RIGHTlb: The number of base-truth heads and dependents of s0 in b|β.

• ti+1 = SHIFT: The number of base-truth heads of b in σ|s1 plus the number of base-truth
dependents in σ|s1|s0.

Then a dynamic oracle for the arc-hybrid system is one that returns od(ci, T ) = {ti+1 |
∆C(ti+1; ci, T ) = 0}.

3.2 Imitation learning

In the interests of making this paper self-contained, this section is a summary of and largely para-
phrases the relevant portions of Ross, Gordon, and Bagnell (2010) [16] and Ross and Bagnell
(2010) [17].

In the imitation learning paradigm, an expert provides demonstrations of good or optimal behavior,
and these demonstrations are used to learn a controller. Such a controller might be a classifier trained
to predict expert behavior from observations. In the context of sequence prediction, each element
of a sequence of observations depends on the output of the controller on the previous observation.
However, since the output of the controller is a prediction of expert behavior depending on the
previous observation, the observations are not i.i.d. as is commonly assumed.

Since observations are not i.i.d., naively training a classifier under i.i.d. assumptions can lead to poor
performance. In fact, there are systems such that if the probability of a mistake on an expert sequence
is ε, the overall expected number of mistakes is O(T 2ε) where T is the length of the sequence of
predictions [17]. Intuitively, after a mistake is made, the controlled may see observations unlike
those it was trained under, so the probability of a mistake becomes O(1). Then since the probability
of a mistake in the first O(T ) steps is O(Tε), and the expected number of mistakes in the O(T )
steps after the first mistake is O(T ), the expected total number of mistakes is O(T 2ε).

The typical method to removing the i.i.d. assumption is to train a sequence of classifiers, training
each on the output of the previous. Here we describe several approaches to imitation learning de-
scribed in Ross, Gordon, and Bagnell (2010) [16]. Since a theoretical discussion is not necessary
for implementation, we state some results but refer readers to that paper for proofs.

Recall that in subsection 3.1.3, we established experts od that identify whether a transition ti+1 is
optimal given configuration ci and the ground truth dependency tree T , where ci may have been
generated by a sequence of non-optimal transitions. When we mention experts in the following
subsections, these are the experts we are implicitly referring to.
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3.2.1 Greedy transition-based parsing

Greedy transition-based parsing was described in subsection 3.1.2. It is a method that uses the i.i.d.
assumption and is used as a baseline for the other methods.

3.2.2 Forward training

In forward training, a classifier πii is trained at each time step i = 1..T based on the output of
the previous classifier πi−1i−1 on the training set. Then at test time each classifier πii is applied to the
configuration ci to get the next transition ti+1. Typically we maintain a set of classifiers {πi1, ..., πiT },
where πi1, ..., π

i
i is the set of classifiers we have trained up to the ith step, and πii+1, ..., π

i
T are expert

classifiers. This allows us to run sequences of actions to completion, so we can train each classifier
to optimize a cost function evaluated at the last step.

The forward training algorithm as stated in [17] and using expert π∗, is given in algorithm 1.

Initialize π0
1 , ..., π

0
T to be π∗;

for i = 1 to T do
Sample T -step trajectories by following πi−1;
Get dataset D = {(ci, π∗(ci))} of configurations, transitions given by expert at step i;
Train classifier πii = arg minπ IEc∼D(eπ(c)) where IEc∼D(eπ(c)) is the expectation over
D that π gives the optimal transition;
πij = πi−1j for all j 6= i.

end
return πT1 , ..., πTT

Algorithm 1: The forward training algorithm trains a classifier for each time step based on the
previous classifier.

In our case, the expert is π∗ = od the dynamic oracle. Since the dynamic oracle gives the transition
that optimizes cost evaluated at the end step, we can simplify the forward training algorithm by
training new classifiers as we increment time steps, as in algorithm 2.

Initialize D0 = D∗0 = {c0} the set of initial configurations of the training data;
for i = 1 to T do

Sample Di−1 = {ci−1} by following πi−1;
Get dataset D∗i = {(ci−1, π∗(ci))} of configurations, transitions given by dynamic oracle
at step i;
Train classifier πi = arg minπ IEc∼D(I(π(ci) = π∗(ci)));

end
return π1, ..., πT

Algorithm 2: The simplified forward training algorithm trains a classifier for each time step
based on the previous classifier. Note that it does not require entire training sequences to be
run for each new classifier, but it can train classifiers as it increments time steps.

For forward training using dynamic oracles, the Hamming cost function is minimized when the
classifier minimizes the imitation loss I(π(ci) = π∗(ci)). Then as proven in [16] the expected
Hamming loss is O(T ε̄), where ε̄ is the mean probability of making a mistake over steps.

3.2.3 Stochastic mixed iterative learning (SMILe)

SMILe works by training a collection of classifiers. The first classifier is trained on the output of the
expert, and each subsequent classifier is trained on the output of a probabilistic combination of the
previous classifiers. Here we use the notation π =

∑
n pnπn to represent a classifier that selects one

of π1, π2, ...with probability p1, p2, ..., then applies that classifier to the given configuration features.
Over iterations, the probability that the expert is used to select the next transition decreases. Note
that the expert is still always used to select the labels that the classifiers are trained on, just not the
trajectories.
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The SMILe algorithm is given in algorithm 3.

Initialize π0 = π∗;
for n = 1 to N do

Sample trajectories {c0, c1, ...} by following πn−1;
Get dataset D = {(ci, π∗(ci))} of configurations visited by πn−1, transitions given by
expert at all time steps i;
Train classifier π̂n = arg minπ IEci∼D,i∈1..T (I(π̂n(ci) = π∗(ci)));
πn = (1− α)nπ∗ + α

∑n
j=1(1− α)j−1π̂j ;

end
Remove expert classifier: π̃N = πN−(1−α)Nπ∗

1−(1−α)N ;

return π̃N = α
∑N
j=1

(1−α)j−1

1−(1−α)N π̂j

Algorithm 3: SMILe trains each classifier on a probabilistic combination of the previous clas-
sifiers, where the expert has decreasing impact on the trajectory but is still used to produce the
target classes for classification.

If α = O( 1
T 2 ) and N = O(T 2 log T ), then as stated in [16] the expected Hamming loss is O(T ε̄)

for some problems, where again ε̄ is the mean probability of making a mistake over steps.

Ross and Bagnell [17] present a second, equivalent implementation of SMILe that is more efficient
in terms of the number of training samples required. This second version has as a parameter m
the number of samples required to train a classifier, and requires O(Tm) training sequences. For
brevity, we do not describe the second algorithm here. Both versions were implemented, but only
the second was used for testing due to higher efficiency.

3.2.4 Dataset Aggregation (DAgger)

Note that although Goldberg and Nivre develop a learning scheme based on DAgger [15], we only
examine the original DAgger algorithm [16].

In DAgger, a dataset of all trajectories seen so far is maintained. At each iteration, a probabilistic
combination of the expert and the latest classifier is used to generate more sequences. Then the next
classifier is trained on the full dataset to predict the transitions given by the expert over all paths.

Unlike in SMILe, trajectories only result from a combination of the one classifier and the expert.
As in SMILe, the probability of using the expert to choose transitions decreases over iterations.
The DAgger algorithm only returns one classifier, not a combination of classifiers. The DAgger
algorithm is given in algorithm 4.

Initialize D = ∅;
Initialize π̂1;
for n = 1 to N do

πn = βnπ
∗ + (1− βn)π̂n;

Sample trajectories {c0, c1, ...} by following πn;
Get dataset Dn = {(ci, π∗(ci))} of configurations visited by πn, transitions given by
expert at all time steps i;
Aggregate datasets D = D ∪Dn;
Train classifier π̂n+1 = arg minπ IEci∼D,i∈IN (I(π̂i(ci) = π∗(ci)));

end
return best π̂n on validation.

Algorithm 4: DAgger trains each classifier on the output of probabilistic combinations of all
previous classifiers and the expert. βn is typically decreasing, ex. βn = αn−1. In this case π̂1
need not be specified.

If N = O(uT ), where u is an upper bound on the Hamming cost of any transition, then as stated in
[16] the expected Hamming loss is O(uTε) where ε is the probability of making a mistake.
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3.3 Complexity

In this section we discuss the time complexities of the imitation learning algorithms discussed in
subsection 3.2. We define the following quantities used to calculate computational complexity.

• T : the average length of a time series to be predicted.
• nts: the number of separate time series used in training.
• N : the number of models (classifiers) trained by SMILe or DAgger.
• nc: the number of classes to predict (4 for arc-eager and 3 for arc-hybrid).
• nit: the number of iterations used by a black box classifier.
• nsv: the number of support vectors used by a black box SVM classifier.
• nf : the number of features used in training (i.e. the length of φ(ci) as described in subsec-

tion 3.1.1).
• l: the number of training instances. This typically depends on other values.
• k: the number of testing instances. This typically depends on other values.

All methods use a (Gaussian) radial basis function kernel SVM as a black box classifier. We use
the LIBSVM library, written by Chang and Lin [18]. See section 5.1 for version details. Training
an SVM in LIBSVM has a time complexity of O(nitnf l). Chang and Lin state that empirically, nit
may be super linear in l. Here we assume that nit = O(l), so the time complexity of training an
SVM is O(nf l

2). We do not vary the number of features in this paper, so we may assume the time
complexity is O(l2).

To classify using a kernel SVM, each testing instance must be compared against each support vector,
for a total time complexity of O(nfknsv). Assuming nf to be constant and nsv to be at most linear
in l, we simplify this asO(kl). Note that due to overhead, we are also concerned with the minimizing
the number of calls to svm-predict.

To train a multi-class classifier, we train a classifier on each pair of classes. Then we must train
O(n2c) classifiers and predict O(n2c) times to identify a class, but this will not affect the relative
complexity between methods, so we ignore this factor.

3.3.1 Greedy transition-based parsing

In greedy transition-based parsing, we train a single SVM on all available data. In each time series,
all configurations are calculated using the dynamic oracle as an expert, in negligible time. There are
nts time series of average length T , so there are l = O(ntsT ) transitions/configurations to use as
training instances. Then the time complexity is O(n2tsT

2).

3.3.2 Forward training

In forward training, an SVM is trained for each time step i = 1..T . At each time step the training
data is the set of transitions/configurations for each time series at that time step. Then there are
l = O(nts) training instances, so the time to train one SVM is O(n2ts). Then the total time to train
all SVMs is O(n2tsT ).

In addition, our training procedure requires that at each time step we predict the transitions to be
applied to configurations. We can predict the next transition for all of the time series at once, so
we require O(T ) calls to svm-predict. Since each SVM is trained on l = O(nts) instances and
predicts k = O(nts) transitions, the time complexity to predict at each step is O(n2ts) per time step,
or O(n2tsT ) total.

3.3.3 Stochastic mixed iterative learning (SMILe)

Ross and Bagnell [17] describe an implementation of SMILe that is more efficient in terms of num-
ber of training samples required than the version presented in subsection3.2.3. We implemented both
versions, but only present results for the faster version. If a classifier requires m sequences to train,
this implementation requires O(mT ) training sequences for α = O( 1

T 2 ) to achieve their guarantees
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c2 ( v0 + c1 ) = d1
v0 + c1 = d0
v0 = c0

(a) Form 1

c2 ( v0 + c1 ) = d1
c2 v0 + d2 = d1
c2 v0 = d0
v0 = c0

(b) Form 2

Figure 1: Two forms of equations/solutions were used. Variables v and integer constants c were
chosen at random; integer constants d were calculated.

discussed in subsection 3.2.3. Then the total time complexity required for predicting transitions is
O(m2T 2). However, for such α a large number (O(T 2(log T )3/2)) of classifiers must be trained, so
for practical reasons a larger α is used. This implementation uses m and α as inputs rather than N
and α. Since each classifier is trained on O(mT ) samples, each classifier requires O(m2T 2) time
to train. Then we can upper bound the time required to train all classifiers by O(m2T 4(log T )3/2).

3.3.4 Dataset Aggregation (DAgger)

Note that in DAgger, we the total data size increases linearly with the iterations. This would lead to
long training times, so to avoid this we considered two possibilities. The first was to split data over
iterations, so each Dn would be constructed from 1

N of the total data. The second was to construct
each Dn from the full set of training data, and then to downsample by choosing only one version
of each training sequence at random from one Dn. We found that splitting the data yielded poor
results, so we only present the results after downsampling.

After downsampling, we train an SVM on nts time series worth of data, which is O(ntsT ) transi-
tions. Since we train O(N) SVMs, the total SVM training time complexity is O(Nn2tsT

2).

For O(N) iterations we predict k = O(nts) transitions using a single SVM trained on l = O(ntsT )
training instances for each of O(T ) time steps, for a total of O(NT ) calls to svm-predict and
O(Nn2tsT

2) total prediction time complexity.

Note that N is typically much lower for DAgger than for SMILe.

4 Dataset

The dataset we have chosen to work with is a dataset of handwritten algebraic equations and solu-
tions. The fact that we are using algebra means that the data is highly structured. The fact that the
data is handwritten means that there are rich low level features that can be used to predict structure.

To generate the data, first we generated random ground-truth algebraic equations and solutions fol-
lowing set patterns, described in subsection 4.1. The equations were then hand-copied to produce
the handwriting dataset, described in subsection 4.2.

4.1 Ground truth generation

Each algebraic solution generated took one of the forms shown in Figure 1, chosen uniformly at
random. Variables v were chosen uniformly from {x,y,z}. Integer constants c were chosen at
uniformly at random from [-5, 5]. Integer constants dwere calculated from the integer constants
c. Examples of algebraic solutions can be seen in Figure 2.

Note that some generated solutions include canceling zeros. For example in Form 2 of Figure 1,
the equation 0 x = 0 could be solved as x = 3, if c0 = 3 and c2 = 0. Since we are only
attempting to learn structure in this paper, these solutions were allowed.

4.2 Handwriting collection

To collect handwriting data, a researcher copied 400 algebraic solutions generated as in subsec-
tion 4.1 into a PDF document using a drawing tablet (details below). Each algebraic solution was
copied onto a separate page. The researcher was instructed to copy all symbols from the ground
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-5 ( x + -1 ) = -20
x + -1 = 4
x = 5

(a) Form 1

4 ( x + 1 ) = -16
4 x + 4 = -16
4 x = -20
x = -5

(b) Form 2

Figure 2: These are examples of equations used as ground truth.

truth, except that expressions of the form + - were simply copied as -. The researcher was also
instructed to align the equations as they normally would while solving equations, rather than for
example keeping the equations left aligned. An example of handwriting corresponding to the base
truth in Figure 2a is shown in Figure 3.

Figure 3: This figure shows an example of handwriting corresponding to the equations in Figure 2a.

After the handwriting was collected, the base truth was corrected to match any copying errors in the
handwriting. This includes replacing + - with -, which was done at runtime during preprocessing
(subsection 5.2).

4.2.1 Tools

The algebraic solutions were written using a “Wacom Intuos5 Touch Medium Pen Tablet”, model
number “PTH-650”. The algebraic solutions were written into a PDF using the program “Adobe
Acrobat Pro DC”, version number “2015.009.20071”. The solutions were written using the “Draw”
tool on the “Comment” toolbar.

The blank PDFs consisted of 100 pages, each with 6 lines 100 pixels apart, ranging from 150 to
650 pixels from the bottom of the page, and 550 pixels wide starting at 50 pixels from the left edge.
The first equation was written on top of the first line. The PDFs were standard letter size, with a
resolution of 72 pixels per inch. The Intuos tablet digitizes pen strokes with a resolution well under
one pixel, so the data contains fractional stroke coordinates.

After the handwriting was collected, the PDFs were converted to PDF version 1.3 (compatible with
Adobe Acrobat 4.0 and later) using Adobe Acrobat Pro DC. This was done because PDF version
1.3 is easier for MATLAB to parse.

5 Experiments

This section describes the experiments that were performed on the handwriting data. First we de-
scribe tools and libraries used in subsection 5.1. We discuss preprocessing performed on the data in
subsection 5.2. Then we describe how algorithms were tuned in subsection 5.3. We then describe
the main tests performed in subsection 5.4. We discuss evaluation metrics in subsection 5.5.

5.1 Tools and libraries

The data base truth generation and some initial preprocessing was written in PythonTM version
2.7. The rest of our code was written in MATLAB R© Release 2014b for 64-bit Windows [19] with
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Computer Vision System Toolbox version 6.1 (R2014b). We also used the LIBSVM library version
3.20, written by Chang and Lin [18], to train support vector machines.

The code was run on an Intel R© CoreTM i7 processor.

5.2 Preprocessing

Preprocessing involved three main parts. First dependency trees were generated from the base truth.
This is described in subsection 5.2.1. Next, ground truth transition sequences for the trees were
derived and saved for later use. This is described in subsection 5.2.2. Finally, features were extracted
from the handwriting data. This is described in subsection 5.2.3.

5.2.1 Dependency trees

Algebraic solutions were converted into dependency trees by repeatedly splitting strings into pairs
of substrings. Each substring formed a subtree, with the head of one dependent on the head of the
other. Note that there are other possible rule sets, but this one was chosen as intuitively reflecting
the structure of algebra. We use the notation a → b to denote a tree with the head of subtree b
dependent on the head of subtree a. We built dependency trees according to the recursive function
f(s), defined on the string s with the following rules, applied in order.

1. If s is “l1...lk” for lines “l1”, ..., “lk”, return f(“l1...lk−1”)→ f(“lk”).
2. If s is “a = b”, return f(“a”)← “ = ”→ f(“b”).
3. If s is “a(b)”, return f(“a”)← f(“(b)”).
4. If s is “(b)”, return f(“(b”)← f(“)”).
5. If s is “(b”, return “(”→ f(“b”).
6. If s is “a+ b”, return f(“a”)← “ + ”→ f(“b”).
7. If s is “a− b”, return f(“a”)← “− ”→ f(“b”).
8. If s is “− a”, return “− ”← f(“a”).
9. If s is “av”, for v ∈ {“x”, “y”, “z”}, return f(“a”)← “v”.

10. If s is “ab”, where “b” is a digit, return f(“a”)→ “b”.
11. If s is “a”, where “a” is a single symbol, return “a”.

For example, the equations in Figure 2a would be rendered as shown in Figure 4.
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Figure 4: This figure shows the dependency tree corresponding to the equations in Figure 2a.

5.2.2 Transition sequences

Transition sequences for both arc-eager and arc-hybrid parsing were constructed from the depen-
dency trees. Since both parsing methods require that the all left dependents be evaluated before all
right dependents, we can recursively convert subtrees into transition sequences. For example, the
arc-eager sequence for Figure 2a is slssslrrddllslsslrrddslsrdlrrddslrrdd, where
s,r,l,d represent SHIFT,RIGHTlb, LEFTlb,REDUCE respectively. The arc-hybrid sequence for
Figure 2a is slssslssrrllslsslssrrslssrlssrrslssrr.
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5.2.3 Feature extraction

Features may refer to two concepts. The first is the features of symbols. These are used to construct
the second, the features of configurations, which are the features that are used to train classifiers and
to predict transitions.

Stroke/symbol features Data is stored in the PDF as a series of strokes. Each stroke is a list of
coordinates representing the location of the pen from the time it touched the tablet until the time
it was lifted. For example, the character + is typically written with two strokes. The first step in
preprocessing the handwriting is to associate strokes that are part of the same symbol. This was
done with a combination of manual and automatic processing: we first automatically produced a
grouping by assuming that two subsequent strokes are part of the same symbol if their horizontal
overlap is at least 40% of the width of one or the other of the strokes and the strokes are on the same
line. Then we manually examined the results and corrected any errors.

Once the strokes are associated into symbols, the maximum dimension of the bounding box and
the center of the bounding box are saved as features. Additionally, we used the vector between the
center of the previous and current symbols as a feature.

The symbols are then normalized to have a maximum dimension of 200. The symbols are then
drawn to an image in MATLAB with line weight 6, and histogram of oriented gradients (HOG)
features are calculated using MATLAB’s extractHOGFeatures function and cell size 50× 50.

Configuration features As described in subsection 3.1.1, a configuration consists of a stack, a
buffer, and a set of arcs. For the configuration features, we used the features of the top 5 symbols in
the stack, the most recent 5 pairs of symbols in the set of arcs, and the first symbol in the buffer. If
any of these were not present the relevant features were set to 0.

5.3 Tuning

All imitation learning methods implemented here use LIBSVM support vector machines as black
box classifiers. In particular, we use multi-class C-support vector classifiers (C-SVCs). We use a
radial basis function (Gaussian) kernel. There are two variables to tune, C the regularization cost
and γ a parameter of the kernel. We only tune one C and γ, though some methods use multiple
classifiers.

Define fA,D(C, γ) to be a function that returns the result of performing 2-fold cross validation of
algorithmA on dataD with parameters C and γ. Assume a higher score is better (see subsection 5.5
for details). We then tune C and γ using the Algorithm 5, based on a grid search method described
by Hsu, Chang, and Lin in [20].

Tuning was performed using 1/4 of the dataset used in testing (100 pages). Tuning was performed
separately on arc-eager and arc-hybrid ground truth transitions. Tuning results are given in table 1.

The SMILe algorithm was tuned with parameters α = 0.0025 and m = 50 sample sequences per
SVM. The DAgger algorithm was tuned with parameters α = 0.5 and N = 5 iterations.

5.4 Testing

Testing was performed on 1/4 of the dataset (100 pages). The testing data did not overlap with the
tuning data. We tested the following algorithms, with parameters as described in subsection 3.2.

• Greedy transition-based parsing (GTP)

• Forward training (FT)

• SMILe with parameters m = 50, α = 0.0025 (SMILe)

• DAgger using downsampling, with N = 5 iterations and βn = 0.5n−1 (DAgger)

All algorithms were tested with both arc-eager and arc-hybrid transition systems.
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Initialize l∗C = 0,l∗γ = 0, d = 16;
while d > ε = 1.0 do

l∗∗C = l∗C ;
l∗∗γ = l∗γ ;
for (lC , lγ) ∈ {l∗C −d, l∗C − d

2 , l
∗
C , l
∗
C + d

2 , l
∗
C +d}×{l∗γ −d, l∗γ − d

2 , l
∗
γ , l
∗
γ + d

2 , l
∗
γ +d} do

if f(2lC , 2lγ ) > f(2l
∗∗
C , 2l

∗∗
γ ) then

l∗∗C = lC ;
l∗∗γ = lγ ;

end
end
if (l∗∗C , l

∗∗
γ ) 6= (l∗∗C , l

∗∗
γ ) then

l∗C = l∗∗C ;
l∗γ = l∗∗γ ;

else
d = d/2;

end
end
return 2l

∗
C , 2l

∗
γ

Algorithm 5: This algorithm is a simple decreasing-step-size grid search in the logs of param-
eters C and γ. fA,D(C, γ) evaluates 2-fold cross validation of algorithm A on data D with
parameters C, γ. The minimum step size ε = 1.0 was chosen as it was observed that the recall
did not noticeably improve for smaller values of d.

Algorithm Transition type log2 C log2 γ Other parameters
GTP arc-eager 11 −20
GTP arc-hybrid 10 −19
FT arc-eager 14 −20
FT arc-hybrid 12 −20
SMILe arc-eager 11.5 −20.5 α = 0.0025,m = 50
SMILe arc-hybrid 11 −17.5 α = 0.0025,m = 50
DAgger arc-eager 16 −20 α = 0.5, N = 5
DAgger arc-hybrid 11 −17.5 α = 0.5, N = 5

Table 1: This table lists the results of tuning C and γ. Algorithm abbreviations are defined in
subsection 5.4.

5.5 Evaluation metrics

The metric used for evaluation is the average fraction of correctly identified arcs (recall) over test
pages. Note that since the number of arcs in a complete tree is determined by the number of vertices,
the number of correctly identified arcs equals the number of true arcs so recall and precision are
equal. We calculate recall using 10-fold cross validation over the testing data set. Of the data that is
held out, half (5 pages) is either used for model selection or is discarded. The other half is used for
testing.

We also report σ∗ the standard deviation of the mean of recall. This is estimated by σ/
√
nt, where

σ is the standard deviation of the arc recalls over test pages and nt is the number of test pages (50).

6 Results

The results (mean recall, recall standard deviation of the mean, and mean execution time) for arc-
eager and arc-hybrid transition prediction are given in Tables 2 and 3 respectively.
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Algorithm Transition type Mean recall σ∗ Mean execution time
GTP arc-eager 0.9222 0.0220 2.3 · 101s
FT arc-eager 0.8243 0.0141 1.2 · 101s
SMILe arc-eager 0.8180 0.0223 8.4 · 101s
DAgger arc-eager 0.8317 0.0220 2.3 · 102s

Table 2: This table lists the mean recall, σ∗ the standard deviation of the mean recall, and the mean
execution time for arc-eager transitions.

Algorithm Transition type Mean recall σ∗ Mean execution time
GTP arc-hybrid 0.9260 0.0167 2.8 · 101s
FT arc-hybrid 0.9319 0.0169 8.5 · 100s
SMILe arc-hybrid 0.8933 0.0216 1.2 · 102s
DAgger arc-hybrid 0.9430 0.0125 2.4 · 102s

Table 3: This table lists the mean recall, σ∗ the standard deviation of the mean recall, and the mean
execution time for arc-hybrid transitions.

7 Discussion

7.1 Findings

We found that greedy transition-based parsing (GTP) produced better recall on this data set than any
of the no-regret imitation learning algorithms for the arc-eager transition system. For the arc-hybrid
transition system, all methods except for SMILe were within two standard deviations of the mean of
each other. This is surprising, because the no-regret algorithms have guarantees that GTP does not.

This may be because the other algorithms did not use enough training points to train classifiers. GTP
used all of the data to train a single SVM. FT and SMILe only used part of the data on each SVM.

Forward training likely had problems for later time steps, because not all sequences of transitions
were the same length, so fewer training examples were available at later time steps. Since an SVM
was trained at each time step, later SVMs would be less accurate. Additionally, the fact that transi-
tion sequences were not aligned by structure indicates that classifiers in the middle time steps would
need to be able to predict transitions from various different configurations, requiring more training
examples.

For SMILe, we trained using a larger value of α (a smaller number of iterations) than there are
theoretical guarantees for, which may explain its poor performance.

Of note is that all methods had worse performance on the arc-eager transition system, which has 4
transitions, while the arc-hybrid system has 3. The SVMs for the arc-eager system must perform
multi-class classification on 4 classes, requiring 6 pairwise decision boundaries, while the arc-eager
system only requires 3. The arc-eager system makes the problem more difficult. Additionally, GTP
more clearly outperformed the other methods on the arc-eager system. This suggests that GTP
would generalize more easily to more complex problems. Alternatively, it may indicate that with
more data, the other methods would outperform GTP on the arc-eager system. It may be the case that
the non-optimal configurations which the no-regret methods are trained on are very sparse within the
space of non-optimal configurations, requiring large amounts of training data to do more good than
harm in providing an accurate model of the configurations likely to be encountered by the parser.

As an interesting aside, we noticed during implementation that ambiguity in the choice of transition
has a large effect on performance. There are some configurations which have multiple optimal
transitions. If the dynamic oracle chooses a transition at random, we are trying to train a classifier
to predict that randomness, which SVMs are not intended to do. On the other hand, when we
set a deterministic rule for choosing transitions (in particular, we specified a priority order), recall
increased by up to 5%. We also considered choosing the transition which the classifier currently
ranks the highest out of the optimal transitions. However, this did not further affect recall.
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7.2 Limitations

We did not tune the α parameter or number of iterations in DAgger, or the α or m parameters
in SMILe. For DAgger we used an α parameter used in [16], and the number of iterations was
determined by computational inefficiency. For SMILe, several values of α and m were tried to find
acceptable values, but we did not perform explicit tuning on those variables.

7.3 Conclusion

It is possible to predict the high level structure of handwritten algebra data without predicting the
symbols or using an explicit grammar outside of ground truth generation. Although it is not a no-
regret method, greedy transition-based parsing gave similar results to the no-regret methods for the
arc-hybrid transition system and better results for the arc-eager system.

7.4 Future

We have not explored using different features. We may be able to improve recall by adding features.

We currently use the same tuned parameters for all classifiers in the methods that train multiple
classifiers. It is possible that we can see improvements by tuning parameters as sequences of values.

The algorithms we have implemented do not maintain state. Some state information is available from
the features of configurations, but we may see improvements by using an algorithm that maintains
internal state as it predicts transitions, such as kernel PSR [21].

We currently only use ‘first-k’ features of the configurations. In particular, the stack only contains
the heads of merged dependent subtrees. We could include more long-term information by using
features of subtrees. This would provide a natural way to use stroke level features instead of charac-
ter level features, by viewing characters as subtrees of strokes. This approaches our goal of lowering
the amount of required supervision.
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