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Abstract

Background. Seasonal influenza can cause severe health problems and significant economic
burdens in various regions of the world. In addition to the substantial morbidity and mortality
cases caused by influenza, the emergency department crowding is also partially attributed to
the influenza patients. Forecasting the influenza trends is crucial in developing effective coun-
termeasures to mitigate an epidemic outbreak and allows medical facilities to allocate resources
accordingly.
Aim. Filtering techniques are studied to model various dynamic systems, because they provide
better estimations through recursive Bayesian updates. We review and implement several fil-
tering techniques to predict the influenza trend in short term.
Data. We studied both the synthetic data generated from an epidemic mechanistic model, and
real influenza data from three different sources. The synthetic data is based on the mechanis-
tic differential equation (SIRS model) with added noise. The Centers for Disease Control and
Prevention reports the incidences of influenza-like illness (ILI) through its surveillance network.
Web data of Twitter messages and Wikipedia article access logs are shown to be highly corre-
lated with the ILI data; therefore, the relative real-time web data allows the robust prediction
of influenza when the ILI data is not available due to delay in the surveillance network.
Methods. Even though Kalman filters and particle filters are previously widely applied to en-
gineering problems, the study of infectious diseases using filtering methods is a recent advance-
ment. We first implement the filtering methods in combination with the mechanistic model to
test the prediction ability using the synthetic data. The synthetic data allows a quantitative
comparison based on the mean square error and the log likelihood for the different filtering
methods. To study the real influenza trend, we implement the extended Kalman filter and
particle filter using ILI data, Wikipedia and twitter signals in a recently developed empirical
framework (Archetype framework).
Results. In the experiments of the synthetic data, unscented Kalman filter yields the lowest
mean square error and the highest log likelihood in comparison with extended Kalman filter,
ensemble Kalman filter and particle filter. The mean square error from the unscented Kalman
filter is 5% smaller than the ensemble Kalman filter. In forecasting the influenza trend, the
real influenza observations are well within 80% confidence interval of one-week predictions using
the Archetype framework. However the influenza peak prediction is lagged by 1 week than the
observed influenza peak.
Conclusions The filtering methods demonstrate fine performance in both the synthetic data
and real influenza data. Filtering methods in the Archetype framework are simpler to imple-
ment, and yield good influenza predictions.
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1 Introduction

Seasonal influenza is one of the significant causes of morbidity and mortality around the world.
It reults in 250-500 thousand deaths annually world-wide, and contributes to approximately $87.1
billion in economic burden in the United State alone (WHO, 2009). In many countries, surveillance
data for influenza-like illness has been documented, for example, the Centers for Disease Control
and Prevention (CDC) has tracked the weekly influenza-like disease for the past three decades
(CDC, 2012). A proper modeling for the influenza surveillance data is helpful for both improving
health conditions and reducing economic burdens. Short-term forecasts within a season can help
individuals and organizations adjust activity plans to reduce influenza transmission while long-term
predictions are valuable for selecting vaccines for future seasons (Brooks, Farrow, Hyun, Tibshirani,
& Rosenfeld, 2015).

Several mechanistic models (also called compartmental models) have been proposed to de-
scribe the epidemics based on the physics of disease propagation (Brauer, Castillo-Chavez, &
Castillo-Chavez, 2001; Newman, 2002). For example, the SIRS (susceptible-infectious-recovered-
susceptible) model describes the transition between population proportions which are susceptible
to influenza, infected by the virus and recovered from the infection. Assumptions imposed by the
SIRS model include fully mixed population and identical transmission behavior for different strains
of influenza. Thus, current prediction ability based on mechanistic models alone for the timing or
magnitude of influenza outbreaks is limited due to factors such as spatial heterogeneity, preferential
mixing in the network structure for human interactions (Shaman & Karspeck, 2012).

Besides the mechanistic models, other influenza modeling approaches can mostly be categorized
as agent-based models, parametric statistical models and empirical Bayes framework. The agent-
based models rely on the complex interaction and disease pattern among the population, and
are generally applied to special cases of a single strain of influenza (Colizza, Barrat, Barthelemy,
Valleron, & Vespignani, 2007; Grefenstette et al., 2013). The parametric statistical models utilize
various time series analysis methods to predict the influenza trend. Recent influenza prediction
studies have used Box-Jenkins methods (Shumway & Stoffer, 2013), for example, autoregressive
integrated moving average (ARIMA) model (Quenel & Dab, 1998; Soebiyanto, Adimi, & Kiang,
2010) and generalized autoregressive moving average (GARMA) model (Dugas et al., 2013). The
GARMA forecast model integrated with Google Flu Trends information yields good prediction
power even though the transmission mechanism was not considered (Dugas et al., 2013). The
newly developed empirical Bayes framework does not make strong domain-specific assumptions,
thus can be easily applied to some other diseases with seasonal epidemics (Brooks et al., 2015).

In the “real-world”, the transmission of influenza is better depicted by stochastic difference
models (at discrete times) in determining the susceptible or infectious population. In addition to
the noise in the transmission process, there are always uncertainties associated with real-time mea-
surements for the influenza counts, e.g. underestimate for the asymptomatic population, delayed
reporting, etc.(Laporte, 1993). The feature of the uncertainty occurrence in both the process and
the observation of the influenza dynamic system encourages the application of filtering techniques.
Filtering techniques are known to provide better estimates of a dynamic system based on the mea-
surements from the past to the current time through a recursive Bayesian update (Maybeck, 1982;
Evensen, 2009).
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2 Problem and approach

In this report, we first overview various filtering methods and examine their underlying assumptions
and relative advantage in estimating the unobserved states. We implement the extended Kalman
filter, unscented Kalman filter, ensemble Kalman filter and particle filter to the synthetic data
generated by the SIRS model. The noisy synthetic data allows the evaluation of different filters,
where the unobserved states are known.

To model the real influenza trend, we consider an empirical framework where the typical trend of
influenza is depicted by an Archetype function with uncertainty in scale and time shift. We examine
whether the filtering techniques in this empirical framework can provide a robust prediction of the
influenza trend.

3 Background and related work

Filtering techniques are often utilized to study dynamic system problems in estimating the internal
states (parameters or hidden variables) when the system is partially observable and random noise
is present in both the dynamic process and the observations(Maybeck, 1982; Grewal & Andrews,
2014). Through a Bayesian update, the estimated system states can be improved when observa-
tional data are available on-line (Doucet, De Freitas, & Gordon, 2001). Significant portions of
filters are applied in the Markovian state space (Doucet & Johansen, 2009).

Consider a discrete-time Markov process, where the hidden (unobserved) states are denoted
by {xt : t ∈ N} with a initial distribution p(x0) and the transitional probability p(xt|xt−1). The
observations {zt : t ∈ N+} are assumed to be conditionally independent with each other given
the states {xt}, and the conditional probability distribution is p(zt|xt). In terms of equations, the
model is fully specified by the prior, the transitional probability and the conditional probability
(Doucet et al., 2001),

p(x0), p(xk|xk−1) := f(xk|xk−1), p(zk|xk) := g(zk|xk). (1)

Using a simplified notation xi:j := (xi,xi+1, ...xj), the marginal distribution for {xn}n≥1 and the
likelihood can be expressed as,

p(x0:n) = p(x0)
n∏
k=1

f(xk|xk−1), p(z1:n|x1:n) =

n∏
k=1

g(zk|xk) (2)

The task of inference is to estimate the states given the observations, i.e. p(xj |z1:k). Depending
on the value of j, the inference problem can be categorized as 1) filtering if j = k, 2) smoothing if
j < k and 3) prediction if j > k (Murphy, 2012). In terms of influenza prediction, the objective
is to estimate the posterior distribution conditioning on all the past data, i.e. p(xk+1|z1:k). This
can be achieved by combining the filtering estimate p(xk|z1:k) with a transitional probability of
p(xk+1|xk).

Among the various filtering methods, Kalman filter is known to be the optimal linear filter
to model systems with input and output, where the update of measurements can improve the
prediction (Maybeck, 1982; Welch & Bishop, 2006). It is based on two assumptions regarding
the noise in the processes and measurements, i.e. Gaussian noise and white noise. Relaxing the
Gaussian noise assumption, Kalman filter is still the best filter out of the class of unbiased linear
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filters (Welch & Bishop, 2006). When the noise is not white, i.e, there is autocorrelation between
noise, a small linear system can be combined with the Kalman filter such that the noise for the
whole system is white (Welch & Bishop, 2006; Grewal & Andrews, 2014). Because of these robust
properties, Kalman filter has been widely applied in the engineering field and acclaimed as one of
the most important algorithms invented in the 20th century (Casti, 2000).

The original Kalman filter is limited to linear dynamic systems. For nonlinear systems, the
extended Kalman filter has been developed, which involves a first order Taylor expansion to ap-
proximate the nonlinear relations (Julier & Uhlmann, 2004). Both the Kalman filter and the
extended Kalman filter rely on the update of mean and covariance matrix for the states, because
Gaussian distributions are fully specified by the mean and covariance. Another extension of the
Kalman filter is the unscented Kalman filter (UKF), which utilizes the property of sigma points
(a minimal set of carefully chosen sample points to represent a Gaussian random variable) to im-
prove the approximation accuracy (Julier & Uhlmann, 1997). It is proven that the sigma points
can capture the mean and covariance of the non-linearly transformed Gaussian random variable
with third order accuracy in terms of Taylor expansion. Interestingly, the UKF possesses the same
order of computational complexity as that of the EKF while improving the approximation accuracy
(E. Wan & Van Der Merwe, 2000).

For systems with high dimensions, the manipulation of covariance matrix can be computation-
ally expensive. Therefore, the ensemble Kalman filter (EnKF) is proposed in literature to reduce
the computational cost (Mandel, 2009). The EnKF uses a random sample, an ensemble, to repre-
sent the distribution of the system such that, the updating of probability distribution is achieved by
updating the members of the ensemble. The ensemble approach overcomes the high computational
cost of maintaining the covariance matrix at high dimensions. Despite the low computational cost,
EnKF method still assumes the noise generated from the process and the measurement is Gaussian,
which limits the application to nonlinear problems (Mandel, 2009; Gillijns et al., 2006).

In contrast to the Kalman filters, the particle filter method does not assume Gaussian random
variables; therefore the later can be widely applied to nonlinear and non-Gaussian processes. The
formulation of particle filters is similar to the ensemble Kalman filter in terms of utilizing samples to
approximate the distribution (Mandel, 2009). Based on the sequential Monte Carlo method, particle
filters approximate the posterior distribution with updated observations. The flexibility of particle
filters in modeling general situations is accompanied by the drawback of higher computational cost
compared with Kalman filters (Doucet et al., 2001).

Despite the wide applications in engineering fields, the adaptation of filtering methods to model
infectious disease is a relatively recent advancement. Ionides et al. presented the iterated filter-
ing method, which could achieve a maximum likelihood estimate for partially-observed nonlinear
stochastic dynamic systems (Ionides, Bretó, & King, 2006). The application of filtering methods to
the cholera study improved the epidemic simulation, using the mortality measurements collected at
various regions in different years (King, Ionides, Pascual, & Bouma, 2008). One additional benefit
of the filtering process is the dual estimation of the state variables and the dynamic parameters
(E. A. Wan, Van Der Merwe, & Nelson, 2000).

Shaman et al. applied multiple filtering techniques in combination with mechanistic mod-
els to predict the influenza trend (Shaman, Pitzer, Viboud, Grenfell, & Lipsitch, 2010; Shaman
& Karspeck, 2012; Yang, Karspeck, & Shaman, 2014; Yang, Lipsitch, & Shaman, 2015). The
four mechanistic models examined are SIR, SIRS, SEIR (susceptible-exposed-infectious-recovered)
and SE2I2R (susceptible-exposed, stage 1-exposed, stage 2-infectious,stage 1-infectious, stage 2-
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recovered). Both the particle filter and the ensemble Kalman filter are implemented. The com-
parison suggests that SIRS model in combination with filtering methods yields the most reliable
prediction. Accuracies for the particle filter and the ensemble Kalman filter are comparable in
predicting the influenza activity for current week. In contrast, the particle filter performs slightly
better in predicting peaks in near future (1-5 weeks) while the ensemble Kalman filter is more
accurate for the peaks in the past.

4 Data

4.1 Synthetic data generated by the SIRS model

4.1.1 A mechanistic model: SIRS model

Figure 1 shows the transition of different population in the SIRS model: susceptible population can
be infected while infectious population can recover from the flu, and finally recovered population
may again be susceptible to the flu (Newman, 2002). In this model, S is the susceptible population,
I is the infectious population, N is the total population, and N −I−S is the recovered population;
L is the average duration of immunity, D is the mean infectious period, β is the contact rate, and
t is the time.

Figure 1: The SIRS model for the transmission of influenza among different class of subjects, where
S, I and R represent susceptible, infectious and recovered population, respectively. The sum of S,
I and R is the total population N .

In terms of differential equations, the SIRS model is governed by,

dS

dt
=
N − S − I

L
− βIS

N
,

dI

dt
=
βIS

N
− I

D
,

(3)

where the conversion rate of susceptible population into infectious population is proportional to
both the current susceptible population and infectious population, while inversely proportional
to the total population, i.e. βIS

N . The rate of recovered population converting into susceptible
population is inversely proportional to the duration of immunity while proportional to the recovered
population, i.e. N−S−I

L . Finally the transition rate of infectious population to recovered population
is I

D , inversely proportional to the mean infectious period.

4.1.2 Procedure for generating synthetic data

The differential equations in the SIRS (Equation 3) can be rewritten as difference equations at
different days k. Define the state variable as x>k = (Sk, Ik), i.e. the susceptible and infectious
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population at different days. Denote the observed variable as zk, which is the measured infected
population. The process equations are set to be,

Sk = Sk−1 +
N − Sk−1 − Ik−1

L
− βIk−1Sk−1

N
+Q1

Ik = Ik−1 +
βIk−1Sk−1

N
− I

D
+Q2.

(4)

with Q1 and Q2 being process noise. The measurement equation has the measurement noise R,

zk = Ik +R. (5)

Figure 2: (a) The SIRS data generated by the difference equations (Equation 4) without any added
noise. The blue curve represents the susceptible population while the red curve is the infected
population. The peak of infected population is lagged by the peak of susceptible population (b)
The synthetic SIRS data generated by the difference equations (Euqation 4) with added noise.The
peak value for the infected population is larger than that in part (a) because of the random noise.

Figure 2a shows a realization of the SIRS model without any added noise. The parameters are
set to roughly mimic the transmission properties of the influenza trend in New York of the year
1972: β = 1;D = 2.3;L = 1425 (Shaman & Karspeck, 2012). And the population is set artificially
to be N = 500, 000, S0 = 250, 000, I0 = 1. Figure 2a shows that there is a single peak for infectious
people which is lagged by the peak of susceptible population. This simple realization of SIRS model
shows the pattern of influenza onset, peak and decline.

Figure 2b shows the synthetic data from the SIRS model with added noise. The process noise
is set to follow Gaussian distribution, Q1 ∼ N(0, 10002), Q2 ∼ N(0, 0.12), and the measurement
noise is also Gaussian R ∼ N(0, 3002). The process equation and the observation equation specify
both the conditional probability and the likelihood function (Equation 2). Both the susceptible
and infected population demonstrate some deviation from the smooth version without noise. In
Figure 2b, the peak value of infected population is higher than Figure 2a because of the random
noise, while the general trends in the two figures are similar.

6



4.2 Real influenza data from CDC, Twitter messages and Wikipedia access logs

The CDC provides surveillance data for influenza-like illness (ILI) in the United States (CDC, 2012).
The CDC compiles the data provided by the U.S. Outpatient Influenza-like Illness Surveillance
Network who voluntarily reports the total patient visits and ILI visits. The data only counts the
incidence of ILI, because doctors do not generally differentiate influenza from similar symptoms.
Nonetheless, the ILI data gives a good trend for the influenza transmission (Shaman & Karspeck,
2012).

Figure 3: Visualization of influenza data (a) CDC reported patients visits due to influenza like-
illness (ILI) in the United States (b) Normalized influenza data from Twitter, Wikipedia and ILI
for year 2015.

Figure 3a shows the visualization of ILI counts each year from 2010 to 2014. Infected population
typically has a peak around Day 100, but can shift in different years. Within one year, infected
population can have several shallow peaks.

Though the ILI data provides a general trend of the influenza infections, it only counts the
patients who seek for medical help, whereas there are significant portions of infected people who
do not visit medical facilities. Also due to the bureaucratic hierarchy of the surveillance system,
data availability may be lagged by 1-2 weeks (Hickmann et al., 2015). It is shown that Wikipedia
article access logs and Twitter messages can be used as supplemental information to the ILI data
with real time properties (Hickmann et al., 2015; Paul, Dredze, & Broniatowski, n.d.).

Figure 3b shows the normalized Twitter signals, Wikipedia access counts and ILI data in the
year 2015 compiled by David Farrow (Farrow, 2016). The peaks from three different sources agree
with each other with one to two weeks in difference. The general trends of the three data series
also agree with high correlations.
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5 Experimental methods

5.1 Filtering methods

5.1.1 Kalman filter

Let x ∈ Rn be the state vector, and z ∈ Rm be the observation vector. The Kalman filter considers
a discrete-time linear system (Welch & Bishop, 2006),

xk = Fkxk−1 + wk−1 (process), zk = Hkxk + vk (observation). (6)

where Fk is the state transition operator applied to the previous state, and Hk is the observation
operator mapping the state space to the observation space. wk and vk are the process and the
observation noise respectively, and both assumed to be Gaussian, wk ∼ N(0,Qk), vk ∼ N(0,Rk).
Because both the process and observation are linear, if initial state x0 is Gaussian, then all the
subsequent states xk’s and observations zk’s are also Gaussian.

Figure 4: Kalman filter at each iteration includes a prediction step (based on the process equation)
and an update step (using observations).

Figure 4 is a schematic of the Kalman filter, which uses sequential observations to estimate the
system states. It is performed in two steps recursively: in the prediction step, the previous state is
used to predict current state; in the update step, current observation is used to improve the state
estimate. Each iteration involves an update of the mean and the covariance matrix.

Following the convention used in (Gillijns et al., 2006), we use subscript “f” to denote a priori
estimate of state in the prediction step, and use “a” to denote a posterior estimate of the state
with measurement update. The state variable estimate xf

k and a priori estimate error covariance
Pf
k are,

xf
k = Fk−1x

a
k−1

Pf
k = Fk−1P

a
k−1F

>
k−1 + Qk−1

(7)

where Pf
k = E[(xk − xf

k)(xk − xf
k)
>].

In the update step, the Kalman gain Kk, the posterior estimate of the state xa
k and the posterior

covariance Pa
k are,

Kk = Pf
k,xz(P

f
k,zz)

−1,

Pa
k = (I −KkHk)P

f
k,

xa
k = xf

k + Kk(zk −Hkx
f
k)

(8)
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where the intermediate steps for the Kalman gain involves two covariance matrix,

Pk,xz = E[(xk − xf
k)(zk −Hkx

f
k)
>] = Pf

kH
>
k

Pk,zz = E[(zk −Hkx
f
k)(zk −Hkx

f
k)
>] = HkP

f
kH
>
k + Rk

(9)

5.1.2 Extended Kalman filter

Consider the nonlinear extension of the process and observation equations (Equation 6).

xk = f(xk−1) + wk−1 (process), zk = h(xk) + vk (observation). (10)

The extended Kalman filter uses the linearization based on Taylor expansion,

Fk =
∂f(x)

∂x

∣∣
x=xa

k
, Hk =

∂h(x)

∂x

∣∣
x=xa

k

(11)

The original Kalman filter formulation (Equation 7 and Equation 8) can be rewritten as an
extended Kalman filter with prediction step,

xf
k = f(xk−1)

Pf
k = Fk−1P

a
k−1F

>
k−1 + Qk−1

(12)

and the update step:
Kk = Pf

kH
>
k (HkP

f
kH
>
k + Rk)

−1,

Pa
k = (I −KkHk)P

f
k,

xa
k = xf

k + Kk(zk − h(xf
k))

(13)

5.1.3 Unscented Kalman filter

Unscented Kalman filter relies on the unscented transformation, which is used for determining the
statistics of a random variable through a nonlinear transformation. For an L-dimensional random
variable x through a nonlinear function y = f(x), the statistics of y can be determined using the
following procedures (E. Wan & Van Der Merwe, 2000). Assume x has mean x̄ and covariance Px,
2L+ 1 sigma vectors Xi are determined as,

X 0 = x̄

X i = x̄ +
(√

(L+ λ)Px

)
i

i = 1, . . . , L

X i = x̄−
(√

(L+ λ)Px

)
i−L

i = L+ 1, . . . , 2L

W 0
m = λ/(L+ λ)

W 0
c = λ/(L+ λ) + (1− α2 + β)

W j
m = W j

c = 1/[2(L+ λ)] j = 1, . . . , 2L

where λ = α2(L+ κ)− L is scaled by α and κ. α is typically set as a small parameter (e.g. 0.001)
which represents the spread of sigma points around the mean. κ is usually set as κ = 0 while the

other parameter is set to be β = 2 for Gaussian distribution of x. And
(√

(L+ λ)Px

)
i

represents

the i-th row of the square root matrix.
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Nonlinear transformation of the sigma points yields,

Y i = f(X i), i = 0, . . . , 2L+ 1. (14)

The mean and covariance of y are then approximated by

ȳ ≈
2L∑
i=0

W i
mY i (15)

Py ≈
2L∑
i=0

W i
c

(
Y i − ȳ

) (
Y i − ȳ

)>
(16)

To apply the unscented transformation to Kalman filter, these procedures would correspond to the
prediction step, with x̄ → xa

k−1, Px → Pa
k−1, ȳ → xf

k, and Py → Pf
k. And in the measurement

step the covariance is Pf
k → Pa

k, since it is used for resampling
(√

(L+ λ)Pa
k

)
in the next iteration.

5.1.4 Ensemble Kalman filter

For high-dimensional systems, ensemble Kalman filter (EnKF) is proposed to reduce the com-
putational cost in manipulating matrices. Ensemble Kalman filter utilizes a group of particles
(ensemble) to represent the distribution of the system, and replace the covariance matrix by the
sample covariance of the ensemble(Mandel, 2009). Therefore, the evolution of the distribution is
achieved by updating each member of the ensemble. At time k − 1, given an ensemble of n state
estimates, {xa,i

k−1}, i = 1, . . . , n, the prediction step yields an ensemble of states xf
k, and priori state

sample covariance P̂f
k

xf,i
k = f(xa,i

k−1) + wi
k−1, (17)

P̂f
k =

1

n− 1

n∑
i=1

(
xf,i
k − xf,i

k

)(
xf,i
k − xf,i

k

)>
(18)

where wi
k−1 ∼ N(0,Qk−1) and xf,i

k = 1
n

∑n
i=1 xf,i

k is the ensemble mean.
Replacing the error covariance matrix in Equation 9, the sample error covariances for EnKF

are P̂f
k,xz between the predicted state and predicted observation, and P̂f

k,zz for the predicted ob-
servation,

P̂f
k,xz =

1

n− 1

n∑
i=1

(
xf,i
k − xf,i

k

)(
h(xf,i

k )− h(xf,i
k )
)>

P̂f
k,zz =

1

n− 1

n∑
i=1

(
h(xf,i

k )− h(xf,i
k )
)(

h(xf,i
k )− h(xf,i

k )
)> (19)

where h(xf,i
k ) = 1

n

∑n
i=1 h(xf,i

k ).

In the update step, the Kalman gain K̂k, the updated ensemble member xa,i
k and the posterior
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sample covariance P̂a
k are,

K̂k = P̂f
k,xz

(
P̂f
k,zz

)−1
(20)

xa,i
k = xf,i

k + K̂
(
zk + vik − h(xf,i

k )
)

(21)

P̂a
k =

1

n− 1

n∑
i=1

(
xa,i
k − xa,i

k

)(
xa,i
k − xa,i

k

)>
(22)

where vik ∼ N(0,Rk) is the random observation noise, such that zik = zk + vik represents the
perturbed observation. The posterior state estimate is the ensemble mean of the updated estimate.

xa,i
k = 1

n

∑n
i=1 xa,i

k

5.1.5 Particle filter

As explained by Arulampalam et al. (Arulampalam, Maskell, Gordon, & Clapp, 2002), particles
can be used with different weights to approximate a distribution, which is not computationally
expensive in low dimensions. Denote {xi0:k, wik} as a set of particles to characterize the posterior
distribution p(x0:k|z1:k), where {xi0:k, i = 1, 2, ...Ns} is a set of support points with weight {wik},
then the posterior distribution is approximated by,

p(x0:k|z1:k) ≈
Ns∑
i=1

wikδ(x0:k − xi0:k). (23)

The weights for particles are chosen based on the importance sampling principle which relies
on the following condition. If p(x) ∝ π(x) is a probability distribution which is difficult to sample
from but the form of π(x) is analytically known, and another proposal distribution q(x) is easy to
sample from, then the weighted approximation to the density p(x) is given by(Doucet et al., 2001),

p(x) ≈
Ns∑
i=1

wiδ(x− xi), where wi ∝ π(xi)

q(xi)
.

Through the update of different weights of particles, the posterior distribution is therefore
approximately updated at different time steps k. If the samples x0:k were drawn from an importance
density q(x0:k|z1:k), then the weights are then

wik ∝
p(x0:k|z1:k)
q(x0:k|z1:k)

If we invoke the Markov property q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk), then the importance density
is only dependent on xk−1 and zk. In the common case where only a filtered estimate of p(xk|z1:k is
required, we only need to store xik rather than the whole path xi0:k−1 and the history observations
of z1:k−1.

It has been shown (Doucet et al., 2001; Doucet & Johansen, 2009; Arulampalam et al., 2002)
that to approximate the posterior density p(xk|z1:k), the modified weight from time step k − 1 to
k is,

wik ∝ wik−1
p(zk|xik)p(xik|xik−1)
q(xik|xik−1, zk)

(24)
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F where q(xik|xik−1, zk) is the new importance proposal distribution to sample from. A common
choice for the importance sampling is using the prior distribution, i.e.

q(xk|xik−1, zk) = p(xk|xik−1) (25)

This choice yields a simplified equation for weight update(Equation 24) at each time update,

wik ∝ wik−1p(zk|xik) (26)

The filtered posterior density p(xk|z1:k) (different from posterior density p(x0:k|z1:k)) is given by,

p(xk|z1:k) ≈
Ns∑
i=1

wikδ(xk − xik) (27)

However, there is a degeneracy problem associated with the particle filter using the above weight
update procedure. After finite iterations, all except one particle will have negligible weight, which
does not yield an appropriate approximation for the posterior distribution(Arulampalam et al.,
2002). To reduce the effect of degeneracy, a resampling step is necessary. In the resampling step,
a new set of particles {xi∗k , wi∗k } are obtained by resampling with replacement Ns times from the
approximate filtered posterior distribution p(xk|z1:k) in Equation 27. This is indeed the bootstrap
sampling from the discrete density of Equation 27, where each particle has the new weight wi∗k =
1/N.

5.2 Filtering methods in the Archetype framework

The Archetype framework was developed by David Farrow (Farrow, 2016). Similar to the Empirical
Bayes framework(Brooks et al., 2015), the Archetype framework also assumed that future epidemics
will resemble the shape of past epidemics. The Archetype function is based on the canonical shape of
an influenza epidemic, where the detailed procedures are described in the technical report(Farrow,
2016). The main components of the procedures are: 1) remove irregularities during holiday weeks,
2) smooth historical ILI data using Gaussian kernel smoother, 3)align historical peaks to the center
of the season and 4)interpolate between different yearly curves and obtain the final Archetype
function (shape).

Figure 5 shows the Archetype function: inputting a time in unit of week returns a value of the
normalized infectious population. With the Archetype function, current seasonal influenza trend
behavior can be modeled by two parameters: time shift and magnitude scale. Intuitively, the
time shift depicts that future influenza counts are dependent on the current infectious population
with uncertainty in time advancement or delay. And the magnitude scale can be interpreted as
fluctuation in infected population. Filtering methods in the Archetype framework can also provide
a better forecast of influenza trend when new data is available online through the recursive Bayesian
update.

In terms of mathematical formulations, the Archetype framework can be described as a state
space model. The states are represented by xw, and the observables are denoted by zw, where the
subscript w denotes the unit of time, in weeks with values of [0, 51] inclusive. The definition of
w = 0 corresponds to the calendar Week 30 (i.e. end of July, middle of influenza off season).

The state variable is a two dimensional vector which varies with weeks, x>w = (tw, sw), where
tw ∈ (−26,+26) is the shift parameter and sw ∈ R+ is the scale parameter. Both parameters sw
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Figure 5: Archetype function to read out measurement

and tw are dependent on the week w, and can be used to obtain the influenza counts from the
Archetype function. The state space model is fully specified by the prior distribution, the process
equation and the observation equation.

The prior distribution for the first week is assumed to be decomposable for s1 and t1, i.e.

P (x1) = P (s1, t1) = P (s1)P (t1) (28)

where s1 ∼ N+(1, 0.12) is drawn from a truncated normal distribution such that s1 is always
positive, and t1 is drawn from a normal distribution t1 ∼ N(0, 32)

The process equation for the two components of tw and sw follows,

tw = tw−1 + qt (29)

sw = αsw−1 + (1− α) + qs (30)

where, qt and qs denote random variables from Gaussian distribution qt ∼ N(0, σ2t ), qw ∼ N(0, σ2s).
α = 0.95 is a parameter and σt = σs = 0.2. Or in the matrix form,

xw =

(
1 0
0 α

)
xw−1 +

(
0

1− α

)
+ q (31)

where q is a noise vector which is drawn from a Gaussian noise distribution:q ∼ N(0, Q) where Q
denotes covariance matrix for the process noise, i.e.

Q =

(
σ2t 0
0 σ2s

)
The observation equation depends on the Archetype function A(y), where y is defined in the

range of [0, 52). We define an observation function h which acts on the state x without noise and
holiday effects can be expressed as h(xw) = sw ·A[(w − tw)mod 52].

Observations are three dimensional vectors (twitter signal, wiki signal, weighted ILI signal
%wILI). Holiday affects the observation counts of %wILI, which is typically associated with the
calendar time year end( Week 50, 51, 0, and Week 1), which corresponds to w = 20, 21, 22, 23.
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therefore a multiplicative constant Kw is necessary to improve the observation.

Kw =



1 if w = 0, . . . , 18, 19, 24, . . . 51

K20 if w = 20

K21 if w = 21

K22 if w = 22

K23 if w = 23

(32)

Denote the multiplicative vector as β, which can be expressed as β> = (1, 1,Kw). Then the
observation function is z1z2

z3


w

= sw ·A[(w − tw)mod 52]

 1
1
Kw

+

r1r2
r3

 (33)

where r> = (r1, r2, r3) is a noise vector with Gaussian distribution r ∼ N(0, R), where R denotes
the covariance matrix for the measurement noise, i.e.

R =

σ2r1 0 0
0 σ2r2 0
0 0 σ2r3

 (34)

where σr1 = 0.7 for twitter, σr2 = 0.5 for wiki and σr3 = 0.5 for unstable ILI. The dynamic process
equations are then fully specified.

6 Experimental results

6.1 SIRS-Filter results for the synthetic data

The extended Kalman filter, ensemble Kalman filter, unscented Kalman filter and particle filter
are implemented to estimate the state variables based on the measurements. The synthetic data
allows a quantitative comparison of the filters in estimating the state variables since true values
are known in advance. The initial estimate of the susceptible can impact the filtering results, thus
we test the algorithms also on different initial values. More specifically, the filtering methods are
run at two different prior values for the susceptible population: 250,500 (half a standard deviation
away from the true value) and 500,000 (twice the true value).

Figure 6 shows the population estimates using the extended Kalman filter(EKF) and the un-
scented Kalman filter(UKF), where the initial susceptible population is close to the truth. In Figure
6a, both the susceptible population estimates agree with the true value in general while the EKF
result is slightly more wiggly near the minimum. Figure 6b shows that the infectious population
estimates overlap with each other and are quite smooth despite the noisy observations.

Figure 7 shows the population estimates using the particle filter(PF) and the ensemble Kalman
filter(EnKF), where the initial susceptible value is close to the truth. In Figure 7a, the PF estimate
for the susceptible population is slightly closer to the true value than the EnKF estimate. Figure
7b shows that the infectious population estimates again overlap with each other and are relatively
smooth in spite of the noisy observations.
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Figure 6: Implementation results of EKF and UKF where the initial estimate for the susceptible
population is close to the true value. (a) Susceptible population for the synthetic truth and filtered
estimates (b) Infectious population for the synthetic truth and filtered estimates

Figure 7: Implementation results of PF and EnKF where the initial estimate for the susceptible
population is close to the true value. (a) Susceptible population for the synthetic truth and filtered
estimates (b) Infectious population for the synthetic truth and filtered estimates

Figure 8 shows the population estimates using the EKF, UKF and EnKF, where the initial
susceptible value is twice the truth. In Figure 8a, the UKF estimate for the susceptible regresses
to the true value faster than both the EKF and EnKF estimates. After about 100 days, the
estimates from three filters are close to the true value. Figure 8b shows the infectious population
estimates, where the UKF now has a most significant error in estimating the infectious population
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Figure 8: Implementation results of EKF, UKF and EnKF where the initial estimate for the
susceptible population is twice the true value. (a) Susceptible population for the synthetic truth
and filtered estimates (b) Infectious population for the synthetic truth and filtered estimates. The
better estimate of the hidden susceptible population is penalized by a worse estimate of the observed
infectious population.

while obtaining the best estimate for the hidden state. A better estimate for the hidden state is
penalized by the estimate for the observed state. In the epidemic disease literature, it was reasoned
that Kalman filters help to balance the information in the observations and model simulations,
when the states (e.g. infectious population, susceptible population) are only partially observable
(Shaman & Karspeck, 2012). In contrast, the particle filter method failed to make an estimation of
the susceptible population because the importance sampling method (Equation 26) is invalid when
the prior distribution is changed. The Kalman filters demonstrate relative robustness even though
initial estimate is far from the prior distribution.

To compare the different filter estimates more quantitatively, we run each filter 30 times and
obtain the mean square error (MSE) by comparing the filter estimates of the susceptible population
with the true values. All these runs start with the prior distribution of the susceptible population,
i.e. Gaussian distribution with mean being 250,000 and standard deviation being 1000.

Table 1 lists the mean and variance of the MSE for the 30 runs. UKF has a smaller MSE than
EKF, which is not surprising since it has higher order of approximation accuracy than EKF. PF
has a slightly smaller MSE than the EnKF. In terms of MSE, UKF is 5% lower than EnKF. The
lack of fit in both Figure 6a and Figure 7a, and the large value of MSE are due to the limitation of
dynamic system. The susceptible population is not observed and can only be estimated from the
relation with the infectious population.

Table 1 also lists the calculation of log likelihood per observation for the different filtering
methods. The log likelihood per observation is also calculated for the 30 different runs. In
agreement with the MSE comparison, UKF has the highest log likelihood on average even though
the variance of log likelihood is not the lowest.
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Method Mean(MSE) Var(MSE) Mean(log likelihood per obs.) Var(log likelihood per obs.)

EKF 1.43E4 1.95E3 -5.11E4 2.02E5

UKF 1.38E4 1.53E3 -1.70E4 2.59E5

PF 1.44E4 1.72E5 -5.16E4 5.33E7

EnKF 1.45E4 2.09E5 -5.27E4 1.86E7

Table 1: Mean square error(MSE) for the filter estimates and the true susceptible population. Mean
and Variance for the MSE is obtained by running each experiment 30 times. The log likelihood per
observation is also calculated for the 30 different runs.

6.2 Archetype-Filter results for the real influenza data

In the Archetype framework, the process equation (Equation 31) is linear and the observation
equation (Equation 33) is not linear. Therefore, the implementation of EKF suffices to make
predictions of influenza trend without the complication of sigma points in the UKF method. We
implemented both the EKF and PF to forecast the influenza trend of the next week.

Figure 9: EKF and PF predictions of the Wiki signals of the next week based on all the observation
data (Twitter signals, Wiki signals and %wILI) until present time. The curves are the mean, lower
and upper bound estimate for one week ahead for the 80% confidence interval. And the + symbol
denotes the Wiki signals.

Figure 9 shows the prediction of Wiki signals from EKF and PF for one week ahead. The
+ symbols represent the observed Wiki signals. Black lines are the EKF prediction of the mean,
lower bound and upper bound for the influenza activity in the next week. The dashed blue lines
are the PF prediction of the mean, lower bound and upper bound. The bounded regions are of
80% confidence. Both EKF and PF estimates agree with the general trend of the observation
values. At the tail of week 25, the EKF curve is closer to the observation value than the PF curve.
Furthermore, the peaks from the filter methods are approximately one weeks delayed from the true
occurrence time of the influenza peak.
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To compare the EKF and PF more quantitatively, we run each filter 30 times and obtain the
mean square errors by comparing the predicted Wiki signals with the observed signals.

Method Mean(MSE) Var(MSE)

EKF 0.85 0.00044

PF 0.91 0.0050

Table 2: Mean square error(MSE) of the filter prediction in comparison with the observed Wiki
signals. Mean and Variance for the MSE is obtained by running each experiment 30 times.

Table 2 lists the mean and variance of the MSE of the 30 runs. We note that EKF has a smaller
value of MSE on average as well as a small fluctuation of MSE compared with PF. This quantitative
comparison is in agreement with Figure 9.

7 Discussion and Limitation

In the synthetic data, the estimation of the susceptible population has fine agreement with the true
values. But if the initial estimate is far away from the truth, it took many iterations to obtain a
good estimation of the susceptible population and infectious population as shown in Figure 8. In
that sense, SIRS-filter framework is not robust for short term influenza forecast. In reality, to infer
the infectious population, the physical parameters including contact rate β, average duration of
immunity L, and mean infectious period D also need to be estimated from data. This kind of dual
estimation problems for both physical parameters and hidden states requires more careful technical
treatments (E. A. Wan et al., 2000). Parameters estimated from historical data may not be useful
for the current season as the transmission behavior may be changed. These intrinsic difficulties
associated with the SIRS-filter framework may not be avoided in predicting the influenza trend.

The Archetype framework on the other hand makes a simple assumption that future epidemics
resemble the past epidemics. To adjust for the uncertainties in influenza peak time and magnitude,
two variables (time shift and magnitude scaling) are introduced to forecast the influenza trend.
Because of the linearity of the process equation in the Archetype framework, simple implementation
of the extended Kalman filter yields good predictions. In comparison with complicated nonlinear
process equations, the Archetype framework is not sensitive to the choise of filtering methods.
Furthermore, the Archetype framework only requires the two dimensional state vector, thus not
computationally expensive to perform the influenza prediction.

From the experimental results, the EKF and PF in the Archetype framework yield good in-
fluenza counts for the next week. However, there is a delay of one week for the peak prediction.
This delay in forecasting may not be avoided since the prediction is mainly based on the past data
of the current year. Without decline in the data, the Archetype framework assume the influenza
activity carries some “momentum” into the near future.

8 Conclusions

We implemented four filtering techniques in the experiments of the synthetic data. The influenza
trends generated by SIRS mechanistic model were well tracked by the filtering methods. Unscented
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Kalman filter yields the best susceptible population estimates in terms of mean square errors and
log likelihood, because of the higher approximation accuracy.

In the real influenza case, we predicted the influenza counts for the next week in the Archetype
framework. Both the extended Kalman filter and particle filter showed satisfactory performance
in forecasting the influenza trend. The 80% bounded region well encloses the real influenza data,
with the limitation that the predicted peak is lagged by one week.
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