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Abstract

Background. It has been debated for a long time whether institutional investment
managers have superior ability to pick stocks and to time the market. If so, the
next question is whether the investment managers deliver their market insights to
investors. As more and more investors delegate their portfolios to investment man-
agers in the U.S. financial market, the questions above are critical to understanding
the value created by investment professionals.
Aim. This paper investigates whether institutional investment managers are ca-
pable in predicting market aggregate returns and whether their public discussions
contain valuable market information.
Data. The stock return data are from the Center for Research in Security Prices
database, and the textual data are letters to shareholders extracted from N-CSR(S)
files from the Security and Exchange Commission Electronic Data Gathering,
Analysis and Retrieval database. The N-CSR(S) files are annual (semi-annual)
certified shareholder reports of registered management investment companies.
Methods. I quantify textual documents by mapping words and documents into a
low dimensional vector space using the continuous bag-of-words (CBOW) neural
network model. Then I use the document vectors to predict value-weighted market
portfolio returns using elastic-net.
Results. The out-of-sample predictions show that the root mean square error can
be reduced by about 6.6% when document vectors are included in the prediction
model, in comparison to benchmark models including a constant, a momentum
factor and a value factor. The in-sample regressions show that when the proportion
of risk aversion related words increases by 1%, the expected annual stock return
increases by 1-5%, which is both statistically and economically significant.
Conclusions. Investment managers have insights to predict market aggregate
returns, and they convey valuable information to their investors in the letters
to shareholders in their regulatory reports. The CBOW neural network word-
embedding model provides an efficient way to retrieve information from textual
documents. Textual features that predict stock returns contain information about
the degree of risk aversion of investors.
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1 Introduction

Financial economists have been debating whether institutional investment managers have superior
ability of picking stocks and timing the market for a long time and empirical evidence are mixed in
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the previous literature. A following up question is, if investment professionals have valuable insights
about market performance, would they deliver such kind of information to their investors. As more
and more investors delegate their portfolios to investment managers in the U.S. financial market, the
questions above are important to understand the value created by investment professionals.

My research contributes to the literature by getting new evidence supporting the claim that invest-
ment managers are adding value to investors. My evidence comes from a textual dataset, which con-
tains letters to shareholders written by investment managers. I apply the continuous bag-of-words
(CBOW) neural network model to quantify the textual documents in a systematically way. I also
investigate the economic intuition of the stock return predicting power of the investment manager
discussions and find the textual documents contains information about the degree of risk aversion of
the investors, which agrees with asset pricing theory.

2 Problem and Approach

The question I am trying to answer is whether the information delivered to investors by investment
managers provides useful insights in predicting aggregate stock excess returns.

To answer my question, I construct a textual dataset which contains the letters to shareholders
extracted from the semi-annual shareholder reports (N-CSR and N-CSRS1) that registered man-
agement investment companies file with the Security and Exchange Commission (SEC). In these
letters, investment managers discuss the macroeconomic environment, explain the constitutions of
their asset holdings and the related performance, compare the fund performance with benchmarks
and competing funds, as well as express opinions of future plans. Intuitively, the forward-looking
statements and subjective opinions of the investment professionals contained in the letters may pro-
vide relevant information for the investors to understand the concurrent investment conditions, or
reflect sentiments of the investment managers.

To make statistical inferences using textual documents, I quantify the letters by mapping words and
documents into a low dimensional (relative to vocabulary size) vector space using the continuous
bag-of-words (CBOW) neural network model proposed in Mikolov et al. (2013a)2. These vector
representations for the words are called word embeddings. The word vectors are trained based on
unsupervised learning algorithm that tries to predict a word based on its neighbors. In downstream
prediction tasks, we need a vector representation for each document, and a document vector is
calculated as the average of word vectors representing individual words appearing in the document.
This approach of generating document vectors is referred as CBOW-Average. This is fundamentally
different from the word counting approach based on pre-built dictionaries that are commonly applied
in previous finance literature (Tetlock (2007), Loughran & McDonald (2011), Jegadeesh & Wu
(2013), etc.). The advantage of my approach is that it avoids the subjectivity of human readers
involved in building word classifying dictionaries, and it quantifies documents in a systematic way
such that it requires much less human labor and can be applied to textual data of different domains.

The word embedding approach is drawing a great deal of attention from researchers in computational
linguistics in recent years. In comparison to the traditional bag-of-words model, it generates superior
results in many natural language processing (NLP) tasks such as part of speeching tagging, sentiment
analysis, speech recognition, etc.

To test the prediction power of the document vectors, I conduct out-of-sample (OOS) predictions.
The dependent variable is the annual stock return of the Center for Research in Security Prices
(CRSP) value-weighted market portfolio, which is calculated as the accumulated return covering a
252-day period starting from the day following the N-CSR(S) release date. The explanatory vari-
ables include two controlling variables, the annual stock return of the market portfolio and in the
one year period before the N-CSR(S) release date, and the dividend yield of the market portfolio.

1N-CSR and N-CSRS basically contained the same information. N-CSR is released at the end of a fiscal
year, while N-CSRS is released at the half-way of a fiscal year. They are treated in the same way in constructing
the letters to shareholders dataset.

2A related neural network model introduced in Mikolov et al. (2013b,a) is called Skip-Gram, while in
CBOW, word vectors are trained based on unsupervised learning algorithm that tries to predict a word based
on its neighbors; in Skip-gram, word vectors are trained to predict the surrounding words of a word based on a
target word.
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The whole sample set include the 2,255 daily observations covering the period 2003-2015. I con-
struct a training set and a test set in two ways. First, I pool all the 2,255 observations together
ignoring their time stamp and randomly select 70% of the samples to form the training set, and
use the rest samples to build the test set. I estimated a linear model based on the training set using
elastic-net. Elastic-net is capable of dealing with high-dimension explanatory variables as the penal-
ization in the L1 and L2 -norm of the coefficients could reduce overfitting. I find that including the
document vectors can reduce the OOS prediction root mean square errors (RMSEs) significantly, by
about 6.6%.

As constructing the training and test sets through random splitting may introduce looking ahead
bias as the training set contain future information in comparison to the test set. Therefore, in the
second way, I split the training and the test sets on rolling window basis. For every 6-year window, I
estimate the predicting model using the data in the leading five years and make OOS predictions in
the sixth year. In this approach, I still find that including the document vectors in the prediction can
still reduce the OOS prediction RMSEs significantly. This rolling window based OOS predictions
confirm that the letters to shareholders contain substantial return predicting information.

Generally speaking, the CBOW neural network model can be considered as a kind of dimen-
sion reduction technique that summarizes sparse information contained in documents into a low-
dimensional vector. However, it is not the only way to learn low dimensional vector represen-
tations of words and documents. I compare the predictive power of document vectors gener-
ated by CBOW-Average with six other language models: CBOW-Doc, CBOW-Kmeans, CBOW-
Spectral Clustering, Sentiment Counting, Latent Semantic Analysis (LSA), and Latent Dirichlet
Allocation (LDA). Through the comparison, I find that CBOW-Average generates smallest OOS
prediction RMSEs when the training and test set are split in a rolling window basis, and CBOW-
Doc generates smallest OOS prediction RMSEs when the training and test set are split randomly.

In additional to stock returns, I also investigate the predicting power of textual features in predicting
stock return volatilities and the growth rates of oil price, dollar index, and default spreads. I find that
including the textual features into the model can reduce the OOS prediction RMSEs significantly, in
comparison to benchmark models without the textual features.

Also, I investigate the economic meaning of the textual information that can predict stock returns.
As previous research in asset pricing suggest that the predictive part of stock returns is risk premium,
which is affected by the degree of risk aversion of a representative investor. I construct two measures
of risk aversion based on counting the frequency of words that are related to investment uncertainties
and business cycles. Notice that my approach of classifying words is based on the semantic distance
measured by the cosine similarity of their embedding vectors learned based on CBOW, rather than
human designed rules, which is free of subjective judgment and is easy to be applied to a different
corpus. I find that my text-based risk aversion measure contains information in predicting stock
returns. When the proportion of investment uncertainty related words increase by 1%, the expected
annual stock returns increase by 5%, which is economically and statistically significant; and when
the proportion of business cycle related words increase by 1%, the expected annual stock returns
increase by 1%.

3 Background and Related Work

This paper is related to two strands of literature in finance. First, it is related to the literature of
stock return predictability. The predictability of stock returns has been under debate for a long
time (Campbell & Yogo (2006); Ang & Bekaert (2007); Cochrane (2011); Fama & French (1988)).
Now many financial economists agree that long-term stock returns are predictable. In particular,
the predictable part of stock returns is risk premium. As the risk aversion property of an investor
is subjective in nature, the degree of risk aversion is difficult to measure empirically. However, the
textual data of letters to shareholders, which reflect the subjective opinions of investment managers,
provide a unique source to measure risk aversion. Intuitively, the risk aversion nature of an invest-
ment manager affects the information he/she puts into the letters to shareholders. I construct proxies
that measure the risk aversion of investors to predict stock returns by retrieving the textual informa-
tion in the letters. In addition, I also find the investment manager discussions contain information
in predicting future stock return volatilities, as well as some macroeconomic indicators. This results
agrees with the previous literature about stock return predictability such as Kogan et al. (2009).
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Second, this paper is related to the literature about investment manager abilities. It has been dis-
cussed for a long time whether investment managers have superior abilities to pick stocks or to time
the market and add value to their clients (Edwards & Caglayan (2001); Brands et al. (2005); Cre-
mers & Petajisto (2009)). Understanding how investment managers add value is important because
a significant and growing proportion of individual investors delegate their portfolio management to
investment professionals. Kacperczyk et al. (2014) found that a small subset of funds persistently
outperforms, due to their superior capabilities of picking stocks in expansions and timing the mar-
ket in recessions. The prerequisite for an investment manager to outperform the market is to have
insights about the market. My paper suggests that as the information delivered to fund investors
indeed contains valuable information to predict market returns, it can be inferred that investment
managers indeed have capabilities to understand the market and make informative investments.

4 Method

Textual documents come to econometricians in the format as strings of words, and we have to
quantify the textual documents for downstream statistical analysis.

Many machine learning algorithms require the input to be represented as a fixed-length feature
vector. In textual analysis, one of the most common fixed-length features is bag-of-words. Bag-of-
words is popular because of its simplicity and robustness in many NLP applications. However, the
bag-of-words model has two major weakness. First, the order information of a word is lost, and thus
two different sentences could have the same representations. Although a derivation of the bag-of-
words model, the bag-of-n-grams model, incorporates some local order information into the vector
representation of a document, it suffers from data sparsity and high dimensionality. Second, the
semantic information contained in a document is lost in a bag-of-words representation. For example,
in a financial report corpus, a pair of words like “stock” and “returns” should be semantically closer
to each other than a pair of words like “stock” and “Africa”, because “stock” and “returns” are more
likely to appear together. However, in a bag-of-words model, the three words are equally distant
from each other.

To overcome the shortcomings of the bag-of-words model, a collection of word embedding models
are proposed in the computational linguistic literature (Bengio et al. (2006); Collobert & Weston
(2008); Mnih & Hinton (2009); Turian et al. (2010); Mikolov et al. (2013b,a); Tang et al. (2014)).
The idea is to map words or phrases into a low dimensional vector space such that semantic similarity
between words can be measured using vector distances.

4.1 CBOW

The CBOW word embedding model is a neural network model introduced by Mikolov et al. (2013b).
It provides an efficient method for learning high-quality vector representations of words from large
amounts of unstructured text data and has achieved great popularity in the computational linguistics.
The idea of CBOW is to find word vector representations that are useful for predicting a target word
using surrounding words in a paragraph. The architecture of CBOW is shown in Figure 1, which
is essentially a convolutional neural network. Each surrounding word as an input is mapped to a
word embedding vector, the average of surrounding word vectors forms the context vector, based on
which we predict the target word.

More formally, using the notation in Levy & Goldberg (2014), Denote the vocabulary set of words in
a corpus as VW , and the set of contexts VC . In CBOW, the contexts for word wt are the surrounding
words in a window with length 2l: ct = (wt−l, ..., wt−1, wt+1, ..., wt+l), containing l words ahead
of wt, and l words following wt. Denote D as the set of observed words and context pairs. Consider
a word-context pair (w, c), and let p

(
w
∣∣c) be the probability that w appears in context c.

The idea of CBOW is to associate each word w ∈ VW with a vector vw ∈ Rr, where r is the
embedding’s dimensionality, a hyper parameter chosen by researchers. And a context vector is
vc = 1

2l

∑l
i=1(wt−i + wt+i). The elements in the word vectors are latent parameters to be learned

from the model. Denote # (w, c) as the counts of the pair (w, c) in D, # (w) =
∑
c′∈VC

# (w, c′)

and # (c) =
∑
w′∈Vw

# (w′, c) as the counts of w and c in D, respectively.

4



Figure 1: Architecture of CBOW
This figure demonstrates the neural network architecture of CBOW. Each word is mapped to a word embedding
vector. The context vector is the average of surrounding word vectors. The distribution of a target word is
determined by the inner product of its own embedding vector and the context vector.

In CBOW, the probability for a word w to appear in context c is modeled as a sigmoid function of
the inner product of the word vector and context vector

p
(
w
∣∣c) = σ (vw · vc) ≡

1

1 + exp (−vw · vc)
.

The learning of CBOW employs the negative sampling technique, in which the objective for a single
(w, c) is to maximize the average log probability

log σ (vw · vc) + k · EwN∼P (w)σ (−vwN
· vc) .

The idea of the objective function is to maximize p
(
w
∣∣c) for (w, c) that appears in the corpus,

while minimizing p
(
wN
∣∣c) for (wN , c) not appearing in the corpus. k is the number of “negative”

samples. When k is large, the objective puts more weight on penalizing unobserved (wN , c) pairs;
when k is small, the objectives puts more weight on maximizing the likelihood of observed (w, c)

pairs. wN denotes words drawn from the empirical distribution P (w) = #(w)
|D| , the proportion of

observed word w in set D. The global objective is to maximize the sum of the objective of single
(w, c) pairs:

L =
∑
w∈VW

∑
c∈VC

# (w, c)
1

T

T∑
t=1

[
log σ (vw · vc) +

k∑
i=1

EwN∼P (w)σ (−vwN
· vc)

]
.

4.1.1 CBOW-Average

Training texts using CBOW only generates the embedding vectors for each word, but we need an
embedding vector for each document in training downstream stock return prediction models. In
CBOW-Average, a document vector is simply calculated as the average of the word vectors corre-
sponding to words in the document. Otherwise explicitly specified, all the document vectors in this
paper refer to vectors generated through CBOW-Average.

4.1.2 CBOW-Doc

CBOW-Doc (Le & Mikolov (2014)) is a derivation of the original CBOW model, which directly
encodes the co-occurrence of words and documents into the neural network structure and directly
estimates a document vector. In CBOW-Doc, not only each word, but also each document is repre-
sented as a vector, and the probability for word w to appear in context c and document d is

p
(
w
∣∣c, d) = σ (vw · (αvc + (1− α) vd)) ,

where vd ∈ Rr is the vector representing document d, and α ∈ [0, 1] is the weight assigned to
the context vector vc in affecting word distributions. The architecture of the CBOW-Doc model is
shown in Figure 2.
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Figure 2: Architecture of CBOW-Doc
This figure demonstrates the neural network architecture of CBOW-Doc. Each word and document is mapped
to an embedding vector. The context vector is the average of surrounding word vectors. The distribution of
a target word is determined by the inner product of its own embedding vector and a weighted average of the
context vector and document vector.

4.2 Matrix Factorization

The specification of the CBOW neural network has an intuition of coercing words surrounded by
similar contexts to have similar embeddings. However, it does not provide intuition to understand
the meanings of the embeddings. Levy & Goldberg (2014) justifies that neural word embedding
can be considered as implicit word-context matrix factorization, and thus each dimension of the
embedding spaces represents as a hidden topic of the corpus.

General word embedding models starts with a word-context matrix M . The process of learning
word embedding vectors is to factorize the word-context matrix into a |VW | × r word embedding
matrix W and a |VC | × r context embedding matrix C such that M = W · C ′, which embeds both
words and their contexts into a low-dimensional space Rr. Each row of W corresponds to a word,
and each row of C corresponds to a context. Each element Mwc measures the association between
a word and a context.

Levy & Goldberg (2014) proved CBOW is essentially factorizing a word-context matrix M that
Mwc = log

(
#(w,c)·|D|
#(w)·#(c)

)
− log k in CBOW, and the procedure of maximizing the objective function

L through stochastic gradient descent in Mikolov et al. (2013a) is similar to the symmetric singular
value decomposition (SVD) of M . SVD factorizes M into the product of three matrices UΣV T ,
where the columns of U and V are the left and right singular vectors of M , and Σ is a diagonal
matrix of singular values. Let Σr be the diagonal matrix containing the largest r singular values, and
Ur, Vr be the matrices containing the corresponding singular vectors. The matrix Mr = UrΣrV

T
r

is the matrix of rank r the best approximates M , measured in terms of Frobenius norm, Mr =

arg minRank(M ′)=r ||M ′ −M ||
2
Fro. The word embedding matrix W achieved by CBOW is similar

to a symmetric SVD matrix WSV D1/2 = Ur ·
√

Σr.

4.3 Predictive Model

After learning document embedding vectors from CBOW, I consider a linear predictive model
y = β0 + βXX + βdvd, where X denotes the controlling variables and y is a general dependent
variable. Because of the high dimensionality of vd, I estimate the linear model using elastic-net,
which penalizes the a convex combination of L1 and L2 norm of the parameters. The objective of
elastic-net is

min
β0,βX ,βd

||y − (β0 + βXX + βdvd)||22 + λ
[
ρ (||βX ||1 + ||βd||1) + (1− ρ)

(
||βX ||22 + ||βd||22

)]
where λ is the penalization parameter and ρ is the weight assigned to L1 norm. They are usually
chosen through cross-validation.
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5 Data

5.1 Letters to Shareholders

In the United States, the Securities and Exchange Commission (SEC) requires all registered man-
agement investment companies to file annual (N-CSR) and semiannual (N-CSRS) reports to share-
holders. The N-CSR(S) files are publicly available from the SEC Edgar database, and the period
covered is 2003-2014.

The N-CSR(S) files often start with a letter to shareholders written by the investment managers.
However, the SEC only provides general instructions on N-CSR(S) filing, but there is no strict
structured template for the companies to follow. Therefore, the structures of N-CSR(S) files across
firms are heterogeneous, and there is no uniform boundaries between the letters and the rest part of
a file. This fact makes extracting a certain section from the N-CSR(S) files much more challenging
than extracting sections from well structured SEC files like 10-Ks, the corporate annual reports.

I extract the letters to shareholders through regular expression matching. As there is no separate
section for letters to shareholders, I use the common letter starting words (e.g. “Dear Shareholders”,
“Letters to Shareholders”, “Fellow Shareholders”) to match the beginning of a letter and use ending
words (e.g.“Yours sincerely”, “Respectfully”,“Best regards”) to match the end of a letter. Table 5
shows the counts of the original N-CSR(S) files and the letters extracted from the original files, as
well as the extraction rate, the proportion of letters extracted from the original files successfully. The
total number of the N-CSR files is 37, 862, and the total number of letters extracted from the N-CSR
files is 21, 937, with average extraction rate of 0.58. The total number of N-CSRS files is 31, 139,
and the total number of letters extracted from the N-CSRS files is 15, 077, with average extraction
rate of 0.48.

After extracting the letters from the N-CSR(S) files, following Kogan et al. (2009), I tokenize the
letters in six steps: 1. Eliminate HTML markups; 2. Downcase all letters (convert A-Z to a-z); 3.
Separate letter strings from other types of sequences; 4. Delete strings not a letter; 5. Clean up
whitespace, leaving only one white space between tokens. 6. Remove stopwords.

The summary statistics for the length of the tokenized letters are shown in Table 6 in the Appendix.
We can see that the average length of a tokenized letter contains about 500 words and the length
varies a lot from letter to letter.

As multiple N-CSR(S) files may be filed on the same day, I concatenate the letters to shareholders
written by different investment managers on the same day together and treat it as a single document.
Because the my research question is to test whether a representative investment manager has insights
about market performance, there is no need to identify individual managers. In addition,for CBOW,
the word embedding vectors are learned based on the co-occurrence of words in the same sentence,
and thus the concatenation does not impair the learning of the word embedding vectors. For CBOW-
Doc, this may add bias to the estimation of the word and document vectors as the concatenation
procedure creates some fake co-occurrence of some words and documents.

5.2 Stock Returns

The daily stock return data of the value-weighted market portfolio come from the Center for Re-
search in Security Prices (CRSP) dataset.

CRSP provides the market portfolio return data both including (vwretd) and excluding (vwretx)
dividends. Denote the price of the market portfolio at time t as Pt, and its dividend as Dt. The
market portfolio returns including and excluding dividends from period t − 1 to t are vwretdt =
(Pt +Dt) /Pt−1 − 1 and vwretxt = Pt/Pt−1 − 1 respectively. Therefore, the dividend yield
log (Dt/Pt) can be constructed as

dividend yieldt = log

(
1 + vwretdt
1 + vwretxt

− 1

)
.

To test whether the document vectors contains information in predicting the stock returns of the
market portfolio. I use the document vector at date t, to predict the annual excess return of the
market portfolio, which is calculated as the accumulated returns from t + 1 to t + 252. The excess
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Table 1: Similar Words
This table demonstrates the top 10 similar words to “china”, “oil”, “politics” and “shareholder”. The similarity
between 2 words are measured as the cosine similarity of their word embedding vectors.

china oil politics shareholder

1 chinese commodity terrorism shareholders
2 indonesia energy rhetoric stockholders
3 brazil gasoline political stockholder
4 russia cotton standoff shareowner
5 japan fuel presidential trustees
6 asia gold partisan shareowners
7 turkey brent debate classify
8 states natural threats directors
9 population food uncertainties mergers
10 india ore attacks semiannual

return is gross return (vwretd) minus the risk-free rate. The risk-free is proxied by the interest
rate of 3-Month Treasury Bills in this paper. The controlling variables are dividend yieldt and
return leadingt, where return leadingt is the leading annual stock return of the value-weighted
market portfolio, which is calculated as the accumulated returns from t− 251 to t.

The value and momentum factors are two of the most popular pricing factors in the asset pric-
ing literature and are found to explain a significant proportion of variations in the cross-section of
stock returns (Fama & French (1993); Carhart (1997)). In the market portfolio time series predic-
tions, dividend yieldt captures value factor, and return leadingt captures the momentum factor.
They are found to have significant power in predicting long-term stock returns (Lettau & Ludvig-
son (2001); Cochrane (2011); Fama & French (1988)), and thus I include dividend yieldt and
return leadingt in my predicting models as a controlling variables.

6 Analysis

6.1 Word Vectors

I apply the CBOW model using the Python module Gensim (Řehůřek & Sojka (2010)). Gensim
provides Python interface to the Word2Vec software of Google which originally implemented the
CBOW model. It is recommended to represent words in a relative high-dimension vector space in
literature (Mikolov et al. (2013b)) to achieve accurate word embedding estimates. In practice, a
common choice of the dimension is 150− 400. In this paper, I choose the embedding dimension to
be 300 and length of the context window l to be equal to 2, meaning the context of a word contains
2 leading and 2 following words.

Examples showing the top similar words to a few seed words are listed in Table 1. For example, the
top 10 words that have highest semantic similarity to the word “china” are “chinese”, “indonesia”,
“brazil”, “russia”, “japan”, etc., which is sensible as Indonesia and Japan are countries geographi-
cally close to China, and Brazil, Russia, India are often referred as Gold BRICS countries in financial
documents. The topic 10 words that have closest semantic similarity to the word “oil” are “com-
modity”, “energy”, “gasoline”, “cotton” etc., which is also reasonable because these words often
appear together in letters to shareholders written by investment managers that focus on commodity
trading.

6.2 Word Clouds

The nonlinear dimension reduction technique t-SNE (Van der Maaten & Hinton (2008)) is a powerful
dimension reduction method to project the high-dimension word vectors into a low-dimension space
such that we can visualize the word locations in a 2-d graph.
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The visualization of some sentiment words are demonstrated in Figure 8 in the Appendix. To gener-
ate the positive and negative word lists, I use the keywords “good” and “bad” as seed words, and find
30 words that have the highest semantic similarity to them. We can see the splitting between positive
words like “good”, “excellent”, “superior” and negative words “bad”, “terrible”, “discouraging”, and
words with the same sentiment are close to each other.

The visualization of words classified by economic topics are demonstrated in Figure 9 in the Ap-
pendix. I include eight topics in the graph: regions, politics, macroeconomy, market index, com-
modity, industry, investment and shareholder. To generate the word list for each topic, I use the
keywords “region”, “politics”, “macroeconomy”, “index”, “commodity”, “industry”, “investment”,
“shareholder” as seed words, and find 30 words that have the highest semantic similarity to the seed
word for each topic. For example, the words having closest semantic meaning to “commodity”
include “gold”, “oil”, “electricity”, “copper” etc; the words having closest semantic meaning to “re-
gion” include “china”, “japan”, “russian”, “asia” etc; the words having closest semantic meaning to
“politics” include “politicians”, “democracy”, “presidential”, “legislative” etc. The word lists agree
with our linguistic intuition.

The distributed location of the economic topic word clouds in Figure 9 also generate intuitive results.
First of all, words close to each other in semantic meaning indeed locate close to each other. Second,
topics that are supposed to have a close linguistic relationship also locate close to each other. For
example, in news articles or financial reports, people often tie politics to a certain region, like wars
in the mid-east or presidential elections in the United States. In the words clouds, we indeed see the
“politics” topic located close to the “region” topic. When institutional investors make investments,
the macroeconomic condition is an important factor affecting their investment decisions, and the
“macro” and “investment” topic are indeed close to each other in the word clouds.

7 Results

7.1 Out-of-sample Predictions

For out-of-sample (OOS) predictions, I construct the training and test datasets in two ways, random
splitting and rolling window splitting.

7.1.1 Random Splitting

For random splitting, I first pool all the 2,255 observations together, and randomly select 70%
of the observations to form the training set, and use the rest 30% observations to form the test
set. I consider five linear models, which include different explanatory variables: (1). “Constant”,
the explanatory variable include only a constant, which is equivalent to prediction using training
set mean; (2). “Mom”; the explanatory variables include a constant and the momentum factor
return leadingt; (3). “Mom&Val”, the explanatory variables include a constant, the momentum
factor return leadingt and value variable dividend yieldt; (4). “CBOW-Average”; the explana-
tory variables include the document vectors generated using the CBOW-Average model in addition
to the controlling variables in “Benchmark”; (5). “CBOW-Doc”, the explanatory variables include
the document vectors generated using the CBOW-Doc model in addition to the controlling variables
in “Benchmark”.

I estimate the linear models using elastic-net. The penalization parameter of the elastic-net is se-
lected through 10-fold cross validation. I measure of the prediction accuracy using OOS RMSEs.

To reduce the random effect of the training-test set splitting, I follow a bootstrap approach by re-
peating the training-test splitting for 50 times. The OOS prediction RMSEs of the five models are
shown in Figure 3. In addition to 1-year returns, I also checked the power of textual features in
predicting 1-month and 6-month returns (the corresponding momentum factor return leadingt is
adjusted accordingly). To make the results for returns of different horizons comparable, I normalize
the OOS RMSEs of the Const model to be equal to 1, and scale the RMSEs generated by other
models correspondingly. In the bar chart, the height of the bars represent the average OOS RMSEs
of the 50 experiments, and the standard errors are also demonstrated through the error bars.

We can see that by including document vectors generated by CBOW-Average in the stock return
prediction model, we can reduce the OOS RMSEs by about 1.0% for 1-month returns, 2.7% for
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6-month returns, and 6.6% for 1-year returns, in comparison to predicting using training set mean.
It means that the textual features generated by CBOW indeed contains valuable information in pre-
dicting future stock returns, and the prediction power increases with the length of horizon. The
textual features generated by CBOW-Doc is more powerful in predicting long-term stock returns,
but it underperforms in predicting short-term returns.

Figure 3: OOS prediction RMSEs with random training-test splitting
This figure shows the OOS prediction RMSEs of five linear models estimated by elastic-net: (1). “Const”,
the explanatory variable include only a constant, which is equivalent to prediction using training set mean;
(2). “Mom”; the explanatory variables include a constant and the momentum variable return leadingt; (3).
“Mom&Val”, the explanatory variables include a constant, the momentum factor return leadingt and the
value factor dividend yieldt; (4). “CBOW-Average”; the explanatory variables include the document vec-
tors generated using the CBOW-Average model in addition to the controlling variables in “Mom&Val”; (5).
“CBOW-Doc”, the explanatory variables include the document vectors generated using the CBOW-Doc model
in addition to the controlling variables in “Mom&Val”. The training set is constructed by randomly selecting
70% observations from the whole sample set, and the rest 30% observations forms the test set. To avoid random
splitting effect, this procedure is repeated 50 times. The height of the bars represents the average RMSEs of
the 50 experiments, and the standard errors are shown through the error bars. The RMSEs generated by Const
is normalized to 1.

7.1.2 Rolling Window Splitting

One possible concern about the forecasting results presented above is the potential “look-ahead”
bias due to the fact the training set contains information in the future. This concern can be addressed
by forming the training and test set in a rolling window basis and performing OOS forecasts where
the parameters in the linear model are re-estimated every period, using only data available at the
time of the forecast.

I consider rolling windows with length equal to six years. In every window, I use observations in the
leading five years to form the training set to estimate the model parameters, and make predictions
in the sixth year to calculate the OOS RMSEs. The RMSEs of the five models are shown in Table
2. As the data set covers the period 2003-2014, the first 6-year window is 2003-2008, and thus the
RMSEs reported in the table starts from the year 2008.

We can see that “CBOW-Average” achieves the best rolling window OOS prediction performance.
Overall, the improvement in the prediction accuracy by incorporating the document vectors into the
explanatory variables is smaller in the rolling window training-test splitting approach in compari-
son to the random splitting approach. A possible explanation is that the correlations between the
textual information in the letters to shareholders and market portfolio stock returns vary over time.
Therefore, in the rolling window split approach, the linear model is more likely to overfit historical
patterns. This point may justify the fact that CBOW-Doc is outperformed by the CBOW-Average in
the rolling window approach, although it performs best in predicting annual stock returns when we
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Table 2: OOS prediction RMSEs with rolling window training-test splitting
This table shows the OOS prediction RMSEs of five linear models based on elastic-net: (1). “Const”, the ex-
planatory variable include only a constant, which is equivalent to prediction using historical mean; (2). “Mom”;
the explanatory variables include a constant and the momentum factor return leadingt; (3). “Mom&Val”,
the explanatory variables include a constant, the momentum factor return leadingt and the value factor
dividend yieldt; (4). “CBOW-Average”; the explanatory variables include the document vectors generated
using the CBOW-Average model in addition to the controlling variables in “Mom&Val”; (5). “CBOW-Doc”,
the explanatory variables include the document vectors generated using the CBOW-Doc model in addition to
the controlling variables in “Mom&Val”. The training set is constructed in a rolling window basis. In every
6-year window, I estimate the parameters using observations in the first five years, and make predictions in the
sixth year.

Year Const Mom Mom&Val CBOW-Average CBOW-Doc

2008 0.349 0.375 0.376 0.328 0.290
2009 0.327 0.355 0.355 0.360 0.385
2010 0.149 0.275 0.275 0.135 0.131
2011 0.097 0.098 0.098 0.096 0.137
2012 0.186 0.196 0.196 0.175 0.171
2013 0.090 0.107 0.106 0.090 0.124
2014 0.128 0.111 0.111 0.116 0.118

split the dataset into a training set and a test set randomly. Because the word vectors built through
CBOW-Average are solely based on co-occurrence of neighboring words, which do not depend on
document level information which may contain time-varying text patterns, and thus CBOW-Average
is less likely to overfit.

7.2 Other Language Models

In this section, I compare the CBOW-Average and CBOW-Doc results with five other language
models, CBOW with clustering (k-means and spectral clustering), Sentiment Words Counting, La-
tent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA).

7.2.1 CBOW with Clustering

In the discussions above, the document vectors in CBOW-Average is calculated as the average of the
word vectors. As CBOW provides a way to identify clusters of semantically related words through
their embedding vectors, another way to exploit word similarities is to cluster words based on their
locations in the embedding vector space, and to represent a document using a bag-of-clusters. I
consider two clustering algorithms, k-means (CBOW-Kmeans) and spectral clustering (CBOW-
Spectral). The advantage of representing documents using clusters is to reduce the idiosyncratic
noises introduced by each word.

In both k-means and spectral clustering3, I first classify the words into 20 clusters based their word
vectors. Then I quantify each document using a bag-of-clusters model, where each document is
represented as a 20-dimension vector, with each entry of the vector corresponds to a unique word
cluster, and the value of each element is the counts of the words in the corresponding cluster.

7.2.2 Sentiment Counting

The concurrent popular approach of textual analysis in the financial economics literature rely on
a word counting approach based on pre-built sentiment dictionaries (Tetlock (2007); Tetlock et al.
(2008); Loughran & McDonald (2011); Jegadeesh & Wu (2013)). Therefore, I also the test the return
predictive power of two sentiment measures negativet and positivet, which are calculated as the
proportion of negative and positive words in the concatenated letter on day t, where the negative and
positive words are classified using the Loughran & McDonald (2011) sentiment dictionaries.

3I use the Python module Scikit-Learn to implement k-means and spectral clustering, and the module Gen-
sim to implement LSA and LDA.
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7.2.3 Latent Semantic Analysis

LSA (Dumais (2004)) is a method for discovering hidden topics in a document data. LSA is essen-
tially the singular value decomposition of the word-document matrix that represents a bag-of-words
model using matrix notation. LSA is popularly used to reduce the dimension of the bag-of-words
model and has a long history of applications in the information retrieval literature.

I use LSA to recover 20 hidden topics from the corpus. Each document is represented as a 20-
dimension vector, with each entry of the vector corresponding to a hidden topic, and the value of
each entry represents the loading on a hidden concept of the document. Sample topics generated by
LSA is shown in Figure 10 in the Appendix.

7.2.4 Latent Dirichlet Allocation

LDA (Blei et al. (2003)) is a three-level hierarchical Bayesian Network model that describes the
data generating process of textual documents. The idea of LDA is that documents are represented
as random mixtures over latent topics, where each topic is characterized by a random distribution
over words. Since introduction, LDA is popularly used in learning the hierarchical structures of
documents and reducing the dimension of a bag-of-words model.

I use LDA to construct 20 topics from the corpus. Similar to LSA, each document is represented as
a 20-dimension vector, with each entry of the vector corresponding to a topic, and the value of each
entry represents the proportion of words in the topic. Sample topics generated by LSA is shown in
Figure 11 in the Appendix.

The OOS prediction RMSEs comparing different language models are shown in Figure 4 (random
training-test splitting) and Table 3 (rolling-window training-test splitting). We can see that CBOW-
Average and CBOW-Doc generate smaller OOS prediction RMSEs than features generated using
other language models in most cases in the random training-test splitting, and in most years in the
rolling-window training-test splitting.

Table 3: OOS RMSEs, CBOW vs. other language models, rolling window
This table compares the elastic-net OOS prediction RMSEs between models using document vectors gener-
ated using CBOW-Average/CBOW-Doc with models using features generated using other language models.
In CBOW-Average, a document vector is the average of the word embedding vectors for all individual words
appearing in the document. In CBOW-Doc, the document vectors are directly estimated from the neural net-
work model. In both k-means (CBOW-Kmeans) and spectral clustering (CBOW-Spectral), I first classify the
words into 20 clusters based their CBOW word vectors, and then I quantify each document using a bag-of-
cluster model, where each document is represented as a 20-dimension vector, with each element of the vector
corresponds to a unique word cluster, and the value of each element is the counts of the words in the corre-
sponding cluster. In LSA, the document features are loadings on 20 hidden topics recovered by singular value
decomposition of term-document matrix. In LDA, the document features are distributions over 20 hidden topics
learned from hierarchical structure of the documents. In Sentiments, the document features are the proportion
of negative words and positive words based the Loughran & McDonald (2011) sentiment word classification
dictionary. The training set is constructed by in a rolling window basis. In every 6-year window, I estimate the
parameters using observations in the first five years, and make predictions in the sixth year.

Year CBOW-Average CBOW-Doc CBOW-Kmeans CBOW-Spectral LSA LDA Sentiments

2008 0.328 0.290 0.327 0.327 0.344 0.346 0.342
2009 0.360 0.385 0.374 0.353 0.369 0.329 0.377
2010 0.135 0.131 0.150 0.151 0.171 0.150 0.150
2011 0.097 0.137 0.110 0.128 0.140 0.103 0.089
2012 0.175 0.171 0.186 0.183 0.160 0.188 0.191
2013 0.094 0.124 0.102 0.113 0.135 0.089 0.100
2014 0.116 0.118 0.117 0.119 0.110 0.128 0.121

I also check the power of textual features in predicting stock return volatilities and macroeconomic
factors. The results generated by models estimated by elastic-net are shown in Figure 5 and Figure
6 in the appendix. I find that including textual features into the predicting models can reduce the
OOS prediction RMSEs significantly, implying that the investment manager discussions also contain
valuable information in predicting stock return volatilities and macroeconomic conditions.
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Figure 4: OOS RMSEs, CBOW v.s. other language models, random splitting
This figure compares the elastic-net OOS prediction RMSEs between models using document vectors gener-
ated using CBOW-Average/CBOW-Doc with models using features generated using other language models.
In CBOW-Average, a document vector is the average of the word embedding vectors for all individual words
appearing in the document. In CBOW-Doc, the document vectors are directly estimated from the neural net-
work model. In both k-means (CBOW-Kmeans) and spectral clustering (CBOW-Spectral), I first classify the
words into 20 clusters based their CBOW word vectors, and then I quantify each document using a bag-of-
cluster model, where each document is represented as a 20-dimension vector, with each element of the vector
corresponds to a unique word cluster, and the value of each element is the counts of the words in the corre-
sponding cluster. In LSA, the document features are loadings on 20 hidden topics recovered by singular value
decomposition of term-document matrix. In LDA, the document features are distributions over 20 hidden topics
learned from hierarchical structure of the documents. In Sentiments, the document features are the proportion
of negative words and positive words based the Loughran & McDonald (2011) sentiment word classification
dictionary. The training set is constructed by randomly selecting 70% observations from the whole sample set,
and the rest 30% observations forms the test set. To avoid random splitting effect, training-test split is repeated
50 times. The height of the bars represents the average RMSEs of the 50 experiments, and the standard errors
are shown through the error bars. The RMSEs generated by CBOW-Average is normalized to 1.

8 Discussion

In this section, the aim is to understand the economic foundation that explains why investment
manager discussions contain information in predicting stock returns.

Financial economists find that long-term stock returns are predictable. In particular, numerous stud-
ies report that predictive part of the stock returns is risk premium (Pástor & Stambaugh (2009);
Cochrane (2008); Campbell & Shiller (1988)). According to standard asset pricing theory, risk pre-
mium is determined by the degree of the risk aversion of a representative investor. The degree of risk
aversion, which reflects the subjective opinions of an investor, is often difficult to be measured accu-
rately in practice. However, the textual data of investment manager discussions, which incorporates
subjective mental information of the investors, provide a unique source to measure risk aversion.

I constructed two measures of risk aversion based on the textual data. The first measure uncertain
is the proportion (in percentage) of top 100 words having closest semantic meaning (highest word
vector cosine similarity) to the word “uncertain” (the full list of words related to the seed words
“uncertain”, “risk” and “recession” are shown in Table 7, 8 and 9 in the Appendix). In theoretical
works, economists usually distinguish uncertainty aversion and risk aversion (Dow & da Costa Wer-
lang (1992)). Risk describes unknown outcomes whose odds of happening can be measured or
learned about, while uncertainty refers to events that we do not know how to describe. However, in
empirical works, the distinction between risk uncertainty is subtle, and researchers often ignore it. I
adopted the notation of empiricists, where “risk aversion” referred by empiricists often included both
risk aversion and uncertainty aversion, and the empirically measured risk premium often include a
premium for both risk aversion and uncertainty aversion.

Although I use “uncertain” here as the seeding word, the word list I generate does not exclusively
measure uncertainty aversion only. Checking the full list of words related to “uncertain”, based on
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Table 4: Risk aversion and stock returns
This table reports the in-sample OLS regression results. The dependent variable return is the annual stock
returns calculated for the 252-day period starting from the day following the release date of N-CSR(S) files.
return leading is the annual stock returns calculated for the 252-day period ending at the release date of the
N-CSR(S) files. dividend yield is the dividend yield, which is log of the dividend to price ratio. uncertain
is the proportion of the top 100 words that having the closest semantic relationship with the seeding word
“uncertain”, and recession is the proportion of the top 100 words that having the closest semantic relationship
with the seeding words “recession”. The Newey-West Newey & West (1986) HAC robust t-statistics are shown
below the estimated coefficient. t-statistics significant at the 1% level are shown in bold.

Const + Risk Aversion Mom + Risk Aversion Mom&Val + Risk Aversion

intercept 0.062 0.077 0.057 0.076 0.090 0.072 0.112 0.094 0.090
t-stat 4.590 6.298 4.280 3.751 5.857 3.581 4.466 3.523 3.412

5% CI (0.050, 0.073) (0.063, 0.090) (0.045, 0.070) (0.064, 0.088) (0.072, 0.104) (0.055, 0.088) (0.076, 0.153) (0.058, 0.134) (0.051, 0.132)
return leading -0.120 -0.125 -0.120 -0.125 -0.119 -0.120

t-stat -1.371 -1.426 -1.372 -1.420 -1.367 -1.368
5% C.I. (-0.176, -0.066) (-0.178, -0.062) (-0.181, -0.068) (-0.178, -0.072) (-0.172, -0.069) (-0.172, -0.063)

dividend yield 0.230 0.190 0.188
t-stat 1.381 1.156 1.141

5% C.I. (-0.106, 0.596) (-0.146, 0.558) (-0.143, 0.56)
uncertain 0.050 0.048 0.047 0.055 0.047 0.044

t-stat 4.617 4.285 4.354 4.001 4.311 3.963
5% C.I. (0.033, 0.068) (0.029, 0.066) (0.032, 0.062) (0.026 0.066) (0.028, 0.065) (0.027, 0.065)

recession 0.011 0.005 0.010 0.005 0.010 0.005
t-stat 2.398 1.026 2.347 1.017 2.327 1.009

5% C.I. (0.002, 0.020) (-0.003, 0.013) (0.003, 0.019) (-0.004, 0.015) (0.001, 0.018) (-0.005 0.014)

R2
adj 0.012 0.002 0.012 0.027 0.019 0.027 0.027 0.019 0.027

Obs. 2255 2255 2255 2255 2255 2255 2255 2255 2255

linguistic intuition, it reasonably contains both risk aversion and uncertainty aversion information. I
do not use “risk” as the seeding word because many words in the list related to “risk” does not have
clear risk aversion related interpretation.

The second measure recession is the proportion (in percentage) of top 100 words having closest
semantic meaning to the word “recession”. Previous literature on asset pricing found that risk aver-
sion correlated with business cycles (Campbell (1999), Boldrin et al. (2001)). In particular, investors
usually require a high risk premium. Therefore, when investors start to talk more about recessions,
we can expect the future stock return to be higher.

The OLS regressions results are shown in Table 4. We can see that when regressing return, the
annual stock returns post the release date of N-CSR(S) files on uncertain and recession, both
measures of risk aversion predict high returns in the future, which agrees with our economic intuition
that when aversion is high, the expected stock returns is high, implying high risk premium. In
particular, I consider three benchmark models controlling different variables, the momentum factor
return leading and the value factor dividend yield.

Below the coefficients in the Table, I demonstrate the Newey & West (1986) robust t-test and 5%
confidence intervals constructed through bootstrapping of 1,000 times. All three models generate
similar estimates and significant level for uncertain and recession, indicating that the information
contained in these two measures is orthogonal to the momentum measure return leading and value
measure dividend yield.

When we include uncertain and recession separately, both measures are statistically significant.
When uncertain increases by 1 unit, meaning when the proportion of the words related to “un-
certain” increases by 1%, the expected future annual stock returns increases by 5%, which is eco-
nomically significant. When recession increases by 1 unit, meaning when the proportion of the
words related to “recession” increases by 1%, the expected future annual stock returns increase by
1%. When we include both uncertain and recession, only uncertain is significant, which implies
the collinearity between uncertain and recession. I find the correlation between uncertain and
recession is 0.257, indicating that uncertain and recession indeed contains common information.

9 Limitations

In the previous sections, all the documents in the corpus are used to learn the word embedding
vectors. The advantage of this approach is that the estimation of word vectors is more accurate
given more observations, and there is no out-of-vocabulary problem because the embedding vector
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for every word in the corpus is learned through the neural network. The disadvantage is that to
estimate the embedding vector for a document in a given period, future textual information is used,
making it difficult to justify the causality between the textual features and document and stock
returns. Therefore, in this subsection, I consider learning word embedding vectors in a rolling
window basis. For a given year, I use all the documents in all the previous years to learn the word
vectors, based on which we can calculate the document vectors as average of word vectors for words
in the documents. Note that this approach is only applicable to CBOW-Average because in CBOW-
Doc, we have to use the documents in the current period to learn the word and document vectors.

Compared with the results in Figure 3, Figure 7 in the Appendix shows that the OOS prediction
RMSEs generated by CBOW-Average when the document vectors are learned in a rolling window
basis is much smaller than the RMSEs generated by CBOW-Average when the document vectors
are learned using all available documents. However, compared with the results in Table 2, Table
12 in the Appendix demonstrates that the RMSEs generated by CBOW-Average when the document
vectors are learned in a rolling window basis is larger than the RMSEs generated by CBOW-Average
when the document vectors are learned using all available documents.

The above results mean that when we learn the word embedding vectors using only historical doc-
uments, the embedding vectors are more likely to overfit history and thus leading to inaccurate
predictions for future periods. It implies that there is time varying patterns of language usage for in-
vestment managers, and thus some time varying information is lost when we learn word embedding
vectors using static models like CBOW.

10 Conclusion

In this paper, I construct a textual dataset containing 37,014 letters to shareholders written by in-
vestment managers to test whether investment managers discussions contain useful information in
predicting market aggregate stock returns. I quantify the textual documents using the CBOW neural
network word embedding model introduced in Mikolov et al. (2013a), which represents words and
documents in a low-dimensional vector space. My out-of-sample prediction results using elastic-net
show that the investment manager discussions indeed provide valuable information in predicting
stock returns, stock return volatilities, as well as the growth rates of oil price, dollar index and de-
fault spreads. I find that the textual data reveals information about the degree of risk aversion of
institutional investors, which agrees with previous literature in asset pricing that risk premium is
predictable.

11 Future

The dataset of letters to shareholders provides a unique source to quantify subjective opinions of
investment managers. In this paper, I investigated the relationship between investment managers
discussions and stock returns. Related topics for future research include the relationship between
fund performance and fund capital flow. Fund manager discussions may manipulate investors’ in-
terpretation of fund performance, which may explain why we observe different fund flow activities
among funds with similar performance.
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Table 5: Document counts and letter extraction rates
This table shows the numbers of N-CSR(S) files and letters to shareholders extracted from those files in each
year. The extraction rate is the proportion of letters extracted from the N-CSR(S) files.

N-CSR N-CSRS

Files Letters Extraction Rate Files Letters Extraction Rate

2003 2801 1527 0.55 984 460 0.47
2004 3968 2338 0.59 2615 1286 0.49
2005 3527 2154 0.61 2727 1415 0.52
2006 3361 1997 0.59 2738 1353 0.49
2007 3326 1967 0.59 2806 1248 0.44
2008 3293 1989 0.60 2787 1270 0.46
2009 3163 1938 0.61 2743 1345 0.49
2010 2927 1619 0.55 2772 1360 0.49
2011 2964 1652 0.56 2720 1393 0.51
2012 2832 1554 0.55 2742 1333 0.49
2013 2851 1583 0.56 2723 1307 0.48
2014 2849 1619 0.57 2782 1307 0.47

Total 37862 21937 0.58 31139 15077 0.48

Table 6: Letter length summary statistics
This table shows the summary statistics of the length (number of words) of the tokenized letters in each year.
Count is the number of letters extracted from N-CSR(S) files in each year. Mean is the average number of
words in the letters. Std is the standard deviation of the letter lengths. X% are the X percentile of the letter
lengths.

Year Count Mean Std 5% 50% 95%

2003 1987 407 548 67 255 1169
2004 3624 413 554 99 262 1091
2005 3569 451 591 98 294 1265
2006 3350 428 570 85 258 1213
2007 3215 463 608 99 274 1380
2008 3259 523 640 67 340 1633
2009 3283 515 601 75 312 1556
2010 2979 472 576 78 267 1511
2011 3045 487 597 73 285 1555
2012 2887 482 560 60 295 1516
2013 2890 515 843 60 305 1625
2014 2926 496 585 57 305 1622
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Table 7: Risk aversion words
This table demonstrates words related to risk aversion. The three word lists are generated by three seeding
words: “recession”, “risk” and “uncertain”. Each list contains 100 words with highest semantic similarity with
the seeding words, where the semantic similarity of a pair of words is measured as the cosine similarity of their
word embedding vectors.

recession risk uncertain

Related Word Similarity Related Word Similarity Related Word Similarity

1 depression 0.556 risks 0.481 unsettled 0.507
2 slump 0.499 risky 0.426 challenging 0.504
3 contraction 0.495 riskier 0.398 turbulent 0.487
4 recessions 0.483 volatility 0.374 unstable 0.451
5 downturn 0.478 quality 0.371 skeptical 0.445
6 slowdown 0.451 beta 0.320 unclear 0.445
7 crisis 0.440 swaps 0.314 uncertainty 0.440
8 deflation 0.439 coupons 0.309 tough 0.435
9 officially 0.409 sensitivity 0.306 cloudy 0.434
10 crunch 0.396 yielding 0.305 constructive 0.423
11 recessionary 0.396 potential 0.295 uncertainties 0.421
12 correction 0.390 exposure 0.295 evolving 0.413
13 patch 0.381 seasonally 0.286 vigilant 0.411
14 economists 0.374 potentially 0.283 accommodating 0.409
15 contagion 0.372 float 0.279 fragile 0.406
16 wwii 0.370 flexibility 0.272 changing 0.403
17 recovery 0.370 attractiveness 0.272 cautious 0.397
18 winter 0.368 safety 0.268 flux 0.394
19 mess 0.367 probability 0.267 sanguine 0.393
20 collapse 0.364 defensive 0.262 tenuous 0.382
21 meltdown 0.361 traditional 0.259 murky 0.381
22 sars 0.361 thereby 0.259 choppy 0.379
23 epidemic 0.360 correlation 0.259 dangerous 0.374
24 catastrophe 0.352 compensate 0.255 stormy 0.372
25 shock 0.352 conviction 0.255 perplexing 0.371
26 war 0.352 likelihood 0.255 mindful 0.370
27 storm 0.352 option 0.248 optimistic 0.368
28 technically 0.352 rated 0.247 clouded 0.366
29 landing 0.349 exposures 0.245 adapting 0.364
30 deflationary 0.349 fluctuation 0.245 confusing 0.362
31 economy 0.347 actively 0.243 tense 0.359
32 breakup 0.346 willing 0.242 volatile 0.353
33 malaise 0.346 environment 0.242 unsettling 0.352
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Table 8: Risk aversion words (continue)
This table demonstrates words related to risk aversion. The three word lists are generated by three seeding
words: “recession”, “risk” and “uncertain”. Each list contains 100 words with highest semantic similarity with
the seeding words, where the semantic similarity of a pair of words is measured as the cosine similarity of their
word embedding vectors.

recession risk uncertain

Related Word Similarity Related Word Similarity Related Word Similarity

34 slow 0.344 spreads 0.242 interdependent 0.350
35 subside 0.340 conservative 0.239 react 0.350
36 calamity 0.340 avoiding 0.239 navigating 0.350
37 scenario 0.340 incremental 0.238 bearish 0.348
38 syndrome 0.338 inefficiencies 0.237 conducive 0.348
39 stall 0.337 correlated 0.237 difficult 0.348
40 soft 0.337 safer 0.237 elusive 0.345
41 dip 0.337 liquid 0.236 nimble 0.341
42 damage 0.335 unavoidable 0.236 reality 0.340
43 acceleration 0.335 degree 0.236 tougher 0.337
44 deteriorate 0.333 diversification 0.235 bleak 0.336
45 layoffs 0.331 safe 0.235 unpredictability 0.336
46 faltering 0.330 speculative 0.233 comfortable 0.336
47 gdp 0.327 spread 0.233 steadfast 0.334
48 appears 0.326 possibility 0.232 precarious 0.334
49 protracted 0.325 tactically 0.232 upbeat 0.332
50 cold 0.324 fluctuations 0.232 pessimistic 0.332
51 expansion 0.323 cds 0.232 unknown 0.332
52 lengthiest 0.323 approach 0.230 transitional 0.331
53 britain 0.321 commensurate 0.228 nervous 0.324
54 summer 0.319 prudent 0.228 complicated 0.324
55 disruption 0.319 hedges 0.228 unpredictable 0.320
56 bubble 0.318 uncorrelated 0.227 unresolved 0.319
57 crises 0.318 emphasis 0.226 challenge 0.318
58 slide 0.317 dispersion 0.226 erratic 0.313
59 fragility 0.317 concentrate 0.225 confident 0.312
60 rough 0.313 yield 0.225 brighter 0.311
61 verge 0.313 upside 0.224 uncomfortable 0.311
62 sliding 0.313 transparency 0.223 frustrating 0.311
63 bounce 0.312 seek 0.223 daunting 0.309
64 deceleration 0.311 distressed 0.221 bullish 0.308
65 deleveraging 0.310 alternatives 0.221 preparing 0.307
66 boom 0.309 caution 0.221 wary 0.307
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Table 9: Risk aversion words (continue)
This table demonstrates words related to risk aversion. The three word lists are generated by three seeding
words: “recession”, “risk” and “uncertain”. Each list contains 100 words with highest semantic similarity with
the seeding words, where the semantic similarity of a pair of words is measured as the cosine similarity of their
word embedding vectors.

recession risk uncertain

Related Word Similarity Related Word Similarity Related Word Similarity

67 nber 0.309 diversifying 0.221 buoyant 0.307
68 fragile 0.308 sensitive 0.220 tricky 0.307
69 surface 0.307 stability 0.219 unknowns 0.307
70 seems 0.306 movements 0.218 dire 0.306
71 implosion 0.304 seeking 0.218 fluid 0.306
72 hurricanes 0.303 strategies 0.217 clearer 0.304
73 appeared 0.302 reallocate 0.216 serious 0.303
74 commentators 0.302 insatiable 0.216 intact 0.303
75 problem 0.301 valuations 0.216 inopportune 0.303
76 jeopardy 0.300 devalued 0.216 valid 0.302
77 expecting 0.299 cashflow 0.214 ideal 0.302
78 goldilocks 0.299 hungry 0.214 cognizant 0.301
79 weaken 0.298 protection 0.214 interconnected 0.298
80 recoveries 0.298 safest 0.213 benign 0.298
81 recede 0.298 duration 0.213 question 0.294
82 cooling 0.297 directional 0.212 challenged 0.293
83 strains 0.297 patient 0.210 recessionary 0.292
84 clouds 0.297 prone 0.210 proactive 0.291
85 attack 0.297 liquidity 0.209 muted 0.290
86 katrina 0.295 advantage 0.208 inevitable 0.290
87 yet 0.295 systematically 0.208 shifting 0.289
88 decelerate 0.295 demanded 0.207 skittish 0.287
89 unemployment 0.295 selectively 0.206 certainty 0.287
90 bottoming 0.294 instruments 0.206 grapple 0.287
91 spiral 0.294 asymmetric 0.205 troubling 0.287
92 doldrums 0.294 desire 0.205 rewarding 0.287
93 slowing 0.294 structured 0.205 critical 0.286
94 crash 0.293 capture 0.204 today 0.284
95 problems 0.293 sought 0.204 frustrated 0.284
96 trouble 0.292 favoring 0.204 conscious 0.284
97 stagnation 0.291 riskiest 0.202 elevated 0.283
98 slowly 0.291 cues 0.202 subdued 0.282
99 lasting 0.290 correlations 0.201 exacting 0.282
100 danger 0.290 environments 0.201 tumultuous 0.281
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Table 10: LSA Sample Topics
This table demonstrates sample words and their corresponding loadings of three latent topics generated by LSA.

Topic 1 Topic 2 Topic 3

Word Loading Word Loading Word Loading

1 municipal 0.086 vanguard 0.512 pioneer 0.152
2 vanguard 0.075 admiral 0.181 federated -0.079
3 bonds 0.070 municipal -0.131 retirement 0.072
4 fed 0.065 prudential 0.106 strategists -0.070
5 index 0.061 mason -0.096 register -0.067
6 bond 0.059 revenue -0.078 shareowners 0.052
7 tax 0.057 state -0.078 tips 0.051
8 yield 0.057 star 0.073 allocations 0.048
9 cap 0.054 wellington 0.072 fed 0.047

10 shares 0.054 shares 0.071 odyssey -0.047
11 yields 0.053 hospital -0.070 planning -0.046
12 securities 0.052 rated -0.069 listing -0.044
13 crisis 0.052 municipals -0.068 disclaim 0.044
14 credit 0.052 pioneer 0.067 crisis -0.043
15 treasury 0.051 peer 0.066 capabilities -0.041
16 global 0.051 expense 0.064 prudential -0.041
17 exempt 0.051 free -0.063 shareowner 0.041
18 sector 0.051 curve -0.061 timers 0.040
19 funds 0.050 tobacco -0.060 municipal -0.038
20 debt 0.050 odyssey 0.057 tapering 0.037
21 stocks 0.049 credit -0.056 tools -0.037
22 rate 0.049 bonds -0.055 insights -0.035
23 class 0.048 efficient -0.054 actual 0.034
24 company 0.048 fed -0.053 updates -0.034
25 emerging 0.047 issuance -0.052 glossary 0.034
26 six 0.047 ratios 0.052 vanguard -0.034
27 quarter 0.046 explorer 0.052 covering -0.033
28 recovery 0.046 obligation -0.052 easy -0.033
29 companies 0.045 advisors 0.051 allocation 0.032
30 trust 0.045 caps 0.051 mason 0.032
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Table 11: LDA Sample Topics
This table demonstrates sample words and their corresponding loadings of three latent topics generated by
LDA.

Topic 1 Topic 2 Topic 3

Word Loading Word Loading Word Loading

1 toreador 0.080 misinterpreted 0.141 barrow 0.047
2 agonizingly 0.041 moat 0.116 upright 0.039
3 accesses 0.039 tapering 0.099 overextended 0.023
4 unacceptably 0.037 masters 0.097 motion 0.020
5 shippers 0.026 dispersion 0.080 oddest 0.015
6 spree 0.026 quo 0.070 digests 0.015
7 homepage 0.021 palm 0.065 persuading 0.015
8 saddened 0.019 emissions 0.062 reissuance 0.014
9 intending 0.019 scares 0.056 affixed 0.014

10 traverse 0.019 succeeding 0.054 perpetuating 0.012
11 abstained 0.017 hepatitis 0.054 genius 0.011
12 squabbles 0.017 embarks 0.053 stymie 0.011
13 unjustifiably 0.017 disputed 0.052 upticks 0.009
14 axiom 0.016 micron 0.051 summarily 0.009
15 animated 0.016 circle 0.051 technicians 0.009
16 tornado 0.015 fracking 0.051 surpasses 0.008
17 chipset 0.015 scare 0.050 messy 0.008
18 died 0.014 wintergreen 0.050 glory 0.007
19 refurbished 0.014 nimble 0.048 soil 0.007
20 derailment 0.013 mega 0.047 doubting 0.007
21 swank 0.013 excelsior 0.047 conserve 0.006
22 opponent 0.013 scene 0.047 wield 0.006
23 bender 0.013 dodge 0.047 backs 0.006
24 honey 0.012 luck 0.045 nimble 0.006
25 nondeductible 0.012 dependence 0.044 exhorting 0.006
26 irrationally 0.012 crossover 0.044 transnational 0.005
27 birds 0.012 intrepid 0.044 woke 0.005
28 revoked 0.011 obscured 0.044 conformed 0.005
29 representational 0.011 environmentally 0.042 impetuous 0.005
30 doctrine 0.011 perpetual 0.042 backstops 0.005
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Table 12: OOS prediction RMSEs with rolling window training-test splitting and rolling window
word vectors
This table shows the OOS prediction RMSEs of five linear models based on elastic-net: (1). “Const”, the ex-
planatory variable include only a constant, which is equivalent to prediction using historical mean; (2). “Mom”;
the explanatory variables include a constant and the momentum factor return leadingt; (3). “Mom&Val”,
the explanatory variables include a constant, the momentum factor return leadingt and the value factor
dividend yieldt; (4). “CBOW-Average”; the explanatory variables include the document vectors generated
using the CBOW-Average model in addition to the controlling variables in “Mom&Val”. The document vectors
are estimated in a rolling window basis, using only historical documents in training CBOW. The training set is
constructed in a rolling window basis. In every 6-year window, I estimate the parameters using observations in
the first five years, and make predictions in the sixth year. Panel A reports the values of the RMSEs, and Panel
B reports the ratios between the RMSEs of a specific model over the RMSEs of the “Const” model.

Panel A: OOS RMSEs
Year Const Mom Mom&Val CBOW-Average

2008 0.349 0.375 0.376 0.267
2009 0.327 0.355 0.355 0.490
2010 0.149 0.275 0.275 0.311
2011 0.097 0.098 0.098 0.160
2012 0.186 0.196 0.196 0.132
2013 0.090 0.107 0.106 0.204
2014 0.128 0.111 0.111 0.156

Panel B: OOS RMSE Ratios
Year Constant Mom Mom&Val CBOW-Average

2008 1.000 1.075 1.075 0.801
2009 1.000 1.087 1.087 1.498
2010 1.000 1.845 1.826 2.088
2011 1.000 1.010 1.009 1.646
2012 1.000 1.056 1.055 0.711
2013 1.000 1.185 1.187 2.261
2014 1.000 0.867 0.868 1.220
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Figure 5: Stock return volatility OOS prediction RMSEs with random training-test splitting
This figure shows the OOS RMSEs in predicting stock return volatilities using five linear models based on
elastic-net: (1). “Const”, the explanatory variable include only a constant, which is equivalent to prediction
using historical mean; (2). “Mom”; the explanatory variables include a constant and vol leadingt, the stock
return volatilities in the 1-year (1-month/6-month) period prior to the release of N-CSR(S) ; (3). “Mom&Val”,
the explanatory variables include a constant, vol leadingt and dividend yieldt; (4). “CBOW-Average”; the
explanatory variables include the document vectors generated using the CBOW-Average model in addition to
the controlling variables in “Mom&Val”; (5). “CBOW-Doc”, the explanatory variables include the document
vectors generated using the CBOW-Doc model in addition to the controlling variables in “Mom&Val”. The
training set is constructed by randomly selecting 70% observations from the whole sample set, and the rest
30% observations forms the test set. To avoid random splitting effect, this procedure is repeated 50 times.
The height of the bars represents the average RMSEs of the 50 experiments, and the standard errors are shown
through the error bars. The RMSEs generated by Const is normalized to 1.
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Figure 6: Macroeconomic OOS prediction RMSEs with random training-test splitting
This figure shows the OOS RMSEs in predicting macroeconomic indicators using five linear models based on
elastic-net: (1). “Constant”, the explanatory variable include only a constant, which is equivalent to prediction
using historical mean; (2). “Mom”; the explanatory variables include a constant and a momentum factor,
where the momentum factor is the grow rate of oil price/dollar index/default spread in the year prior to the
release of N-CSR(S) ; (3). “Mom&Val”, the explanatory variables include a constant, the momentum factor
and the value factor dividend yieldt; (4). “CBOW-Average”; the explanatory variables include the document
vectors generated using the CBOW-Average model in addition to the controlling variables in “Mom&Val”; (5).
“CBOW-Doc”, the explanatory variables include the document vectors generated using the CBOW-Doc model
in addition to the controlling variables in “Mom&Val”. The training set is constructed by randomly selecting
70% observations from the whole sample set, and the rest 30% observations forms the test set. To avoid random
splitting effect, this procedure is repeated 50 times. The height of the bars represents the average RMSEs of
the 50 experiments, and the standard errors are shown through the error bars. The RMSEs generated by Const
is normalized to 1.
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Figure 7: OOS prediction RMSEs with random training-test splitting and rolling window word
vectors
This figure shows the OOS prediction RMSEs of five linear models based on elastic-net: (1). “Const”, the
explanatory variable include only a constant, which is equivalent to prediction using training set mean; (2).
“Mom”; the explanatory variables include a constant and the momentum variable return leadingt; (3).
“Mom&Val”, the explanatory variables include a constant, the momentum factor return leadingt and the
value factor dividend yieldt; (4). “CBOW-Average”; the explanatory variables include the document vectors
generated using the CBOW-Average model in addition to the controlling variables in “Mom&Val”. The docu-
ment vectors are estimated in a rolling window basis, using only historical documents in training CBOW. The
training set is constructed by randomly selecting 70% observations from the whole sample set, and the rest 30%
observations forms the test set. To avoid random splitting effect, this procedure is repeated 50 times. The height
of the bars represents the average RMSEs of the 50 experiments, and the standard errors are shown through the
error bars. The RMSEs generated by Const is normalized to 1.
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Figure 8: Sentiment words visualization based on t-SNE
This figure demonstrates the clusters of sentiment words. The original word vectors learned in the CBOW
model have 300 dimension, and they are projected onto a 2-dimension vector space using t-SNE. The horizontal
and vertical axis represents the first and second dimension of the t-SNE dimension reduced space respectively.
The green dots are positive words, and red dots are negative words. Positive words are top 30 words with
highest cosine similarity to good , and the negative words are top 30 words with highest cosine similarity to
bad.

28



Fi
gu

re
9:

Se
nt

im
en

tw
or

ds
vi

su
al

iz
at

io
n

ba
se

d
on

t-
SN

E
T

hi
s

fig
ur

e
de

m
on

st
ra

te
s

th
e

cl
us

te
rs

of
th

e
w

or
ds

re
la

te
d

to
di

ff
er

en
te

co
no

m
ic

to
pi

cs
.

T
he

or
ig

in
al

w
or

d
ve

ct
or

s
le

ar
ne

d
in

th
e

C
B

O
W

m
od

el
ha

ve
30

0
di

m
en

si
on

s,
an

d
th

ey
ar

e
pr

oj
ec

te
d

on
to

a
2-

di
m

en
si

on
ve

ct
or

sp
ac

e
us

in
g

t-
SN

E
.T

he
ho

ri
zo

nt
al

an
d

ve
rt

ic
al

ax
is

re
pr

es
en

ts
th

e
fir

st
an

d
se

co
nd

di
m

en
si

on
of

th
e

t-
SN

E
di

m
en

si
on

re
du

ce
d

sp
ac

e
re

sp
ec

tiv
el

y.
E

ig
ht

to
pi

cs
ar

e
sh

ow
n

in
th

e
gr

ap
h:

re
gi

on
s,

po
lit

ic
s,

m
ac

ro
ec

on
om

y,
m

ar
ke

ti
nd

ex
,c

om
m

od
ity

,i
nd

us
tr

y,
in

ve
st

m
en

ta
nd

sh
ar

eh
ol

de
r.

To
ge

ne
ra

te
th

e
w

or
d

lis
tf

or
ea

ch
to

pi
c,

Iu
se

th
e

ke
yw

or
ds

re
gi

on
,p

ol
iti

cs
,m

ac
ro

ec
on

om
y,

in
de

x,
co

m
m

od
ity

,i
nd

us
tr

y,
in

ve
st

m
en

t,
sh

ar
eh

ol
de

ra
s

se
ed

w
or

ds
,a

nd
fin

d
30

w
or

ds
th

at
ha

ve
th

e
hi

gh
es

ts
em

an
tic

si
m

ila
ri

ty
to

th
e

se
ed

w
or

d
fo

re
ac

h
to

pi
c.

29


	Introduction
	Problem and Approach
	Background and Related Work
	Method
	CBOW
	CBOW-Average
	CBOW-Doc

	Matrix Factorization
	Predictive Model

	Data
	Letters to Shareholders
	Stock Returns

	Analysis
	Word Vectors
	Word Clouds

	Results
	Out-of-sample Predictions
	Random Splitting
	Rolling Window Splitting

	Other Language Models
	CBOW with Clustering
	Sentiment_Counting
	Latent Semantic Analysis
	Latent Dirichlet Allocation


	Discussion
	Limitations
	Conclusion
	Future
	Acknowledgements

