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Abstract
Background. Functional magnetic resonance imaging (fMRI) and diffusion spectrum imaging

(DSI) are two popular methods used for analyzing brain networks. While one measures the neu-
ronal activity (functional connectivity) in the brain, the other measures its anatomical structure
(structural connectivity). While several researchers have studied the properties of fMRI and DSI
independently, the relationship between them is largely unexplored.
Aim. In this paper, we study the relationship between these two fundamental measurements of
brain networks. In particular, we answer the following fundamental questions: (1) Does there exist
any dependence between structural and functional connectivity? If yes, what is the nature of this
dependence? (2) Is structural information useful for predictive analysis of the functional data? (3)
Is it possible to make predictions about the structural data based on the functional data?
Data. The data used for our study consists of resting state fMRI and DSI data from 55 subjects.
The fMRI data is recorded for 210 time steps (in a span of 10 minutes).
Methods. We use various independence tests for detecting and understanding the relationship
between these two sources of information. We also analyze the strength and the nature of the re-
lationship and its variability across different regions of the brain. We use a regression setup for
studying the prediction questions of our interest.
Results. Our experiments clearly demonstrate that there is a high dependence between functional
and structural connectivity. For example, independence tests yield p-values less than 0.01 — in-
dicating high dependence. We also show that the nature of the relationship is intricate and non-
uniform across different regions of the brain. Furthermore, our analysis shows that it is possible to
predict functional data from structural data and vice-versa with R2 value as high as 0.7 in certain
regions of the brain.
Conclusions. We show that functional and structural connectivity share a strong relationship with
each other. Our analysis provides insights into the nature of functional and structural connectivity
relationship across different regions of the brain. We also identify the key regions of the brain
where this relationship is strong, thus providing a potentially valuable tool for inference problems
involving functional and structural data.

1. Introduction

Magnetic resonance imaging (MRI) has revolutionized the field of neuroscience. MRI scanners use
radio waves and magnetic fields to obtain images of the body without exposure to ionizing radiation
and hence, provides a fast, non-destructive and non-invasive means of imaging the body. Functional
magnetic resonance imaging (fMRI) and diffusion spectrum imaging (DSI) are two fundamental
and popular brain imaging techniques. fMRI is a technique for measuring the activity of the brain.
fMRI takes advantage of the differences in magnetic fields of oxygenated and deoxygenated blood
in order to measure the functional activity of the brain. More specifically, it measures the localized
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increases in blood oxygenation level, which in turn reflects the increase in neuronal activity. This
method is called blood-oxygenation-level-dependent (BOLD) imaging. On the other hand, DSI is
an important technique for studying the anatomy of the brain. DSI measures the diffusion behavior
of water molecules in the brain. The difference in diffusion of water molecules along the axonal
bundles and perpendicular direction is key to estimating the anatomical organization of the brain.
This provides us with rich anatomical information about the white matter, the component of the
brain that is composed of axons. Hence, fMRI and DSI measure two different properties of the
brain. While one measures the activity of the brain, the other measures the anatomical connectivity
of the brain network.

A natural and fundamental issue in neuroscience is to understand the relationship between dif-
ferent imaging techniques. A question of special interest to us is: what is the relationship between
measurements obtained from fMRI and DSI? As explained above, these techniques are designed
to measure different aspects of the brain but it is intuitive that anatomical connectivity of the brain
plays a role in neuronal activity of the brain. Our main focus in this paper is to understand the
dependence (or independence) between the fMRI and DSI data. In other words, we are interested in
the question: Is there any relationship between functional connectivity (as measured through fMRI
data) and structural connectivity (as measured through DSI data) of the brain and, if yes, how does
it vary across different regions of the brain?

To this end, we investigate various principled approaches for quantitatively and qualitatively
detecting the dependence between the functional and structural data. Furthermore, we also char-
acterize the variability of this dependence across different regions in the brain network. For this
purpose, we use various inference tools, independence tests, and canonical correlation analysis to
give a comprehensive view of the relationship.

2. Related Work

In this section, we briefly review the related work for the problem of our interest. The relationship
between functional and structural data of brain networks has received considerable interest in the
neuroscience community. While there has been some evidence confirming the relationship between
the two types of data that are of our interests, the results are neither compelling nor complete. Earlier
works (see, for example, (Koch et al., 2002)) argue that the relationship between fMRI and DSI data
is not direct and straightforward. They, further, argue that the indirect structural connectivity has
much higher relationship with fMRI than direct structural connectivity.

More recent works attempt to demonstrate a direct relationship between functional and structural
connectivity. The notion used to establish this dependence is that of functional correlation graphs
(Honey et al., 2009). In particular, the functional correlation graph is shown to have direct relation-
ship with the structural connectivity. Honey et al. (2009) mainly focus on the relationship within
subjects. Our experiments reveal that the structural connectivity notion used in Honey et al. (2009)
is much weaker. We define a new notion of structural connectivity which shows much stronger
relationship with the functional connectivity than that obtained in Honey et al. (2009). Further-
more, our experiments across subjects reveal very interesting functional and structural connectivity
relationship within various regions of the brain.

Recently, there also has been some interest in inferring functional connectivity from structural
connectivity and vice versa (Robinson, 2012; Robinson et al., 2014; Deligianni et al., 2010). While
such an inference demonstrates relationship between function and structural connectivity, it does not
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allow direct examination of this relationship. Our methodology, on the other hand, allows us to infer
the relationship in a more direct manner. This, in turn, provides a compelling case for understanding
the relationship between functional and structural data.

2.1 Data

In this section, we describe the datasets used in the paper. We acquired resting state fMRI and
DSI data for 55 subjects. The exact data acquisition process for fMRI (functional data) and DSI
(structural data) is given in Jarbo and Verstynen (2015). We use region of interest (ROI) analysis
in this paper. ROI analysis involves selecting clusters of voxels or brain regions a priori while
analyzing the brain. ROI analysis has several advantages over whole brain (or voxel level) analysis.
We refer the reader to Poldrack (2006) for a more comprehensive treatment of ROI analysis. Our
dataset consists of 625 ROIs. The description for generating the ROIs can be seen in Jarbo and
Verstynen (2015)1.

The fMRI data for a subject consists of functional activity (time series) at 210 time steps, one
for each of the 625 ROIs. The fMRI data is measured in resting state, i.e., the participants were not
given any explicit task during the experiment. The DSI (structural data) for a subject is a 625 x 625
matrix where the ijth entry of the matrix represents some structural feature between the ith and jth

ROI. In this paper, we are mainly concerned with the quantitative anisotropy (QA) and mean length
for each pair of ROIs (see (Jarbo and Verstynen, 2015) and references therein for more description
of these quantities). The normalized QA between two ROIs is defined as the QA between the
corresponding ROIs normalized by the mean length between them. This is referred to as structural
connectivity throughout this paper.

3. Problem Setup

We formally define the problem statement in this section. We assume that the number of ROIs in
our problem is d. The number of subjects in our experiments is denoted by n. The functional input
of our concern is a time series, one for each subject. In general, the length of the time series can
be different for subjects. However, for simplicity, we assume that it is same across subjects and is
denoted by T . We represent the functional input as a tensorX ∈ RT×d×n. HereX[t, j, i] represents
the value of jth ROI at time step t for the ith subject. This data forms the functional input to the
problem of our interest.

Additionally, we are also provided with structural information for all subjects in the experiment.
Throughout this paper, we represent the structural data as a tensor in Rd×d×n, where S[j, k, i]
represents a structural aspect involving ROIs j and k of the ith subject. There are two primary
and important aspects of the data at our disposal: (a) it is inherently high dimensional (b) small
sample size because the experiments are carried on a small set of subjects. More specifically, we
are interested in the case where T, n < d. In our dataset, n = 55, T = 210 and d = 625.

Three Fundamental Questions

In this paper, we aim to explore the following three important questions concerning the relationship
between structural and functional connectivity:

1. The datasets used in this paper are not publicly available.
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1. Does there exist any dependence between structural and functional connectivity for the sub-
jects in the dataset? Or are they independent? If a dependence indeed exists, what kind of
relationship exists between them?

2. Is structural information useful for predictive analysis of the functional data? More specifi-
cally, can structural data be used in making or improving predictions concerning functional
data? If yes, how this benefit vary across different regions of the brain?

3. Finally, we also attempt to explore the inverse of (2) i.e., is it possible to make predictions on
the structural data based on the functional data? Is it possible to recover the support of the
structural data from the functional data?

We will explore each of these questions in great detail in Section 4.7. Note that each of these
questions is focused on the relationship between the structural and functional properties of the brain
and attempt to uncover different aspects of this underlying relationship, if any. While the first
question focuses on detecting dependence between functional and structural connectivity, the other
two allow us to understand the nature of this dependence.

4. Preliminaries

We provide a brief overview of the approaches used in this paper. This section is mainly to review
the necessary background for the paper and is not intended to be an exhaustive or complete treatment
of these approaches. We refer the interested readers to the relevant literature for more details.

4.1 Functional Correlation Graph

The functional correlation graph (FCG) is a popular tool used in analysis of brain networks. We
describe the procedure used for constructing the functional correlation graph for a subject. The
adjacency matrix of the graph is constructed in the following manner: For each pair of ROIs, the
weight of the edge between them is the Pearson correlation between the corresponding time series
for that pair of ROIs. We first note that the graph is undirected since the adjacency matrix will be
symmetric. We denote the resultant adjacency matrix as Φi. Furthermore, we also observe that
weights can be negative since the ROIs can have negative correlation. The reasons for negative
correlation is not fully understood in the neuroscience community. In many of our experiments, we
use the absolute values of the correlation while measuring the metrics based on functional data.

The FCG and structural connectivity matrix share interesting features. Figure 1 shows the func-
tional correlation graph and structural connectivity for a subject. Though FCG is dense in compar-
ison to the structural connectivity matrix, the two indeed share some structural similarities. This
will, in fact, be one of our major focus in the later sections, where we explore the relationship in a
systematic fashion.

4.2 MMD & HSIC

We briefly review the theory behind Maximum Mean Discrepancy (MMD) & HSIC in this section.
These measures will be useful in defining distances between distributions and testing for indepen-
dence between random variables. Both these measures are useful in identifying non-linear relation-
ships between random variables. Suppose X is a random variable on X . Let H = {f : X → R}
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Figure 1: Functional correlation graph using the function data (left) and structural connectivity
graph (right) between ROIs for a subject. Note the structural similarity between the two
heat maps.

be a reproducing kernel Hilbert Space (RKHS) associated with X with feature map φ(x) ∈ H
(x ∈ X ) and kernel k(x, y) = 〈φ(x), φ(y)〉H (x, y ∈ X ). The kernel satisfies the property
f(x) = 〈f, k(x, .)〉HX

for f ∈ HX , which is called the reproducing property of the kernel.
The mean embedding of a distribution PX on X is defined as µX =

∫
φ(x)dPX (Gretton et al.,

2007). The MMD distance between two distributions PX and PY on X is defined as:

MMD(PX , PY ) = ‖µX − µY ‖2HX

This quantity can, in general, be estimated using empirical mean embeddings (see (Gretton et al.,
2007)) and is useful for measuring distances between distributions. In particular, suppose {X1, . . . , Xn}
and {Y1, . . . , Ym} are samples from distribution PX and PY respectively, then one popular estimator
of MMD is the following:

M̂MD(PX , PY ) =
1

n(n− 1)

n∑
i=1

m∑
j=1,j 6=i

k(Xi, Xj) +
1

m(m− 1)

n∑
i=1

m∑
j=1,j 6=i

k(Yi, Yj)

− 2

nm

n∑
i=1

m∑
j=1

k(Xi, Yj) (1)

The Hilbert Schmidt Independence Criterion (HSIC) is useful for testing independence between
random variables. Suppose (X,Y ) is a random variable on X × Y . Let HX = {f : X → R} be a
RKHS associated with X with feature map φ(x) ∈ HX (x ∈ X ) and kernel kX . We can similarly
define RKHS HY and kernel kY associated with Y . HSIC between set of random variables is
defined as the following:

HSIC(X,Y ) = MMD
(
P(X,Y ), PX × PY

)
,

where P(X,Y ), PX , PY represent the joint distribution and corresponding marginals of random vari-
ables X and Y respectively (Gretton et al., 2005). Here PX × PY denotes the product distribution
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of X and Y . An alternative way of writing HSIC measure is the following:

HSIC(X,Y ) = ‖ΣXY ‖2HS ,

where ΣXY denotes the cross-covariance operator and ‖.‖HS denotes the Hilbert-Schmidt norm.
The estimation of HSIC can be done efficiently (both statistically and computationally) through
samples from the joint distribution on (X,Y ) (see (Gretton et al., 2005; Reddi and Póczos, 2013)).
The key property of HSIC is that, under certain conditions, it is non-zero iff X and Y are indepen-
dent. We will use this property for our independence tests. One of the remarkable features of HSIC
is that it allows one to measure the dependence between very complex structures. For example, X
and Y can be the space of trees with n nodes and strings of length l respectively. In Section 5.1,
we will exploit this remarkable property by using kernels over graphs to measure the dependence
between functional and structural data. The key ingredients for calculating HSIC are the kernels
kX and kY . Note that we define two different kernels for independence tests since X and Y can be
different i.e., X and Y can be over different domains. Throughout the paper, we use the Gaussian
kernel for our experiments i.e., the following kernel :

k(x, y) = exp(−‖x− y‖2/σ2)

as the kernel k whenever X is an Euclidean space. For MMD(X,Y ), σ is chosen through a pop-
ular heuristic approach called median heuristic and is essentially the median of pairwise distances
between samples of X and Y respectively. In the case of HSIC, σX and σY are each chosen using
median heuristic on samples for X and Y respectively.

4.3 Independence Tests

An important component of our paper is to test for dependence between functional and structural
data. Independence tests are very useful for this purpose. Let I : R× R → R be a test statistic for
measuring the dependence of random variables. We assume that I(X,Y ) is 0 if and only if random
variables X and Y are independent. For testing independence, we define the following hypothesis
test:

H0 : I(X,Y ) = 0 v.s. H1 : I(X,Y ) 6= 0.

A low p-value indicates dependence between random variables X and Y . We do not reject the null
hypothesis when p > α and reject it otherwise. Here, α is the significance level. Throughout the
paper, the null distribution, and thereby p-value, is calculated using permuting the samples of either
X or Y (this gives us samples from the product distribution i.e., empirical distribution under the
null hypothesis). We either use mutual information (likelihood ratio test) or HSIC as I in all our
experiments.

4.4 Lasso

Lasso is a popular linear regression model that promotes sparsity (Tibshirani, 1994). It essentially
solves the least square problem with an additional l1-regularization to encourage sparsity of the
solution. In particular, suppose {(Yi, Zi)} are samples from a distribution such that Zi = β>Yi+ηi,
where ηi is a random variable with mean zero and bound variance, then lasso solves the following
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optimization problem for estimating β:

min
β

1

n

n∑
i=1

‖Zi − β>Yi‖2 + λ‖β‖1.

The l1 penalty promotes sparsity in β. This is particularly relevant to our setting since we are dealing
with reasonably high dimensional data and require (or expect) the solution to be sparse. Many fast
solvers have been developed for solving the optimization problem. We refer interested readers to
Friedman et al. (2010); Tibshirani et al. (2011) for additional details. In Section 6, we will use lasso
to understand the relationship between functional and structural connectivity.

4.5 Canonical Correlation Analysis (CCA)

Let Z1 and Z2 be random vectors in Rd. Quite often we are interested in finding relationship
between components of Z1 and Z2. CCA is a natural approach to tackle this problem. The main
goal in CCA is to find linear combination of components of Z1 and Z2 that have high correlation.
Formally, this amounts to finding vectors a, b ∈ Rd such that correlation between a′Z1 and b′Z2 is
maximized i.e.,

arg max
a,b

corr(a′Z1, b
′Z2),

where corr denotes the Pearson correlation coefficient. The resultant vectors a and b are called
the first pair of canonical variables. The second set of canonical variables can be obtained by
maximizing correlation subject to the additional constraint that the variables are uncorrelated with
the first pair of variables. This process can be continued up to d times (given at least d samples of
the random variables) to yield the canonical variables. The computation of the these variables can
be computed using singular value decomposition (SVD). More details on CCA can be found in the
tutorial by Borga on this subject (Borga, 2001).

4.6 Notation

We denote the set {1, . . . , n} by [n]. Suppose Y is a tensor on Rd1×d2×d3 then use Y [:, \j, i] to
denote matrix M on Rd1×(d2−1) which represents the matrix Y [:, :, i] without the jth column. For a
tensor Y , we use Yi to denote the matrix Y [:, :, i]. With slight abuse of notation, we use Φi and Si for
the FCG and structural connectivity graphs of the ith subject respectively. Suppose {(Pi, Qi)}ntest

i=1

where Pi ∈ Rp, Qi ∈ R for i ∈ [ntest] represents the test data, then R2 of a prediction function
f : Rp → R is defined as follows:

R2[f ] = 1−
∑ntest

i=1(Qi − f(Pi))
2∑ntest

i=1(Qi − 1
ntest

∑ntest
k=1Qk)

2
. (2)

We will drop the f from the above notation whenever f is clear from the context.

4.7 Implementation Details

The implementation for all the experiments in this paper is in Matlab 2015a. We use matlab imple-
mentation of Glmnet (Qian et al., 2013) for lasso and ridge regression. We use the matlab imple-
mentation of canonical correlation analysis for CCA.
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Figure 2: Distribution of the weights of edges in functional correlation graph (FC) using the func-
tion data and structural connectivity graph (SC) between ROIs for a subject. The top
row figures show the histogram plots for the distribution. The quantile-quantile (qq) plots
for the corresponding distributions are shown in the bottom row. The distributions have
characteristics similar to a normal and an exponential distributions respectively.

Data Analysis

We will look at various analyses that are devoted to addressing the questions raised in Section 3. We
first look at the distributions of the functional and structural data. Figure 2 shows the distribution of
the entries of the functional correlation graph and structural connectivity matrix for a subject. The
histogram and quantile-quantile (qq) plots for the subject are shown in the figure. The distributional
characteristics are similar for all other subjects. It can be seen that the distribution of functional
correlation graph looks very similar to a normal distribution (this is much more evident in the
qq-plot). The distribution of the entries in the structural connectivity matrix is very close to an
exponential distribution (again this is more evident in the qq-plot, though the tail distributions are
slightly different). Similar distribution behavior was observed across subjects.

5. Analysis of dependence between Functional Data and Structural Data

Our primary goal in this section is to explore the dependence relationship between functional and
structural data. We investigate various methods to further our understanding about this relationship.
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We take the route of hypothesis testing to measure the dependence between the functional and
structural data.

5.1 Direct Independence Test using Graph Kernels

In this approach we would like to directly use the samples {(Φ1, S1), . . . , (Φn, Sn)} to perform
independence test. Recall Φi ∈ Rd×d and Si ∈ Rd×d denote the FCG of ith subject and S[:, :, i]
respectively. We use kernel HSIC based test for testing independence. Note that the number of
samples for test, being equal to the number of subjects, is considerably small. As mentioned earlier
in Section 4.2, HSIC can be used to measure dependence between complex structures. Here, we
would like to measure the dependence between functional correlation graph and structural connec-
tivity. Hence, we need to use kernels over graphs in this hypothesis test. For the purpose of this
experiment, we use the random walk graph kernels. The random walk kernel is based on the number
of matching walks obtained by performing random walks on the given pair of graphs. We refer the
reader to Vishwanathan et al. (2010) for more details on the random walk graph kernel. We use
10,000 random shuffles for calculating the null distribution of the hypothesis test. The hypothesis
test using other graph kernels like shortest path kernel yielded similar result.

Test p-value
HSIC based Test 0.01

Table 1: Direct Independence Test for functional and structural data.

We delay the analysis of the result until discussion of the following hypothesis test for measuring
dependence between the functional and structural data.

5.2 Similarity-based Hypothesis Test

For the purpose of this test, we need a distance function between sample sets. In particular, we need
a semimetric function ρf : RT×d × RT×d → R. Furthermore, we also need a distance function on
matrices on Rd×d. We use ρs : Rd×d × Rd×d → R to denote the corresponding semimetric on the
connectivity matrices. We consider the random variables Y and Z that represent ρf (Xi, Xj) and
ρs(Si, Sj) respectively for randomly selected subjects i and j. Recall that Xi denotes the functional
data X[:, :, i]. We first note that if the structural and function data are generated independently, then
I(Y,Z) = 0. Therefore, we use the following hypothesis test:

H0 : I(Y,Z) = 0 v.s. H1 : I(Y,Z) > 0.

We call this test a pairwise independence test. The key intuition for this test is to test whether sub-
jects who share structural similarity exhibit functional similarity as well. The null hypothesis is that
the test statistic is 0 while the alternative is that the test statistic is non-zero indicating dependence.
Therefore, rejecting the null hypothesis and low p−value are reasonable indicators of dependence
between functional and structural data.

Note that Y andZ can be calculated for all pairs of subjects in our dataset. However, the samples
are no longer i.i.d. To mitigate this issue, we use bootstrapping where we sample entries these pairs
uniformly with replacement across all pairs of subjects. However, in our experiments, the random
variables Y still share the same datasets across subjects. Hence, the results of this independence test
should be treated with caution.
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Test p-value
Likelihood Ratio Test 0.036
HSIC based Test 0.012

Table 2: Pairwise independence Test for functional and structural data.

Table 2 shows the results for hypothesis test. For this experiment, we use MMD (Equation 1)
for ρf and frobenius norm of difference as ρs. The null distribution was calculated using 10,000
random shuffles. The results indicate that there is a dependence between functional and structural
data. It is important to note that all these tests can detect non-linear relationships between the Y and
Z.

The p-values in both the aforementioned hypothesis tests are considerably low. For example,
with a significance threshold of α = 0.05, we would reject the null hypothesis (i.e., the functional
and structural data are independent). Hence, our statistical analysis clearly assert dependence be-
tween the functional and structural connectivity. However, we have not yet explored the strength
and nature of this dependence. In the next few sections, we tackle this problem by demonstrating
the nature of this relationship from various angles.

5.3 Measuring dependence within subjects

We would like to test if there is correlation between functional and structural data across all the
ROIs within subjects. Our analysis is divided into two components: (a) dependence over edges of
the structural network; (b) dependence over ROIs of the brain.

• Dependence over edges: Recall we define structural connectivity (SC) between two ROIs
as the normalized QA between them. Functional connectivity (FC) between two ROIs is the
Pearson correlation between the time series obtained for the ROIs i.e., entry in FCG corre-
sponding to the pair of ROIs. More formally, suppose non-zero entries of Si and correspond-
ing entries in Φi are samples from a joint distribution. Recall that Φi represents the FCG
for the ith subject. Let random variables A and B represent the (non-zero) entry in Si and
corresponding entry in Φi between two randomly selected ROIs. Then SC-FC correlation for
a subject represents the correlation corr(A,B). We report the SC against FC results for two
subjects in Figure 3. Figure 4 shows the histogram of SC-FC correlation for all the subjects.
The mean and standard deviation across subjects are 0.42 and 0.03 respectively. The corre-
lations we report have p-value� 1e − 3. It is clear from the figures that SC and FC exhibit
statistically significant relationship. Furthermore, it can also be seen that this relationship is
consistent across subjects.

• Dependence over ROIs: In this case, we define SC (ROI) of an ROI as the sum of normalized
QA over all the edges connected to that particular ROI. Similarly, FC (ROI) of a particular
ROI is defined the sum of absolute values of the Pearson correlations of the structurally con-
nected edges at that ROI. The ROI notation is used in order distinguish it from SC and FC
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Figure 3: (Top plots) Structural connectivity (SC) vs functional connectivity (FC) for two subjects
across pairs of ROIs. Each point in the top plots represents an edge between two ROIs.
(Bottom plots) SC vs FC for two subjects across different ROIs. Each point in the bottom
plots represent an ROI. The correlation between SC(ROI) and FC(ROI) is significantly
higher than that between SC and FC.

defined above. More formally, let RSi and RFi be vectors in Rd defined as follows:

RSi[j] =
d∑

k=1

Si(k, j)

RFi[j] =

d∑
k=1,S(k,j,i)>0

|Φi(k, j)|

Assuming that the entries of vectors RSi an RFi are samples from a joint distribution with
corresponding random variablesA andB, SC-FC (ROI) correlation represents the correlation
corr(A,B). Figure 3 shows the results of SC (ROI) against FC (ROI) for the two subjects used
in the previous experiment. Figure 4 shows the histogram of SC-FC (ROI) correlation for all
the subjects. The mean and standard deviation across subjects are 0.81 and 0.04 respectively.
The correlations we report have p-value� 1e−3. The results clearly show that there is strong
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relationship between FC and SC over ROIs. High correlation was observed consistently over
all the subjects.

Our results indicate that the dependence over ROIs is much stronger than the dependence over
edges. More specifically, the relationship between the statistics of FC and SC over ROI is much
higher than that obtained from individual edges. We hypothesize that this stronger relationship is
due to the fact that FC at a particular edge does not solely depend on the SC at that particular edge.
However, the aggregate of structural connectivity over the ROI (represented by SC(ROI) in our
experiments) is a better reflection of the functional activity at a particular ROI. Hence, we believe,
that this yields much stronger SC-FC relationship than that obtained over edges.
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Figure 4: Histogram of correlation within subjects (for all subjects) to measure correlation over
edges (left plot) and ROIs (right plot). The correlation between SC(ROI) and FC(ROI) is
significantly higher than that between SC and FC.

5.4 Measuring dependence across subjects

In the previous experiment, we analyzed the SC-FC relationship within a subject. However, this
does not provide any information about this relationship across subjects. Our goal in this section
is to investigate the relationship between functional and structural data across subjects for different
ROIs. In particular, we would like to identify the regions of the brain that exhibit strong SC-FC
relationship and those with weaker relationship. For the purpose of this experiment, similar to the
previous approach, we divide our analysis over edges and ROIs.

• Dependence over edges: Similar to the previous section, we use SC and FC over edges
of the structural graph. However, instead of using all edges within a subject, we measure
dependence over each edge across all the subjects. Hence, for each edge, we will have n
(the number of subjects) samples since the samples across subjects are assumed to be from a
distribution. Figure 5 shows the results for the experiment.

• Dependence over ROIs: Here, similar to the previous section, we use SC (ROI) and FC
(ROI) over all the ROIs. Unlike the previous section, however, we measure dependence
over each ROI across all the subjects i.e., samples across subjects are assumed to be from a
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Figure 5: Independence tests for measuring dependence over edges. The top left plot shows a heat
map for 1-p value for the independence tests over edges across subjects. Higher value
indicates greater dependence in this plot. The top right plot shows the heat map for edges
that have low p-value less than that obtained by false discovery rate (Genovese et al.,
2002). The bottom plots show top and lateral views of the connections with very low
p-value (top 200). The plots show the regions of the brain where the relationship between
functional and structural connectivity is the highest.

distribution. Note that similar to the analysis over edges, we have n samples. Figure 5 shows
the results for the experiment. The mean and standard deviation of correlation observed across
all ROIs are 0.72 and 0.13 respectively.

Our analysis for measuring dependence across subjects uncovers several interesting relation-
ship in the network. First, Figure 5 shows several interesting SC-FC relationships over edges.
We observe that the the relationship is strong inside the hemispheres (represented by the diagonal
quadrants). The inter hemispherical relationships can seen in the off-diagonal quadrants. The in-
ter hemispherical SC-FC relationships are mostly in the prefrontal lobe. We also observed strong
SC-FC relationship in the visual cortex region of the brain (see Figure 12 for a reference plot of
the brain with marked regions). We also report the edges with high SC-FC connectivity. Further
investigation is needed to validate and interpret the results.
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Figure 6: Correlation for SC-FC relationship across 625 ROIs. The top left plot shows the corre-
lation across ROIs and the top right plot shows the histogram of the correlation values.
The bottom plots show the variation of correlation across the brain. The bottom left and
bottom right plots show the top and lateral views of the brain respectively. The correla-
tion between SC (ROI) and FC (ROI) is high in many ROIs. The regions colored in green
have the highest correlation.

We also observe interesting relationships through SC-FC (ROI). Similar to our experiment
within a subject, the mean of the SC-FC (ROI) correlation is considerably high in this experiment
as well. Figure 6 shows the SC-FC relationship across different parts of the brain. It can be seen
that the relationship is prominent in the prefrontal, motor cortex, parietal lobe and visual cortex. It
can also be observed that the relationship is slightly weaker in the cerebellum.

Interhemispherical Differences

We also analyzed differences in dependence of left and right hemispheres of the brain. It is gener-
ally believed that the two hemispheres of the brain, though serving different functions, are largely
symmetric in terms of the structural and functional relationship. Our experiments provide a similar
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Figure 7: SC-FC (ROI) relationship for ROIs in left hemisphere (left plot) and right hemisphere
(right plot) for a subject. The correlation between SC(ROI) and FC(ROI) is similar in
both the hemispheres.

conclusion. For example, the plots for SC-FC ROI relationship for the left and right hemisphere,
on same subjects as in Figure 3, is given in Figure 7. The correlation in the two hemisphere is
similar, with correlation of SC-FC being slightly more in the left hemisphere than right hemisphere.
The mean of SC-FC correlation across subjects for left and right hemispheres are 0.82 and 0.80
respectively. The corresponding standard deviation is 0.06 in both the cases. Further investigation
is required to check if the SC-FC relationship across hemispheres is different in other aspects.

The key question that remains is whether this dependence can be utilized in a reasonable manner
for any predictive analysis based on the data at hand. This will be our focus in the next few sections.

6. Analysis of Functional Data using Structural Data

In the previous section, we showed through various analysis that there is dependence between struc-
tural and functional data of the brain. We now shift our focus to address the second goal: Is structural
information useful for predictive analysis of functional data. A simple approach for tackling this
problem is to use regression analysis. Our goal is to predict the functional data at each ROI based
on the rest of the structural and functional data. In particular, we consider the problem of regression
on the data: (Fij , Yij) = (X[:, \j, i], X[:, j, i]) where Fij ∈ RT×d−1 and Yij ∈ RT . Recall that
X[:, \j, i] represents the matrix X[:, :, i] without the jth column. Each row of Fij represents an
observation with corresponding entry of Yij as the regressed value. More formally, we assume the
following noise model:

Yij = Fijβij + ηij for j ∈ [d], i ∈ [n],

where ηij’s are zero-mean independent random variables with variance σ2. Our goal is to solve the
regression problem and estimate the βij’s used for generating the samples, one for each subject per
ROI. We use lasso for regression since our problem is high dimensional and we are interested in
sparse solutions. We solve the following optimization problem to accomplish the aforementioned
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task:

min
βij

1

2
‖Yij − Fijβij‖2 + λij ‖βij‖1 .

Simply using this approach for every pair of ROI and subject generally yields poor results. This is
due to the fact that the problem is high dimensional and the length of the time series is quite small.
Instead, we aggregate the sample across subjects and learn a parameter βj for each ROI j. This
intuition for the approach is that there is inherent relationship between functional data of different
ROI, independent of subjects. This will be the primary approach throughout our analysis. More
formally, we solve the following optimization problem:

min
βj

n∑
i=1

1

2
‖Yij − Fijβj‖2 + λj ‖βj‖1 . (3)

We observe that this approach does not take into account the structural information available to us.
We incorporate the structural information in the form of regularization. To this end, we consider
several approaches directly incorporating this information. The key goal of these approaches is to
show that structural connectivity plays a role in functional predictive analysis. We use the following
methods for this purpose.
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Figure 8: R2 value across different ROIs of the brain obtained by using lasso. The left and right
plot show the top and lateral view of the brain respectively. The regions colored in green
have the highest R2 value.

Adaptive Lasso

One of the natural ways to incorporate structural information for functional predictive analysis is to
use a weighted l1-regularization rather the standard l1 regularization used in Equation (3). Formally,
this is equivalent to solving the following optimization problem:

min
βj

n∑
i=1

1

2
‖Yij − Fijβj‖2 + λj

∥∥∥∥βj ◦ 1

wj

∥∥∥∥
1

(4)
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Figure 9: (Top Row Plots) R2 value across different ROIs of the brain obtained by using lasso. The
ROIs are sorted according to the R2 value for better presentation. (Middle Row Plots)
R2 value obtained from structural lasso. (Bottom Row Plots) Difference between R2

of structural and non-structural lasso (positive values indicate structural lasso has higher
R2 value than non-structural lasso). The left and right plot show the top and lateral
view of the brain respectively. Prediction with structural information (structural lasso)
is significantly better compared to the one without structural information (non-structural
lasso).
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where wj represents the jth thresholded row of matrix M = [S(:, \j, i) > 0] (where [A > 0] of
matrix A represents the matrix whose ijth entry represents the sign function of Aij) averaged over
all subjects i. More formally, wj [k] = ht(M(j, k)) where ht is defined as follows:

ht(x) =

{
x if x ≥ t
t if x < t

We call this approach ADAPTIVELASSO. The threshold parameter t in this method will be explained
in more detail later.

Reduced Lasso

The next approach is to run lasso, i.e., solve problem in Equation 3, but on the reduced support set
containing only the structural edges incident on the jth ROI while solving for βj . The key motivation
for using this approach is to check if the predictive performance is competitive even after restricting
the support set to the structurally connected ROIs. If the performance is not significantly affected,
it provides some evidence that structure has a significant role in the functional data of the brain.

In this approach, we use a parameter δ, which represents the fraction of the edges we use for
reduced support set. For example, δ = 0.5 indicates that only half of the highest weighted edges
are considered for the reduced support. We use REDUCEDLASSO(δ) to denote this approach with
parameter δ. We refer to REDUCEDLASSO(1) as structural lasso.

Non-structural Lasso

Finally, to verify the structure indeed is essential element for functional prediction, we use regres-
sion analysis where the support set is restricted to components without any edges. In other words,
the structurally connected edges are explicitly removed from the support set. A low performance in
this approach is, again, an indicator that of structural and functional dependence in the brain. We
use NONSTRUCTURALLASSO to refer to this approach.

For all the above approaches, we choose the regularization parameter λ for each method by
cross-validation. We use 75% of the subjects for training and report the R2 on the remaining sub-
jects. The error bars for the test subjects are also reported. For testing the adaptive lasso, we results
reported are for threshold of t = 0.1. This was chosen by cross-validation.

Figure 8 and 9 show the results for the various lasso algorithms. TheR2 values obtained through
lasso is similar to the correlations obtained in Section 5.4 (see Figure 6 and 8). The most interesting
inference from this section can be seen in Figure 9. We first observe that lasso and structural lasso
have roughly similar performance. Furthermore, the R2 of lasso and structural lasso is considerably
better than the obtained through non-structural lasso. This provides a strong evidence that structure
indeed plays a critical role in predictive of functional data. Furthermore, perhaps surprisingly, we
also observe that reduced lasso with just one-tenth fraction of edges performs as well as the full
lasso. We believe that this also provides a key evidence to support relationship between functional
and structural data. We omit the results of adaptive lasso because they were similar to those obtained
from lasso.

6.1 Inferring FC from SC

Before ending our discussion on analysis of functional data, we consider the problem of inferring
FC from SC. In particular, we would like to infer FC (ROI) of a subject from its corresponding
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Figure 10: R2 for inference of FC (ROI) from SC (ROI) and SC (ROI) from FC (ROI) over 625
ROIs using k-nn regression and ridge regression. The ROIs are sorted for better presen-
tation. The error bars for each method are shown using the corresponding transparent
colors. These are obtained over 50 repetitions of training on 75% of the subjects and
testing on rest of them. R2 value is considerably high across many ROIs, indicating
good predictive power.

SC (ROI) information. To this end, we learn a regression function fj : R → R for each ROI j,
that regresses from its structural connectivity SC to the functional connectivity FC. We use two
regression models for this purpose: (a) k-nn regression (a non-parametric model) (b) linear ridge
regression (a parametric model). The value of k in k-nn regression and the regularization parameter
in linear ridge regression were chosen by 5-fold cross-validation. Figure 10 shows the results for
k-nn regression and ridge regression. The training is performed on 75% of the subjects and R2 is
reported for rest of the subjects (test data). The ROIs are sorted according to the R2 value for clear
presentation. Error bars are reported for 50 repetitions for each ROI.

7. Analysis of Structural Data using Functional Data

7.1 Inferring SC from FC

In the previous section, we looked at the approach of inferring FC (ROI) from SC (ROI). Here, we
consider the problem in the other way i.e., analysis of structural data using the functional data. We
use the same regression models as used in Section 6.1. Similar to the previous section, the value of k
in k-nn regression and the regularization parameter in linear ridge regression were chosen by 5-fold
cross-validation. Figure 10 shows the results for both the algorithms (k-nn regression and linear
ridge regression). The training and testing process is similar to the one reported in Section 6.1.

From Figure 10, it can be seen that we are able to predict both SC (ROI) from FC (ROI) and FC
(ROI) from SC (ROI) with considerable accuracy. It is possible to further increase the performance
by using more sophisticated inference procedures. However, our main goal was to demonstrate that
it is possible to infer SC and FC from each other with considerable accuracy for a large portion of
the brain networks. One interesting observation is that inference of SC from FC is considerably
better than that of FC from SC. We believe this is due to the fact that SC misses long range inter-
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Figure 11: First pair of canonical correlation variables for FC (ROI) (top plots) and SC (ROI) (bot-
tom plots). The red and blue portions represent the non-zero and zero components of the
canonical correlation variables respectively. The regions represented in red is the group
of ROIs that have high SC-FC relationship.

hemispherical connections due to nature of DSI measurements while FC inherently captures them.
Hence, inference of FC from SC might be slightly more difficult.

8. Canonical Correlation Analysis (CCA)

Throughout this paper, we restricted our attention to analysis of SC-FC relationship over ROIs
(within and across subjects). A natural question to consider is if there is correlation amongst groups
of ROIs. This is particularly relevant in brain networks where we expect groups of ROIs to exhibit
correlation amongst themselves. Here we are interested in the SC-FC relationship between groups
of ROIs. In particular, the random variables used in CCA are FC(ROI) and SC(ROI) (over all the
ROIs) respectively. Figure 11 shows the non-zero elements of the first pair of canonical correlation
variables (see Section 4.5). The red portions of the plot represents the non-zero components of
canonical variables corresponding to functional (top plots) and structural (bottom plots) data. We
observe that the non-zero components are similar in both the functional and structural canonical
variables. Further analysis is required to validate and understand the relationship between the ROIs
obtained through our analysis.

9. Conclusion

In this paper, we examined the problem of understanding the dependence between functional and
structural connectivity of the brain networks. We looked at various approaches for establishing and
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understanding the nature of this relationship. We used independence test for showing that these two
sources of data are indeed related. We used graph kernel based measures for performing the inde-
pendence tests. To understand this relationship, we used various correlation analysis approaches.
Our study shows that SC-FC relationship over ROI is much stronger than that obtained over edges.
We also highlighted the variation of the SC-FC relationship over different regions of the brain by us-
ing correlation analysis across subjects. Our results show SC-FC relationship in prominent regions
of the brain and is consistent with the neuroscience literature. We have also investigated techniques
for predictive analysis of FC from SC and vice-versa. Our results in this context demonstrate that
FC and SC can indeed be inferred from each other with considerable accuracy.

While we made several important strides in understanding the relationship between structural
and functional connectivity, there are still many interesting open problems and future directions. In
this paper, we mostly focused on direct anatomical connections in the brain. A natural and more
precise approach to characterize structural connectivity between ROIs is by resorting to indirect
connections in the brain. It will be interesting to define the notion of indirect connectivity and apply
our techniques to measure dependence between functional and indirect structural connectivity. Our
purpose of inferring SC and FC from each other was to demonstrate the relationship between them.
We believe that the inference can be improved by using more sophisticated inference techniques.
Furthermore, an important problem to tackle is exact recovery of structural connectivity from func-
tional connectivity and vice-versa (see, for example, (Sarkar et al., 2015)). We believe that our
analysis can provide some insights in this context.

Similar to many prior works in the neuroscience community, a major limitation of this study
is the size of the dataset. This issue is especially exacerbated in our case because of our goal to
understand the variability of SC-FC relationship across different regions of the brain. Hence, inter-
pretation of the results reported in this paper should be exercised with caution. It is an interesting
future work to apply our methods to a larger dataset.
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Figure 12: Reference plot for regions of the brain.
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