
Functional Linear Models for Brain Data

Junier Barbaro Oliva

May 2, 2016

Abstract

Background. Modern neuroimaging data has provided a much needed window into the in-
tricacies of the human brain. Neuroimaging techniques such as functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), and diffusion tensor imaging (DTI), often con-
tain many thousands of functional observations per subject. While some success has been had
using heuristical summary statistics of neuroimaging functional covariates to build predictive
models, there is a lack of a flexible and principled framework to build models from neuroimaging
techniques.
Aim. Our aim is to develop a general, principled framework for supervised learning that scales
to many thousands of neuroimaging functional covariates per subject without resorting to heuris-
tical summary statistics. In particular, we look to more accurately regress a subject’s age given
neuroimaging data through the use of functional covariates than previous approaches that con-
sidered only summary statistics.
Data. Diffusion magnetic resonance (MR) images were acquired from a total of 90 subjects.
The subjects ranged in age from 13 to 60 years old, and included 45 males and 45 females. The
subjects had no known history of neurological or mental disorder. We used per-voxel functional
covariates of diffusion orientation distribution functions (dODFs) in our models and real-valued
fractional anisotropy (FA) summary statistic covariates as a baseline. dODFs are functions that
represent the amount of water molecules, or spins, undergoing diffusion in different orientations
over the S2 sphere. FA values are the peak of the dODF and have previously been used as a
summary statistic of dODFs for age regression. In total, 25K voxels were considered in a shared
template-space.
Methods. We develop and empirically test a linear functional model for neuroimaging data.
We use a model that represents neuroimaging functional observations nonparametrically using
orthonormal basis projections. The age response is modelled as a sparse additive linear com-
bination of inner products. We show that our model may be optimized using a group-LASSO
approach.
Results. Our functional sparse linear model was able to predict age with a 29.15% lower mean
squared error (MSE) than previous heuristic-based methods that used summary statistics. Our
approach yielded an MSE of 58.49. Results were found to be statistically significant with a p-
value of 0.04 using a paired t-test.
Conclusions. In this work we have developed and tested a principled framework for building
predictive supervised models with functional neuroimaging data. This framework allows one to
use functional neuro-data in a statistically principled fashion without resorting to heuristical
summary statistics.
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1 Introduction

Modern data collection has allowed us to collect not just more data, but more complex data. This is
especially so for neuroimaging data, where each subject’s scan may have hundreds of thousands of voxels
associated with it, and each voxel corresponds to a functional object such as a probability density function.
It would be beneficial to perform machine learning tasks using these functional objects. However, many
existing techniques cannot handle complex, possibly infinite dimensional, objects; hence, one often resorts to
the heuristic of representing these complex objects by ad-hoc summary statistics. In this paper, we develop
a principled, general framework for regressing a real-valued response when given many functional input
covariates. As a case study, we consider the task of predicting a subject’s age given diffusion imaging data
that contains thousands of functional covariates.

Studies have shown that aging produces several changes in the human brain including synaptic density
variations (Huttenlocher and De Courten, 1986), myelin level changes (Benes et al., 1994), and Schwann cell
subunit density changes (Kanda et al., 1991). Recently, diffusion tensor imaging (DTI) techniques have made
it possible to characterize anatomical tissue in vivo, and numerous studies have linked DTI measurements to
brain aging and maturation (Johansen-Berg and Behrens, 2013). In this work, we leverage semi-parametric
models to predict and learn the aging process in the human brain. Such results are not only of interest
scientifically, but may also serve practical medical applications. For instance, studying abnormal brain
aging and maturity can help diagnose cognitive and paediatric, disorders such as ADHD, that alter brain
maturation (Shaw et al., 2012).

1.1 Problem Being Solved

In this work we regress a subject’s age given thousands of voxel diffusion orientation distribution function
(dODF) covariates, each of which specify the orientation of water molecule diffusion at a corresponding
voxel. There are several unique challenges to performing regression on this data; one’s approach must be:

Interpretable It is vital that we be able to comprehend some of the underlying mechanics in our model.
Being able to understand our model will allow us to not only achieve accurate age predictions but also
to uncover details of the aging process of the human brain, which is of scientific and medical interest.

Flexible Although some summary statistics of dODFs have proven to be useful previously, we believe there
are several reasons to favor a more nonparametric treatment of dODFs:

1. Preprocessing the data into heuristical summary statistics biases the type of scientific discoveries
models can uncover; a more nonparametric approach can yield unexpected relations between the
response (age) and our functional covariates.

2. Whilst there have been a few effective summary statistics for age prediction, it is unclear if the
same statistics will prove effective for other prediction tasks. Nonparametric approaches alleviate
the need to develop new statistics for new tasks.

3. The use of ad-hoc summary statistic precludes our ability to theoretically analyze one’s model
from a general perspective. A nonparametric approach allows us to give sufficient conditions
under which our models are effective.

4. By being more flexible, we hypothesize that a nonparametric functional approach will achieve
better accuracy.

Scalable We will consider thousands of functional covariates, hence we need a framework which can scale
to many covariates both computationally and statistically.

Generalizable Given the massive number of covariates relative to the number of instances in brain imaging
data, it is imperative that our model be able to generalize to held-out data and not over-fit to training
instances.
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Figure 1: (a) Model where mapping takes in a function f and produces a real Y . (b) Model where response
Y is dependent on multiple input functions f1, . . . , fp. (c) Sparse model where response Y is dependent on
a sparse subset of input functions f1, . . . , fp.

1.2 Approach

We take a semi-parametric approach to perform sparse regression with multiple input functional covariates
and a real-valued response, the FuSSO: Functional Shrinkage and Selection Operator (Oliva et al., 2014).
No parametric assumptions are made on the nature of input functions. We shall model the age response
Y as the result of a sparse set of linear combinations of dODF input functions {fj} and other unknown
nonparamteric functions {gj} that we optimize for:

Y =
∑
j

〈fj , gj〉. (1)

The resulting method is a LASSO-like (Tibshirani, 1996) estimator that effectively zeros out entire functions
from consideration in regressing the response. Our approach is particularly adept at solving the unique
challenges presented in age regression with dODF covariates since it is:

Interpretable A sparse additive functional linear model (Figure 1(c)) is interpretable in several ways.
First, sparsity at a voxel level will be indicative of relevant regions in the brain for determining age.
Second, the unknown functions {gj} recovered in our model (1) may be analyzed to determine what
are important characteristics of dODFs for determining age.

Flexible By taking a semi-parametric approach we achieve a flexible model that does not assume a specific
form to our input functional covariates {fj}, nor assumes any specific form to the voxel wide linear
functions contributions {gj}.

Scalable Imposing sparsity allows us to efficiently optimize the FuSSO model using active set and FISTA
approaches (Huang et al., 2011).

Generalizable The sparsity inducing norms considered will regularize our model and prevent over-fitting
to training data.
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2 Related Work/Background

2.1 Age and Neuroimaging

The effects of aging on the human brain have long been studied (Huttenlocher and De Courten, 1986; Kanda
et al., 1991; Benes et al., 1994), but it is only recently that we may observe aging in vivo for human subjects
through neuroimaging data. Several works have explored associations in neuroimaging to aging and maturity
(Gunning-Dixon et al., 2009; Johansen-Berg and Behrens, 2013). More recently several efforts have been
put forth to predict age given neuroimging data. For instance, Dosenbach et al. (2010); Franke et al. (2010,
2012) explore age prediction with fMRI data. There has also been limited work performing age prediction
with diffusion imaging data. For example, Han et al. (2014) explore predicting the age of a subject given a
structural functional network derived from diffusion imaging. Furthermore, Mwangi et al. (2013) research
predicting age given summary statistics from voxel dODFs. Most notably, functional anisotropy (FA) values
were used as covariates in the age regression task. A higher FA value represents diffusion occurring along
one direction but largely restricted in all other directions (Johansen-Berg and Behrens, 2013). Furthermore,
higher FA values are often associated with highly myelinated white-matter tracts and vice versa (Kochunov
et al., 2012); FA decreases consistently with aging.

2.2 Function Covariate Models

There has been a considerable amount of recent work studying linear models that operate over functional
covariates. As previously mentioned, we build off of the FuSSO (Oliva et al., 2014), which yields a sparse
mapping that takes multiple functional inputs and produces a real-valued output. Other LASSO-like re-
gression estimators that work with functional data include the following. Mingotti et al. (2013) consider a
functional output and several real-valued covariates. Here, the estimator finds a sparse set of functions to
scale by the real valued covariates to produce the functional response. Also, Zhao et al. (2012); James et al.
(2009) study the case when one has one functional covariate f and one real valued response that is linearly
dependent on f and some function g: Y = 〈f, g〉 =

∫
fg. Zhao et al. (2012) use an estimator that searches

for sparsity across wavelet basis projection coefficients. James et al. (2009) achieve sparsity in the time
(input) domain of the dth derivative of g; i.e. [Ddg](t) = 0 for many values of t where Dd is the differential
operator. Hence, roughly speaking, Zhao et al. (2012); James et al. (2009) look for sparsity across frequency
and time domains respectively, for the regressing function g. For a general discussion of functional spaces
and linear operators on functional covariates see (Ferraty and Vieu, 2006).

3 Data

3.1 Apparatus and Instrumentation

The diffusion magnetic resonance (MR) images were acquired on a 3 T MRI scanner (Trio, Siemens, Erlangen,
Germany) using an 8-channel head coil. The images were acquired by a T2-weighted fast spin echo sequence
with parameters TR/TE=5920/102 ms, and slice thickness of 3.0 mm, 256 × 256 acquisition matrix, and
25× 25 cm field of view rendered in 35 axial slices. See (Yeh and Tseng, 2011) for additional details.

3.2 NTU90 Dataset

We use the NTU90 dataset (Yeh and Tseng, 2011). Diffusion MR images were acquired from a total of 90
subjects. The subjects ranged in age from 13 to 60 years old, and included 45 males and 45 females. A
histogram of ages can be seen in Figure 2(a), the mean age is 32.99 with a standard deviation of 12.68. The
subjects had no known history of neurological or mental disorder.

Diffusion orientation distribution functions (dODF) were extracted for over 185,000 white-matter voxels
in a shared template space for all subjects. The dODF is a function that represents the amount of water
molecules, or spins, undergoing diffusion in different orientations over the S2 sphere (Yeh and Tseng, 2011).
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In other words, each dODF is a function with a 3d domain (of spherical coordinates) and a range of reals
representing the strength of water diffusion at the given orientations (Figure 2(b)).

We also used the non-functional collection of fractional anisotropy (FA) values for the same white matter
voxels as with dODF functions. FA values are the estimated amount of spins that undergo diffusion in the
direction of the principle fiber orientation, i.e., the peak of the dODF; FAs have been used as a measure of
white matter integrity in the underlying voxel hence making for a descriptive and effective summary statistic
of an dODF function for age regression (Mwangi et al., 2013).

For computational considerations, we analyze only the top 25K voxels according to top mean absolute
FA value. See Figure 2(c) for the volume of the considered 25K white matter voxels in the shared template
space.
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Figure 2: (a) Histogram of ages. (b) Example dODF with values plotted for each spherical coordinate. (c)
Considered voxels in shared template space.

4 Method

Below we expound on our approach for analyzing the NTU90 dataset. First, we go over the FuSSO, our
main method for regressing age given dODF functional covariates. After, we describe a particularly useful
extension, the Elastic-FuSSO, which can help select correlated voxels. Then, we give details on our repre-
sentation of dODF functions using a cosine basis set. Later, we expound on a two-step process for building
our final model. Lastly, we discuss some selection techniques for selecting relevant voxels.

4.1 FuSSO

The FuSSO operates over regression tasks where one regresses a real-valued response given several functional
covariates. To better understand the FuSSO’s model we draw several analogies to real-valued linear regression
and the Group-LASSO (Yuan and Lin, 2006). Note that although for simplicity we illustrate the FuSSO on
functions working over a one dimensional domain, it is straightforward to extend the estimator and results
to the multidimensional case.

First, consider a model for typical real-valued linear regression with a data-set of input-output pairs
{(Xi, Yi)}Ni=1:

Yi = 〈Xi, w〉+ εi,

where Yi ∈ R, Xi ∈ Rd, w ∈ Rd, εi
iid∼ N (0, σ2), and 〈Xi, w〉 =

∑d
j=1Xijwj . If instead one were working

with functional data {(f (i), Yi)}Ni=1, where f (i) : [0, 1] 7→ R and f (i) ∈ L2[0, 1], one may similarly consider a
linear model :

Yi = 〈f (i), g〉+ εi,
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where, g ∈ L2[0, 1], and 〈f (i), g〉 =
∫ 1

0
f (i)(t)g(t)dt. If Φ = {ϕm}∞m=1 is an orthonormal basis for L2[0, 1]

(Tsybakov, 2008) then we have that

f (i)(x) =

∞∑
m=1

α(i)
m ϕm(x), . (2)

where, α
(i)
m =

∫ 1

0
f (i)(t)ϕm(t)dt. Similarly, g(x) =

∑∞
m=1 βmϕm(x). Thus,

Yi = 〈f (i), g〉+ εi = 〈
∞∑
m=1

α(i)
m ϕm(x),

∞∑
k=1

βkϕk(x)〉+ εi =

∞∑
m=1

∞∑
k=1

α(i)
m βk〈ϕm(x), ϕk(x)〉+ εi

=

∞∑
m=1

α(i)
m βm + εi,

where the last step follows from orthonormality of Φ.
Going back to the real-valued covariate case, if instead of having one feature vector per data instance:

Xi ∈ Rd, one had p feature vectors associated to each data instance: {Xij | 1 ≤ j ≤ p, Xij ∈ Rd}, an
additive linear model may be used for regression:

Yi =

p∑
d=1

〈Xid, wd〉+ εi,where w1, . . . , wd ∈ Rd.

Similarly, in the functional case one may have p functions associated with data instance i: {f (i)j | 1 ≤ j ≤
p, f

(i)
j ∈ L2[0, 1]}. Then, an additive linear model would be:

Yi =

p∑
j=1

〈f (i)j , gj〉+ εi =

p∑
j=1

∞∑
m=1

α
(i)
jmβjm + εi, (3)

where g1, . . . , gp ∈ L2[0, 1], and α
(i)
jm and βjm are projection coefficients for f

(i)
j and gj respectively.

Suppose that one has few observations relative to the number of features (N � p). In the real-valued
case, in order to effectively find a solution for w = (wT1 , . . . , w

T
p )T one may search for a group sparse solution

where many wj = 0. To do so, one may consider the following Group-LASSO regression:

w? = argmin
w

1

2N
‖Y −

p∑
j=1

Xjwj‖2 + λ

p∑
j=1

‖wj‖, (4)

where here Xj is the N ×d matrix Xj = [X1j . . . XNj ]
T , Y = (Y1, . . . , YN )T , and ‖ · ‖ is the Euclidean norm.

If in the functional case (3) one also has that N � p, one may set up a similar optimization to (4), whose
direct analogue is:

g? = argmin
g

1

2N

N∑
i=1

Yi − p∑
j=1

〈f (i)j , gj〉

2

+ λ

p∑
j=1

‖gj‖; (5)

equivalently,

β? = argmin
β

1

2N

N∑
i=1

Yi − p∑
j=1

∞∑
m=1

α
(i)
jmβjm

2

+ λ

p∑
j=1

√√√√ ∞∑
m=1

β2
jm, (6)

where g = {gj}pj=1 = {
∑∞
m=1 βjmϕm}

p
j=1.
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However, it is unrealistic to assume that one is able to directly observe functional inputs {f (i)j | 1 ≤
i ≤ N, 1 ≤ j ≤ p}. Instead, let us suppose that one observes some sort of noisy functional observations

{~y (i)
j | 1 ≤ i ≤ N, 1 ≤ j ≤ p}. For instance, we may take these observations to be noisy function evaluations

on a fixed grid:

~y
(i)
j =~f

(i)
j + ξ

(i)
j , (7)

~f
(i)
j =

(
f
(i)
j (1/n), f

(i)
j (2/n), . . . , f

(i)
j (1)

)T
, (8)

ξ
(i)
j

iid∼N (0, σ2
ξIn). (9)

In this case we observe a grid of n noisy values for each functional input. Then, one may estimate α
(i)
jm as:

α̃
(i)
jm =

1

n
~ϕTm~y

(i)
j =

1

n
~ϕTm(~f

(i)
j + ξ

(i)
j ) = ᾱ

(i)
jm + η

(i)
jm (10)

where ᾱ
(i)
jm ≡ 1

n ~ϕ
T
m
~f
(i)
j , η

(i)
jm ≡ 1

n ~ϕ
T
mξ

(i)
j , and ~ϕm = (ϕm(1/n), ϕm(2/n), . . . , ϕm(1))

T
. Furthermore, we

may truncate the number of basis functions used to express f
(i)
j to Mn, estimating it as:

f̃
(i)
j (x) =

Mn∑
m=1

α̃
(i)
jmϕm(x). (11)

Using the truncated estimate (11), one has:

〈f̃ (i)j , gj〉 =

Mn∑
m=1

α̃
(i)
jmβjm, and ‖f̃ (i)j ‖ =

√√√√ Mn∑
m=1

(α̃
(i)
jm)2.

We note that we can compute functional estimates given other noisy function observations such as: noisy

function observations on a random, irregular design; or samples drawn for pdf covariates f
(i)
j .

Using the approximations (11), (6) becomes:

β̂ = argmin
β

1

2N

N∑
i=1

Yi − p∑
j=1

Mn∑
m=1

α̃
(i)
jmβjm

2

+ λ

p∑
j=1

√√√√ Mn∑
m=1

β2
jm (12)

= argmin
β

1

2N
‖Y −

p∑
j=1

Ãjβj‖2 + λ

p∑
j=1

‖βj‖, (13)

where Ãj is the N ×Mn matrix with values Ãj(i,m) = α̃
(i)
jm and βj = (βj1, . . . , βjMn

)T . Note that one need
not consider projection coefficients βjm for m > Mn since such projection coefficients will not decrease the

MSE term in (12) (because α̃
(i)
jm = 0 for m > Mn), and βjm 6= 0 for m > Mn increases the norm penalty term

in (12). Hence we see that our sparse functional estimates are a Group-LASSO problem on the projection
coefficients.

Theory It is worth briefly mentioning that the FuSSO is able to recover the sparsity pattern asymptotically;
i.e., that the FuSSO estimate is sparsistent. Under technical assumptions (see (Oliva et al., 2014) for details)
we have that:

Theorem 1: P
(
ŜN = S

)
→ 1, where ŜN is the selected support (i.e. nonzero gj) with N instances and

S is the true support.
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4.2 The Elastic-FuSSO

Although there are some technical assumptions under which the FuSSO is asymptotically sparsistent, there
are a few drawbacks to using the FuSSO in real world datasets, most of which stem from limitations of
the group-LASSO. For instance, Liu and Zhang (2009) show that a solution to (13) that has at most N
non-zero groups always exists. Since we wish to optimize (13) using active-set approaches that consider a
growing set of groups, this means that we will likely reach a solution that has saturated at N voxels. This
is unfortunate since we suspect that more than 90 voxels will be relevant in age regression. Furthermore,
it has been empirically observed that the LASSO and similar estimators have difficulty selecting correlated
sets of covariates (Zou and Hastie, 2005). Given the amount of correlations present in neuroimaging data,
the inability to select correlated voxels also presents a challenge for us.

There are a few ways to mitigate these shortcomings without directly extending the FuSSO. For instance,
below we shall describe variable selection techniques that work through repeated trials. However, such
approaches prove to be computationally intensive given the need to solve many optimization problems.
Instead, we also consider a simple extension to the FuSSO (13) that will allow us to easily select a non-
saturated, correlated support.

The extension we consider, which we coin the “Elastic-FuSSO,” is inspired by the elastic-net (Zou and
Hastie, 2005). As with the elastic-net, we add a squared 2-norm penalty to our optimization problem:

β̂ = argmin
β

1

2N
‖Y −

p∑
j=1

Ãjβj‖2 +

p∑
j=1

λ‖βj‖+ λe‖βj‖2, (14)

This simple extension will allow us to bypass the aforementioned shortcomings of the FuSSO. For instance,
quickly analyzing stationarity conditions for optimality yields that for non-zero groups βj , βk:

λe(βj − βk) =
1

N
(Ãj − Ãk)T

(
p∑
l=1

Ãlβl − Y

)
+ λ

∥∥∥∥ βj
‖βj‖

− βk
‖βk‖

∥∥∥∥ ,
and

‖βj − βk‖ ≤
1

λe

∥∥∥Ãj − Ãk∥∥∥ ‖r(λ, λe)‖+
λ

λe

∥∥∥∥ βj
‖βj‖

− βk
‖βk‖

∥∥∥∥
≤ 1

λe

∥∥∥Ãj − Ãk∥∥∥ ‖r(λ, λe)‖+

√
2λ

λe

√
1− cos(θjk),

where r(λ, λe) is the residual under penalties λ and λe, r(λ, λe) = 1
N (
∑p
l=1 Ãlβl − Y ), and θjk is the angle

between βj , βk. Hence, we see that similar designs for the jth, kth covariates yield similar selected functions
gj and gk.

We shall see empirically that the Elastic-FuSSO (14) is able to select large correlated supports like
repeated trial based methods, which we describe below.

4.3 Voxel Selection Through Repeated Trials

Although any single optimization of (13) will likely yield only at most N selected voxels, we may select a
support larger than N by running multiple optimizations (trials) with slightly different sets of input instances.
We briefly describe such an approach below.

4.3.1 Stability Selection

An approach to selecting one’s support with repeated trials is stability selection (Meinshausen and Bühlmann,
2010), where one runs multiple optimizations on a subset of instances. In particular, we consider the
complementary pairs stability selection variant given B ∈ N, λ > 0, τ > 0 (Shah and Samworth, 2013):
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1. Let {(I2j−1, I2j) | j = 1, . . . , B} be independent randomly chosen pairs of subsets of {1, . . . , N} such
that I2j−1 ∩ I2k = ∅, and |I2j−1| = |I2j | = bN2 c.

2. For each Ik solve for the optimal β with the instances in Ik under regularization penalty λ (13).

3. For each j = 1, . . . , p select the jth covariate if 1
2B

∑2B
k=1 IIk{‖β̂j‖ > 0} ≥ τ , where IIk{‖β̂j‖ > 0}

indicates if the jth covariate was selected when optimizing over the instances in Ik.

4.4 Two-Stage Estimator

Another drawback to naively applying the FuSSO estimator in real world datasets is that one is unable to
decouple the shrinkage and selection effects of the penalty parameters. As discussed by Meinshausen (2007),
the λ penalty parameter in LASSO-like problems will both select and shrink covariates. That is, the same
λ parameter will not only make unselected covariates 0, but will also shrink selected covariates towards 0.
As such, it may not be optimal to perform both shrinkage and selection in this coupled manner. Instead, we
take a two-stage approach inspired by Meinshausen (2007): first, we solve an Elastic-FuSSO optimization
problem to determine the model’s support; second, using only the covariates found in the support from the
first step we solve a ridge regression problem.

Suppose that in addition to our training data as in (14) we also have a holdout validation set of N (t)

instances with a corresponding vector of responses Y (t) ∈ RN(t)

and matrices of projection coefficients

Ã
(t)
j ∈ RN(t)×Mn

for j = 1, . . . , p. We shall select the following three parameters λ ∈ {λ(1), . . . , λ(m1)},
λe ∈ {λ(1)e , . . . , λ

(m2)
e }, λr ∈ {λ(1)r , . . . , λ

(m3)
r } using a grid search and the following two-stage procedure:

1. Solve for

β̂(λ,λe) = argmin
β

1

2
‖Y −

p∑
j=1

Ãjβj‖2 +

p∑
j=1

λ‖βj‖+ λe‖βj‖2.

2. Solve a ridge regression problem based on the found support S(λ,λe) = {j | ‖β̂(λ,λe)
j ‖ > 0}:

β̂(λ,λe,λr) = argmin
β

1

2
‖Y −

∑
j∈S(λ,λe)

Ãjβj‖2 + λr
∑

j∈S(λ,λe)

‖βj‖2.

.

We then choose the model with the lowest held-out MSE: MSE(λ, λe, λr) = 1
N(t) ‖Y (t) −

∑p
j=1 Ã

(t)
j βj‖2. We

note that given the support S(λ,λe) one can efficiently solve β̂(λ,λe,λr) for a range of λr using the Singular
Value Decomposition and the Woodbury Identity. Furthermore, if λ(1) > λ(2) > . . . > λ(m1), then we can

efficiently solve for β̂(λ(j),λe) by warm starting at β̂(λ(j−1),λe). Thus, although we are validating through a
grid search on 3 parameters, we may do so relatively efficiently.

4.5 dODF Basis Projection Coefficients

Lastly, we briefly discuss our procedure for representing our input dODF functions (Figure 3(a)) using
projection coefficients. As previously discussed one must select an orthonormal basis for use of the FuSSO
model. For our analysis we consider using the cosine basis. For 1d domains the cosine basis is:

ϕ0(x) = 1, ϕm(x) =
√

2 cos(mπx) for m = 1, 2, . . . .

We take dODFs as having a two dimensional domain of azimuth and elevation, hence we use the outer
product of the cosine basis above. That is, we project dODFs into the following set of basis function:

{ϕγ(x) = ϕγ1(x)ϕγ2(x) : γ ∈ N2, ‖γ‖ ≤M}.

9
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Figure 3: (a) Example dODF observation. (b) Reconstructed dODF corresponding to estimated projection
coefficients found on basis set.

M was cross-validated and chosen to be M =
√

208. Recall that each input dODF function f was observed
with n = 642 points {(zk, yk)}nk=1, where zk ∈ S2 are input points on the unit sphere (Figure 4(a)) and yk
are the corresponding dODF function values. Note that we rescale the (azimuth, elevation) values of {zk}nk=1

to the unit cube [0, 1]2 (see Figure 4(b)); denote the rescaled inputs as {xk}nk=1.
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Figure 4: (a) {zk}nk=1, the 3d points on unit sphere on which dODF function values are observed at. (b)
{xk}nk=1, the (azimuth, elevation) of 3d points projected onto the unit square.

Given that the rescaled azimuth and elevation observation points are not in a uniform grid we estimate
the projection coefficient of the dODF f , α̃ ∈ RMn , with a least squares solution. Let ~y = (y1, . . . , yn) be the
vector of dODf values corresponding to f(xk), {γ1, . . . , γMn

} = {γ ∈ N2, ‖γ‖ ≤M}, and Φ ∈ Rn×Mn be the
matrix such that Φk,l = ϕγl(xk); Then, our vector of projection coefficients α̃ = (α̃1, . . . , α̃Mn

) corresponding
to basis functions ϕγ1 , . . . , ϕγMn respectively is:

α̃ = (ΦTΦ)−1ΦT~y.

As can be seen in Figure 3, the estimated set of projection coefficients do a good job of representing the
input functions.
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Figure 5: (a) MSE using LOOCV of Elastic-FuSSO with functional dODF covariates (dODF), elastic-net
with real-valued FA covariates (FA), ridge regression with dODF (R dODF), and ridge regression with FA
(R FA). Standard-error bars are shown in black. (b) MSE of respective methods by age.

5 Results

5.1 Age Prediction Error

We cross-validated the mean squared error (MSE) of age prediction under leave-one-out cross-validation
(LOOCV) using a two-stage procedure as described above for Elastic-FuSSO with functional dODF covariates
and elastic-net with real-valued FA covariates. We report the respective MSEs below in Figure 5(a). As
can be seen, the Elastic-FuSSO using functional dODF covariates with an MSE of 58.49 is able to achieve
a 29.15% lower MSE than the conventional approach of performing elastic-net regression of revalued FA
summary statistics with an MSE of 82.55. A paired t-test found this difference to be statistically significant
with a p-value of 0.044. We note that the variance of the age response is 160.69, and that the respective R2

values for the dODF and FA models were 0.64 and 0.49 respectively. We also ran non-sparse ridge regression
for both dODF and FA covariates and observed a MSE of 68.78 and 70.940 respectively. It is interesting to
note that the dODF performance is not worsened by sparsity, in fact it is improved; this is perhaps because
we are able to recover more relevant features to age prediction and can hence hone in on relevant areas.
We also plotted the MSE by age groups (per each 5 years) in Figure 5(b). It can be seen that the dODF
Elastic-FuSSO model can leverage functional covariates and sparsity to achieve accurate predictions even for
older subjects.

5.2 Voxel Selection

We report selected voxels using both dODF and FA covariates below. We ran stability selection as described
in Section 4.3.1 using 2096 trials with FuSSO (13) for dODF covariates and the LASSO for FA covariates
with thresholds of τ = 0.01. We show results of example selected supports in Figure 6. It is interesting to
note that the Elastic-FuSSO extension we proposed is able to select a similar set of voxels to the stability
selection support. We see that the average nearest-neighbor distance of voxels in the Elastic-FuSSO support
to the stability selected support is 0.45 voxels, where the average nearest-neighbor distance of voxels selected
in a random support to the stability selected support is 3.84 voxels. Hence, even though the Elastic-FuSSO
only runs a single trial it can select a robust and correlated support akin to that selected using multiple
trials and more computational resources.

We also show the brain maps of the selected supports below in Figure 7. The identified selected regions
and their definitions are as follows: cerebellar pathways - classically a motor area, but it is linked to temporal
processing and language; red nucleus - a main output nucleus of the cerebellum, it plays critical roles in
motor control and coordination; medial lemniscus - the main communication pathway for somatosensory
information to the cortex; internal capsule - the main descending pathway that links the motor cortex to
the spine; corona radiata - a major communication cation system that links the neocortex to subcortical
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(a) dODF Stability (b) dODF Elastic (c) FA Stability (d) FA Elastic

Figure 6: dODF selected voxels with (a) stability selection, and (b) Elastic-FuSSO. FA selected voxels with
(c) stability selection, and (d) Elastic-net. We see that although the elastic varients run only a single trial,
they recover a similar support to stability selection.

areas and is critical for a whole host of cognitive functions (along with motor and sensory processing); corpus
callosum - major pathway that allows the two cortical hemispheres to talk to each other; inferior longitudinal
fasciculus - a critical part of the visual pathway that does object processing.

6 Analysis

There are several indications that suggest that the dODF functional covariate model is superior to the real
valued FA model. First and foremost, we are able to achieve significantly better predictions of age using
the Elastic-FuSSO with dODF covariates. Secondly, the model derived using dODFs is more flexible and
comprehensive than one that only relies on FA values. We explore this last point below.

Recall that the FuSSO model operates by a sparse linear combination of inner products between dODFs
input covariates {fj}pj=1 and unknown functions {gj}pj=1 (1), which we regress through their projection
coefficient {βj}pj=1 (13). That is, for each selected voxel, we have a gj function in our model used in an inner
product, and studying it yields insight into how our model operates.

Figure 8: 12 chosen medoids
(red, chosen with k-medoids) on
selected voxels (black) using the
Elastic-FuSSO.

We study our model’s {gj}pj=1 functions as follows. First, we cluster
the voxels in the support of our Elastic-FuSSO model trained on all in-
stances (Figure 7(b)) using k-medoids with K = 12 (see Figure 8 for the
medoids found). Let {j1, . . . , j12 ≤ p} be the voxel indices for the medoids.
Also, let I<25 = {i | Yi < 25} be the indices of instances corresponding
to subjects younger than 25, and I≥50 = {i | Yi ≥ 50} be the instance
indices for subjects 50 or older. At each of the medoids we plot the av-

erage dODFs for young subjects f̄
(j)
<25(x) = 1

|I<25|
∑
i∈I<25

f
(j)
i (x) for each

medoid j = j1, . . . , j12 on row a of Figure 9. Similarly, we plot the mean
dODFs for older subjects in row d of Figure 9. One way to visualize the
differences in dODFs for younger and older subjects is to plot the nega-

tive and positive parts for their differences, f̄
(j)
− (x) = (f̄

(j)
≥50(x)−f̄ (j)<25(x))−

and f̄
(j)
+ (x) = (f̄

(j)
≥50(x) − f̄ (j)<25(x))+, shown in rows b and e of Figure 9

respectively. Note that f̄
(j)
− will show the orientations at which dODFs

are stronger for younger instances and f̄
(j)
+ will show the orientations at

which dODFs are stronger for older instances. We also plot the negative
parts of the found model functions {(gj1)−, . . . , (gj12)−} and the positive
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(a) Stability Selection

(b) Elastic Selection

Figure 7: Brain maps for dODF selected voxels with (a) stability selection, and (b) Elastic-FuSSO. Brain
maps for FA selected voxels with (c) stability selection, and (d) Elastic-net. Most areas found, like the
cerebellar pathways, are linked to motor skills. However, we also found areas that have been linked to higher
order cognition, such as the corona radiata.

parts {(gj1)+, . . . , (gj12)+} shown in rows c and f of Figure 9 respectively.
It can be clearly seen that the gj functions are heavily influenced by the differences in dODFs of young

and old subjects. Moreover, there are several voxels where the most discrepant orientations do not coincide
with the orientations that have the largest values (those large value orientations are the ones used for FA
values). When this is the case, it appears that the discrepant orientations are correlated with the underlying
gj functions. Thus, it seems that our Elastic-FuSSO model can uncover other relevant directions to aging.
Lastly, it is also interesting to note that although older subject do seem to have smaller magnitude dODFs
in general, there are a few voxels at which older subject’s dODFs have orientations for which they are of
higher value; again, it seems as though the model’s gj are influenced by this.
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Figure 9: Columns j1, . . . , j12 correspond to medoids shown in Figure 8. Row a: mean dODF for subjects

younger than 25, f̄
(j)
<25. Row b: negative part of difference between dODF of older and younger subjects,

f̄
(j)
− . Row c: negative part of gj model function. Row d: mean dODF for subjects older than 50, f̄

(j)
≥50. Row

e: positive part of difference between dODF of older and younger subjects, f̄
(j)
+ . Row f: positive part of gj

model function. One may see that model functions are heavily influenced by the differences in dODFs of
young and old subjects, and tend to focus in on discrepant orientations for age prediction.

7 Conclusion

In this work we have developed and tested a principled framework for building predictive supervised models
with functional neuroimaging data. This framework allows one to use functional neuro-data in a statistically
principled fashion without resorting to heuristical summary statistics.

Our approach is particularly adept at dealing with the unique challenges of performing regression with
functional DTI data. We have shown that the Elastic-FuSSO provides a model that is interpretable. By
inspecting the support found using our method we were able to find several areas of the human brain
related to aging; these areas like the cerebellar pathways are mostly linked to motor skills, however, we also
found that areas in the corona radiata, which have been linked to higher order cognition, were also of use.
Furthermore, our approach was flexible. Due to the semi-parametric nature of the Elastic-FuSSO we were
able to recover contributions of dODFs from non-principle directions, a task not possible before using the
standard approach of FA-value summary statistic. Moreover, our framework is scalable; we were able to learn
using thousands of functional covariates using FISTA and active-set optimization techniques. Lastly, we saw
that our approach was generalizable; the regularization used was able to avoid over-fitting and achieve a low
test MSE.

We show a significant improvement for age prediction over conventional summary statistics based meth-
ods. Furthermore, we show that our model is able to discover more intricate relations in the diffusion-imaging
data than was previously afforded with summary statistics.
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7.1 Limitations and Future Work

One clear limitation of the the Elastic-FuSSO model is that the underlying functional additive effects are
linear through an inner-product (1). Although such a model is interpretable, it is unable to find non-linear
relationships. One way to overcome this while still uncovering a sparse model is to consider a sparse additive
model of functionals in some reproducing kernel Hilbert space (RKHS): Y =

∑p
j=1 gj(fj) where here gj are

elements in a RKHS over functions in L2. Another drawback to the Elastic-FuSSO, is the need to a priori
choose a basis to operate over. Perhaps a data-driven basis such as one found with functional-PCA may
perform better in practice. Lastly, it may be worth considering a model that operates over both functional
and real-valued covariates jointly.
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