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Abstract

Background: Pairs of active neurons frequently fire action potentials or “spikes”
nearly synchronously (i.e., within 5 ms of each other). This spike synchrony may
occur by chance, based solely on the neurons’ fluctuating firing patterns, or it may
occur too frequently to be explicable by chance alone. When spike synchrony
above chance levels is present, it may subserve computation for a specific cognitive
process, or it could be an irrelevant byproduct of such computation. However, we
still lack knowledge of how this synchrony is generated.
Aim: Network-wide oscillations are an important possible source of spike syn-
chrony, and may be an essential mechanism of network information flow. In the
neuroscience community, there is a hypothesis suggesting that neurons communi-
cate through coherent oscillations, which can be recorded in local field potential.
In this work, we aim to develop a statistical framework to test this hypothesis.
Data: We used ground truth knowledge of simulated data to test the proposed
method, and we also illustrated the application of this method using two experi-
mentally recorded datasets: in vitro recordings of rat hippocampal CA1 pyramidal
cells, and in vivo recordings of neocortical V4 neurons from a behaving monkey.
For each dataset, we have spike trains and oscillatory signals of two neurons over
multiple trials.
Methods: A point process regression framework, implemented via generalized
linear models (GLMs), has been previously developed for this purpose. In this
framework, the observed number of synchronous spikes is compared to the number
predicted by chance under varying assumptions about the factors that affect each
of the individual neurons’ firing-rate functions. To establish the statistical link
between spike synchrony and network-wide oscillations, we integrated oscillatory
field potentials into our point process regression framework. We then used this
new framework to demonstrate the statistical relationship between oscillatory field
potentials and spike synchrony.
Results: (1) Our new point process regression model can perfectly recover the
the phase relationships between oscillatory field potentials and firing rates; (2) In
both simulated and experimental data, our proposed framework can successfully
identify the contribution of oscillations to spike synchrony.
Conclusions: In this article, we provide a method for establishing the statistical
association between spike synchrony and an oscillatory local field potential. We
demonstrate the value of this technique by numerical simulation together with
application to both in vitro and in vivo neural recordings. It could be a powerful
tool for testing one specific scientific hypothesis in neuroscience research.

∗in collaboration with Shawn D. Burton, Adam C. Snyder, Matthew A. Smith, Nathaniel N. Urban, and
Robert E. Kass
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1 Introduction

A leading theory of current neuroscience is that synchronous firing of neurons driven by network-wide
oscillations may encode and transmit information within and across brain regions [Brette, 2012,Colgin
et al., 2009, Engel et al., 2001, Fries, 2005, Geman, 2006, Niebur et al., 2002, Salinas and Sejnowski,
2001, Sejnowski and Paulsen, 2006, Tiesinga et al., 2008]. Supporting this theory, a number of
studies have suggested that synchronous firing of action potentials or “spikes” may indeed occur in
conjunction with oscillations in local field potentials (LFP) [Denker et al., 2011, Friedrich et al.,
2004, Gregoriou et al., 2009, Mizuseki and Buzsaki, 2014, Robbe et al., 2006]. However, a missing
link in this theory has been the ability to dissociate enhanced spike synchrony due to network-wide
oscillations from enhanced spike synchrony that may be due to other measured or unmeasured sources.
Recently, we developed a statistical framework in which the association between spike synchrony and
measured covariates may be assessed [Kass et al., 2011,Kelly and Kass, 2012]. Here we show how this
approach may be applied to describe the relationship between spike synchrony and oscillatory activity.

2 Problem description

The aim of this project is to design a statistical framework connecting network oscillations and neural
synchrony. Given the spike trains corresponding to a pair of neurons and local, but wider-scale,
oscillatory signals, the proposed the proposed method is determines to tell us whether the pairwise
spike synchrony is modulated by the network-wide oscillation. In addressing this problem, we need a
quantitative model of how an oscillating signal may modulate a single neuron’s firing rate.

3 Background

This work attempts to solve a specific biological question currently of interest to the neuroscience
community. We will first define a few terms, which will be necessary background for the remainder
of the paper.
Action potential: An action potential is a short-lasting event in which the electrical potential of
a neuron rapidly rises and falls (over a duration of roughly one millisecond), and follow a very
stereotyped trajectory specific to the individual cell. It is also called a ‘spike’ due to the sharp
form of the membrane potential’s trace. A sequence of spikes is called a spike train, which can
be conceptualized as a series of discrete events (0 or 1) within continuous time. A spike train can
therefore be modeled naturally as a point process.
Local Fields Potentials (LFP): LFP is an electrophysiological signal measuring an electrical current
flowing across a small volume of neural tissue, thought to be generated by multiple spiking neurons
diffusing ions in the process of their communication. We can observe oscillations in LFPs and these
oscillations represent population activity within a network. Local field potentials can be recorded
simultaneously with spike trains using extracellular recording.
Phase modulation: Many researchers have reported that firing rate is modulated by the phase of
specific network-wide oscillations in different brain areas, such as monkey V1 [Jia et al., 2013], rat
hippocampus [Sirota et al., 2008], and rat prefrontal cortex [Siapas et al., 2005]. These studies used
spike phase histograms to show this phase modulation. The significance of phase locking can be
evaluated using Rayleigh’s Z statistic [Siapas et al., 2005].
Spike synchrony: spike synchrony will be defined as instances where neurons fire within the same
small temporal bin (∼ 5 ms). This could happen randomly, but it could also reflect coordinated
neuronal activity on a fine time scale.

Our lab has developed a statistical framework to assess the association between spike synchrony and
a measured covariate [Kass et al., 2011, Kelly and Kass, 2012]. My work is based on this framework
and focuses specifically on the network-wide oscillation extracted from the measured LFP. Using
point process regression models, which take the form of generalized linear models (GLMs), our
statistical framework compares the observed number of synchronous spikes within a small time
window (here, 5 ms) to the number predicted by chance, under varying assumptions about the factors
that affect the firing of each individual neuron [Kass et al., 2011, Kelly and Kass, 2012]. The number
of synchronous spikes predicted “by chance” refers here to the number predicted under conditional
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independence after conditioning on the various measured factors that have been hypothesized to
affect individual-neuron spiking. For example, two neurons with fluctuating stimulus-driven firing
rates will produce some number of synchronous spikes even if they are acting independently. The
point process regression method fits fluctuating firing rate functions for each neuron separately, then
predicts the number of synchronous spikes under conditional independence (i.e., after conditioning
on these fluctuating firing rates), and compares the prediction to the observed number of synchronous
spikes. By this method, a single factor may be either included or excluded from the regression model
in order to quantify that factor’s ability to explain the observed spike synchrony.

4 Approach

In this article, we consider the contribution of network-wide oscillations by comparing observed and
predicted spike synchrony after conditioning on the phase of an LFP representing a network-wide
oscillation. Thus, we predict spike synchrony with and without inclusion of LFP phase as an
explanatory variable for each neuron separately. To demonstrate that increased spike synchrony is
associated with a network-wide oscillation, we would begin by establishing that, without considering
LFP phase, the observed number of synchronous spikes is greater than the predicted number by a
statistically significant magnitude, after conditioning on both stimulus-driven firing rates and recent
post-spike history effects. This would indicate a failure of the phase-free model to accurately account
for spike synchrony. We would then include the LFP phase in the model, and if it succeeded in
predicting spike synchrony, then we would conclude that LFP phase can explain the remaining
spike synchrony. Furthermore, we could estimate the proportion of excess synchronous spikes
accounted for by the LFP phase. The same procedure could be used, instead to demonstrate the role
of network-wide oscillations in suppressing spike synchrony.

In order to carry out this general procedure, we first need to model an individual neuron’s spiking
probability in terms of LFP phase. We follow [Lepage et al., 2013], which recently described
and assessed point process regression models that include a sinusoidal phase term. We enhance
their approach by weakening the sinusoidal assumption, allowing the phase relationship to be
nonparametric as in [Kaufman et al., 2005]. Using this point process regression model, we are then
able to quantify the dependence of synchronous spiking on an oscillatory modulation. We illustrate
the method using simulated neurons, in vitro recordings of hippocampal CA1 pyramidal cells, and in
vivo recordings of neocortical V4 neurons from a behaving monkey.

5 Materials and Methods

5.1 Point-Process Framework

In a continuous time interval (0, T ], a neuron can fire a spike at any discrete time point ui. A series
of spikes {ui} for 1 ≤ i ≤ N forms the spike train, where 0 ≤ u1 < · · · < uN ≤ T . We take the
spike train to be a point process, which is characterized by its conditional intensity function

λ(t|Ht, Xt) = lim
∆→0

P [N(t+ ∆)−N(t) = 1|Ht, Xt]

∆
(1)

where N(t) is the total number of spikes prior to time t, Ht is neuron’s own spiking history prior to
time t, and Xt includes all other relevant covariates. When ∆ is small, λ(t|Ht, Xt) ·∆ approximates
to the firing probability in the time interval (t, t+ ∆). To determine how different factors contribute
to firing rate we write λ(t|Ht, Xt) as a function of (Ht, Xt)

λ(t|Ht, Xt) = f(Ht, Xt). (2)
We can include different factors into this model and study their effects. Usually the stimulus S(t) is
included when neurons show selectivity to stimuli. In this work, because we are interested in phase
modulation by an oscillatory signal, the phase of the specific oscillation Φ(t) is also included.

5.2 Generalized Linear Model

To take advantage of the generalized linear model (GLM) framework we divide T into K equally
spaced bins, thus taking the bin width to be ∆ = T/K. ∆ is small enough that no more than one
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spike event in each bin, e.g. ∆ = 1 ms. Therefore the probability of observing one spike in kth bin is

pk = λ(tk|Htk , Xtk) ·∆, k = 1, 2, · · · ,K (3)

Using the vector Y ⊂ RK×1 to represent the spike train {ui}, yk is the number of spikes in kth bin.
Since we choose small bin width ∆, yk is not bigger than 1, i.e. yk ∈ {0, 1} and, from the Poisson
approximation to the binomial for small p we take the probability of observing yk given Htk and Xtk
to be

p(yk|Htk , Xtk) =
pykk
yk!

e−pk (4)

where tk = k∆. The loglikelihood function is

L =

K∑
k=1

[yk · log (pk)− pk] =

K∑
k=1

[yk · log (λ(tk|Htk , Xtk)∆)− λ(tk|Htk , Xtk)∆] (5)

and this is maximized to determine the MLE fit.

We assume that log [λ (t|Ht, Xt)] can be written as a sum of specific functions of each covariate.
Here we are studying three factors, stimulus, recent post-spike auto-history, and oscillatory phase,
and we write

log [λ(t|Ht, Xt)] =f1(stimulus) + f2(auto-history) + f3(oscillation) (6)
=f1(St) + f2(Ht) + f3(Φt). (7)

Here, S(t) is a possibly time-varying stimulus and f1(stimulus) determines the trial-independent
time-varying firing rate, i.e., the effect that is usually associated with the peri-stimulus time histogram
(the PSTH), which may be estimated due to the repeated trial structure of the experiment. The recent
post-spike auto-history effect is assumed here to be dominated by effects subsequent to the most
recent spike t∗ prior to time t, as in [Kass and Ventura, 2001], so we assume f2(auto-history) has the
form f2(t− t∗). The oscillatory term f3(oscillation) is defined as f3(Φt), where Φt is the phase of
specific oscillation. In summary, our spike train model has the form

log(λ(t|Ht, Xt)) =f1(t) + f2(t− t∗) + f3(Φt) (8)
= log λ1(t) + log λ2(t− t∗) + log λ3(Φt) (9)

and we will assume f1(·), f2(·) and f3(·) are smooth functions.

The model in Equation (9) is a “full” model including stimulus, auto-history, and an oscillatory factor.
Importantly, we can remove selected factors from the full model (e.g., the LFP phase modulation)
and still fit the spike trains using the same procedure. Indeed, in the following results, we also fit a
simplified model lacking the oscillatory factor,

log λ(t|Ht, Xt) = log λ1(t) + log λ2(t− t∗). (10)

5.3 Spike Synchronization

For a pair of neurons labeled 1 and 2, we fit conditional firing rate for each of them to get λ̂1(t|Ht, Xt)

and λ̂2(t|Ht, Xt). Then we can predict the number of synchronized spikes given temporal bins with
∆ = 5 ms, as in [Kass et al., 2011], using

Npred =

∫
λ̂1(t|Ht, Xt) · λ̂2(t|Ht, Xt)dt. (11)

Given spike trains from these two neurons, we can also get the observed number of synchronized
spikes Nobs by counting. If a pair of spikes from two neurons has an time interval less than 5 ms,
then this pair is counted as a synchronized spike. Synchrony is measured by taking the ratio of these
two numbers ζ̂ or log ζ̂

ζ̂ =
Nobs
Npred

. (12)

When two neurons are conditional independent, equation (11) can make relative good predictions and
ζ̂ ≈ 1 (or log ζ̂ ≈ 0). We can use parametric bootstrap to test the null hypothesis H0 : log ζ = 0 and
check the conditional independence between two neurons.
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5.4 Acute slice electrophysiology

Experiments were completed in compliance with the guidelines established by the Institutional
Animal Care and Use Committee of Carnegie Mellon University. Whole-cell patch clamp recordings
of hippocampal CA1 pyramidal cells were performed similar to previously described methods [Burton
and Urban, 2014]. Briefly, a postnatal day 16 Thy1-YFP-G mouse [Feng et al., 2000] was anesthetized
with isoflurane and decapitated into ice-cold oxygenated dissection solution containing (in mM ):
125 NaCl, 25 glucose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 3 MgCl2 and 1 CaCl2. Brains were
rapidly isolated and sagittal slices (310 µm thick) containing the hippocampus were cut using a
vibratome (5000 mz-2; Campden, Lafayette, IN, USA). Slices recovered for ∼ 30 min in ∼ 37C
oxygenated Ringer solution that was identical to the dissection solution except for lower Mg2+

concentrations (1 mM MgCl2) and higher Ca2+ concentrations (2 mM CaCl2). Slices were then
stored in room temperature oxygenated Ringer solution until recording. During recording, slices
were continuously superfused with warmed oxygenated Ringer’s solution (temperature measured in
bath: 32ºC). CA1 pyramidal cells were identified by morphology and laminar position using infrared
differential interference contrast microscopy. Whole-cell recordings were made using electrodes
(final electrode resistance: 5 − 7 MΩ) filled with (in mM): 120 potassium gluconate, 2 KCl, 10
Hepes, 10 sodium phosphocreatine, 4 Mg-ATP, 0.3 Na3GTP, 0.2 EGTA, 0.25 Alexa Fluor 594 (Life
Technologies, Carlsbad, CA, USA) and 0.2% Neurobiotin (Vector Labs, Burlingame, CA, USA).
The liquid junction potential was 12 − 14 mV and was not corrected for. Pipette capacitance was
carefully neutralized and series resistance was compensated using the MultiClamp Bridge Balance
operation. Data were low-pass filtered at 4 kHz and digitized at 10 kHz using a MultiClamp 700A
amplifier (Molecular Devices, Sunnyvale, CA, USA) and an ITC-18 acquisition board (Instrutech,
Mineola, NY, USA) controlled by custom software written in Igor Pro (WaveMetrics, Lake Oswego,
OR, USA). Cell morphology was reconstructed under a 100X oil-immersion objective and analyzed
with Neurolucida (MicroBrightField, Inc., Williston, VT, USA).

5.5 V4 neurons

Experimental procedures were approved by the Institutional Animal Care and Use Committee of the
University of Pittsburgh. A separate analysis of these data has been previously reported ( [Snyder
et al., 2015, Snyder and Smith, 2015]).
Subjects: We implanted one, 100-electrode “Utah” array (Blackrock Microsystems) in right V4 in
one adult male rhesus macaque (Macaca mulatta). The basic surgical procedures have been described
previously [Smith and Sommer, 2013], and were conducted in aseptic conditions under isoflurane
anesthesia. In addition to the microelectrode arrays, the animal was implanted with a titanium head
post to immobilize the head during experiments. We recorded neurons with receptive fields centered
∼ 4◦ from the fovea in the lower-left visual field.
Behavioral task: We trained the subject to maintain fixation on a 0.6◦ blue dot at the center of a
flat-screen cathode ray tube monitor positioned 36 cm from its eyes. The background of the display
was 50% gray. We measured the monitor luminance gamma functions using a photometer and
linearized the relationship between input voltage and output luminance using lookup tables. The
subject was trained to maintain fixation on the central dot for 2 seconds while no other visual stimulus
was presented, at which time the fixation point was moved 11.6◦ in a random direction and the animal
received a liquid reinforcement for making a saccade to the new location.
Microelectrode array recordings: Signals from the microelectrode arrays were band-pass filtered
(0.3 - 7500 Hz), digitized at 30 kHz and amplified by a Grapevine system (Ripple). Signals crossing
a threshold (periodically adjusted using a multiple of the root-mean-squared [RMS] noise for each
channel) were stored for offline analysis. These waveform segments were sorted using an automated
clustering algorithm [Shoham et al., 2003] followed by manual refinement using custom MATLAB
software [Kelly et al., 2007] (available at http://www.smithlab.net/spikesort.html), taking into account
the waveform shapes and interspike interval distributions. After sorting, we calculated the signal-
to-noise (SNR) ratio of each candidate unit as the ratio of the average waveform amplitude to the
standard deviation of the waveform noise [Kelly et al., 2007]. Candidates with an SNR below 2.5
were discarded. Signals were also filtered from 0.3−250 Hz with a digital Butterworth filter and
sampled at 1 kHz to provide LFPs.
LFP preprocessing: We assume that the oscillation modulating spiking activity is explicitly within
the surrounding LFP. The naive way of selecting LFP is using the one recorded at the same electrode
for each neuron. Since spike waveforms might contaminate the LFP spectrum [Buzsáki et al.,
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2012, Ray and Maunsell, 2011], we computed LFP related to each neuron as the average of LFPs
recorded on its neighboring electrodes. Another way of avoiding spike bleed-through is to choose the
LFP on any electrodes adjacent to the neuron. In S2 Fig. AB, we show that LFPs selected by all three
methods are very similar. We also computed the spike-triggered average (STA) field potential using
these three different methods. Their shapes are almost the same (S2 Fig. CD). We then bandpass
filtered the LFP using Chebyshev type II filter design with passband 4−25 Hz. After we got the
filtered oscillatory signal (Fig. 5BE), we applied the Hilbert transform to estimate the instantaneous
phase for further model fitting [Jia et al., 2013].

6 Results

6.1 Point process model for spike trains

We assume that the spiking of each neuron follows a point process and, following [Kass et al., 2014]
(page 592), we write its conditional intensity function as λ(t|Ht, Xt), where Ht represents the spike
history (auto-history), and the covariate Xt represents other external factors. In this work, we let Xt

include the stimulus and the LFP phase, denoted by Xt = (St,Φt). The complete model has been
described as Eq.(9) in Methods 5.2.

We use splines to capture stimulus and auto-history effects, and circular splines to capture LFP phase
effects (See Appendix 10.1). Our point process model thus takes the form of a standard generalized
linear model (GLM). We also ensure identifiability by imposing a set of restrictions (Equations (18)
and (19)), which are implemented within a maximum likelihood estimation (MLE) algorithm (See
Appendix 10.2). The parametric bootstrap is used for acquiring 95% confidence bands.

To illustrate the ability of the MLE algorithm to recover the model in Equation (9), we simulated 100
spike trains (Fig. 1A) with known functions λ1(t), λ2(t− t∗) and λ3(φ). Using the simulated spike
trains and phase of the oscillatory drive (representing a network-wide oscillation), the MLE algorithm
accurately fit the underlying spike history (Fig. 1B), stimulus (Fig. 1C) and phase modulation (Fig.
1D) effects. Our approach can thus accurately recover the statistical relationships between firing rate
and various external factors.

6.2 Synchrony and Oscillatory Phase

We now use point process regression of our GLMs (9) and (10) to analyze the contribution of
network-wide oscillations to the synchronous spiking of two neurons. We first present numerical
simulation results where ground truth is known and then apply the same technique to experimental
neural recordings.

In the Introduction, we described how GLMs can be used to assess the role of some potentially
relevant factors in modulating spike synchrony. We designed a scenario in which we tested the
contribution of a network-wide oscillation (i.e., an oscillatory LFP) to the number of synchronous
spikes observed. This scenario is illustrated schematically in Fig. 2 for two neurons. The stimulus
effects (i.e., the tuning) of the two neurons are different, and both neurons’ spiking activities are
influenced by their own recent spike histories. Critically, these two neurons also receive a common
oscillatory signal with phase Φt that modulates their firing rate, but their individual phase modulation
curves are shifted (i.e., they have different preferred phases Φpref ). Because the preferred phase
modulates the average timing of each spike in one oscillatory cycle (in this example, ∼10 ms),
differences in preferred phase lead to a relative shift in spike timing between the two neurons.
The larger this shift, the less synchronized are their spikes. As a result, the observed number of
synchronized spikes is dependent on the difference of preferred phase ∆Φpref .

This simple scenario was used to demonstrate the effectiveness of the procedure, in principle,
and to investigate its statistical power. The assumption that two neurons have different phase
modulation curves has been reported both experimentally [Jia et al., 2013, Snyder and Smith, 2015]
and theoretically [Richardson, 2008]. Jia et al. [Jia et al., 2013] have shown that neurons in area
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Figure 1: Simulated spike trains and results of model fitting. (A) Simulated spike trains in
response to a fluctuating stimulus and oscillatory drive. (B,C,D) Ground truth (red) and fitted
results (blue) for different terms in the firing-rate probability model. For each fitted result, we used
a parametric bootstrap to determine the 95% confidence band (cyan). (B) Effect of auto-history
λ2(t − t∗) on output firing rate. (C) Effect of stimulus λ1(t) on output firing rate. (D) Phase
modulation curve λ3(φ) of firing rate.

V1 have various preferred phases and the distribution of the preferred phase can change in response
to different stimuli. Richardson [Richardson, 2008] computed analytically the modulation of the
oscillatory signal for an exponential integrated-and-fire neuron. He showed that the modulation is
influenced by biophysical properties of the neuron. He also showed that there is a phase lag between
the peak firing rate and the peak of the oscillatory signal, which corresponds to the preferred phase in
λ3(φ), and this phase lag is dependent on properties of the neuron. Usually the oscillations near two
neurons in a small area are very similar; thus the assumption that two neurons receive a common
modulation is reasonable. For two neurons located far apart (e.g., two brain areas), this assumption
should be useful as long as the two oscillations are coherent. This more general case is relevant to
hypotheses about mechanisms of neural communication [Fries, 2005, Jia et al., 2013].

To demonstrate directly the relationship between an oscillatory LFP and spike synchrony, we sim-
ulated spike trains from two neurons, then fitted models (9) and (10). For each model we used the
estimator

ζ̂12 =
Observed number of synchronized spikes
Predicted number of synchronized spikes

=
Nobs
Npred

of its theoretical counterpart ζ12 defined in [Kelly and Kass, 2012] (See Methods 5.3). Under
conditional independence, we have log ζ12 = 0, while conditional dependence yields either excess
synchrony (log ζ12 > 0) or suppressed synchrony (log ζ12 < 0). We tested H0 : log ζ12 = 0 using
a parametric bootstrap (see Appendix 10.3). Results are shown in Fig. 3. Using model (10) (i.e.,
without the oscillatory factor) we found that log ζ̂12 is dependent on ∆Φpref . This is because the
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Figure 2: Schematic illustration of the contribution of a network-wide oscillation to syn-
chronous spiking between two neurons. The firing probability of each neuron is influenced by
three factors: stimulus, auto-history and an oscillatory drive. The oscillatory drive is shared by the
two neurons, but each neuron exhibits a unique phase modulation curve. Spike trains of the two
neurons are observed and synchronized spikes are counted (red circles).

relative phase preference of the two neurons changed the observed number of synchronized spikes,
while the predicted number is almost the same when the contribution of the oscillatory LFP is
disregarded. In contrast, when we included the oscillatory factor according to Equation (9), we found
log ζ̂12 to be close to 0 and independent of ∆Φpref . Thus, including the oscillatory factor in our
model removes the apparent conditional dependence of the predicted spike synchrony on the relative
phase preference of the two neurons, and we can conclude that spike synchrony is associated with the
oscillatory phase.

We picked two different values of ∆Φpref (purple and cyan arrows in the Fig. 3A) to demonstrate the
described hypothesis test. In the first example, we obtained evidence against the null hypothesis of
log ζ12 = 0 using the simplified model (Fig. 3B). That is, there is evidence that the two neurons are
not conditionally independent given only the stimulus effects and spike history effects: they exhibit
significant levels of excess spike synchrony. Fig. 3C shows that including the oscillatory factor
accounts for this excess synchrony. In other words, consideration of the oscillatory LFP can explain
the higher than expected levels of spike synchrony predicted by the stimulus and spike history effects
alone. In turn, lower than expected levels of spike synchrony predicted by the stimulus and spike
history effects alone can be explained by consideration of the oscillatory LFP in the second example,
in which the oscillatory LFP suppresses spike synchrony (Fig. 3D,E).

We also investigated the amount of data needed to reliably detect excess synchrony by generating
spike trains with varying numbers of trials, varying values of ζ , and two levels of firing rate, and then
computing the probability of rejecting the null hypothesis (i.e., the statistical power, see Appendix
10.4). Fig. 3 F displays the power when we used the same simulation parameters (apart from ζ and
number of trials) as in Fig. 3 A-E. A standard target for power in the statistics literature is 0.8, and
we have indicated this level of power with a red line in Fig. 3 F. Thus, to attain this high level of
power when ζ = 1.125 we need 70 trials, but when ζ = 1.4 we need only 5 trials. This number is
also highly dependent on the mean firing rate. When we change the firing rate from 25 Hz to 10
Hz, we need much more data to detect excess synchrony (Fig. 3G). The simulation procedure is
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Figure 3: Network-wide oscillations can enhance or suppress the predicted levels of spike syn-
chrony. (A) Dependence of log ζ̂12 on the difference in preferred phases between two neurons, as
computed using models with and without an oscillatory factor. Purple and cyan arrows indicate two
different ∆(Φpref )s. (B) Bootstrap-generated distribution of log ζ̂12 values under the null hypothesis
of log ζ12 = 0. Arrowhead shows the value of log ζ̂12 computed by the simplified model. Thus, a
significantly larger number of synchronous spikes is observed than predicted by the model lacking
an oscillatory factor (log(ζ̂12) = 0.057 ± 0.013, p value = 0.0025). (C) Including an oscillatory
factor in the model yields an accurate prediction of the observed number of synchronous spikes
(log(ζ̂12) = −0.006± 0.014, p value = 0.6775). (D, E) Same as (B,C) for different preferred phases
that lead to significantly lower synchrony than predicted when an oscillatory factor is not included
in the model (D: log(ζ̂12) = −0.082± 0.013, p value = 0.0025; E: log(ζ̂12) = −0.009± 0.015, p
value = 0.2700). (F) Dependence of the power on number of trials and ζ. The mean firing rate is 25
Hz. The red and green lines indicate choices of ζ and N for which the power equals 0.8, based on
simulation and theory respectively. (G) Same as (F), but the mean firing rate is 10 Hz.

computationally slow, but a fast approximation is given by

N =

⌈
1

Tλ1λ2δ

(
Φ−1(0.95)− Φ−1(0.2)/

√
ζ

log ζ

)2
⌉

where T is the length of one trial, λ1 and λ2 are mean firing rates of two neurons, and δ is the bin
size for detecting synchronized spikes. The approximate power from this formula is given by the
green curves in Fig. 3F,G. The formula is derived in Appendix 10.4.

6.3 Applications to Experimental Neural Recordings

To further demonstrate the value of our approach, we next examined the relationship between
an oscillatory signal and spike synchrony in experimental neural recordings from two distinct
preparations: hippocampal CA1 pyramidal cells recorded in vitro and V4 neurons recorded in vivo.

6.3.1 Hippocampal CA1 pyramidal cells

We first designed an experiment to resemble the scenario proposed in Fig. 2 using whole-cell patch
clamp recordings in a controllable acute slice preparation. In this experiment, we recorded the spiking
response of, and spike synchrony between, two CA1 pyramidal cells (Fig. 4A,B) in response to
an arbitrary stimulus with and without a shared oscillatory signal. Critically, to directly test the
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relationship between the oscillatory signal and the resulting spike synchrony, we limited potential
confounding influences on spike synchrony (e.g., common neuromodulatory influences, coupling
between two neurons) by recording these neurons sequentially in two separate slices. Each neuron
was injected with 100 trials of a 2 s-long 150 pA step current overlaid with a slow sinusoidal current
(2 Hz frequency, 25 pA amplitude) and white noise (σ = 10 pA) to evoke physiological spike
trains with low trial-to-trial reliability. The slow 2 Hz component was the same for all trials, and
it generated visible time-varying fluctuations that are visible in the raster plots in Fig 4A,B, which
led to a time-varying PSTH that was captured by the λ1(t) term in Equation (9). On 50 random
trials (“Exp. 2”), an additional sinusoidal current (40 Hz frequency, 15 pA amplitude) with random
initial phase (but identical between the two neurons) was also injected to simulate a gamma frequency
network-wide oscillation. The 40 Hz component was not consistent over trials due to varying initial
phases (S1 Fig. A), and its effect is, therefore, not captured by λ1(t). Instead, this 40 Hz modulatory
effect was captured through the term λ3(Φt) in Equation (9).

Thus, in the 50 trials without the simulated network-wide oscillation (“Exp. 1”), each neuron fired
according to the its own stimulus and auto-history effects, generating a certain level of largely
spontaneous spike synchrony reflecting the neurons’ fluctuating stimulus-driven firing rates. Using

Figure 4: Shared oscillations contribute to spike synchrony between hippocampal CA1 pyra-
midal cells in vitro. (A, B) Reconstructed morphologies (left) and raster plots of spike trains (right)
evoked in two CA1 pyramidal cells by an arbitrary stimulus waveform with a shared oscillatory
signal (“Exp. 2”). Red circles show synchronized spikes between the two neurons. (C) Estimated
phase modulation of the two recorded neurons in response to a shared oscillatory signal simulating
a network-wide oscillation. (D) In the absence of a shared oscillatory signal, the simplified model
(stimulus, or PSTH effects [P] + spike or auto-history effects [H]) lacking an oscillatory factor
accurately predicts the observed number of synchronous spikes between the two neurons. (E,F) In
the presence of a shared oscillatory signal, the simplified model (P+H) fails to explain the observed
number of synchronous spikes (E) while the full model (stimulus, or PSTH effects [P] + spike or
auto-history effects [H] + an oscillatory factor [O]) containing an oscillatory factor accurately predicts
the observed number of synchronous spikes (F).

our simplified model (Equation (10)), we fit the spike trains from “Exp. 1” and predicted the number
of synchronous spikes. As expected, the observed and predicted number of synchronous spikes
closely matched (Fig. 4D), consistent with the two neurons being conditionally independent given
the arbitrary stimulus waveform and their own recent spiking histories. That is, no other factors were
necessary to explain the observed number of synchronous spikes. However, using our simplified
model to fit the spike trains from “Exp. 2” (Fig. 4A,B), we observed a significantly greater number
of synchronous spikes than could be explained by the stimulus and the neurons’ spike histories
alone (Fig. 4E). This conditional dependence between the two neurons arose because the firing of
the two neurons was modulated by the simulated network-wide oscillation (Fig. 4C). Indeed, using
our full model (Equation (9)) to fit the spike trains from “Exp. 2” (S1 Fig. B,C,D), the number of
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synchronous spikes observed closely matched the number of synchronous spikes predicted (Fig. 4F).

This experiment demonstrates that when two experimentally recorded neurons are not modulated by
a shared oscillatory signal, then the simplified model (Equation (10)) can account for the observed
number of synchronous spikes. However, when two neurons are modulated by a shared oscillatory
signal (such as an oscillatory LFP, reflecting a network-wide oscillation), then a model including this
oscillatory factor (Equation (9)) is necessary to account for the observed number of synchronous
spikes. In contrast with our simulation above, the firing of these CA1 neurons is not described by the
GLM in Equation (9) exactly. This model mismatch did not restrict the application of our method.

6.3.2 V4 neurons

In this experiment, spike trains from a pair of neural units in V4 were simultaneously recorded (Fig.
5A,D) with a multi-electrode array during a fixation task in which spontaneous activity was measured.
These data have been analyzed in another paper [Snyder and Smith, 2015], which examined the
relationship between individual neuron’s activity and large-scale network state. Here we wanted to
test whether network-wide oscillations contribute to the excess pairwise synchrony. For each neuron,
we defined its surrounding LFP as the average of LFPs recorded at its adjacent electrodes. The
spike-triggered average of the LFP for two neurons showed that the two neurons are phase locked
to their surrounding field potential (S2 Fig. CD and [Snyder and Smith, 2015]). We also found that
the LFP showed a prominent slow oscillation (Fig. 5B,E). The LFP is thought to be the integrated
effect of synaptic and spiking activity [Buzsáki et al., 2012] near the recording sites. We filtered the
LFP on each electrode within the 4-25 Hz band and extracted its phase to fit our full model (Equation
(9)). Using the same procedure as in the case of the hippocampal CA1 pyramidal cells, we found that
a significantly larger number of synchronous spikes were observed than could be explained by the
simplified model (Fig. 5C), while the full model fully explained the spike synchronization observed
between the two neurons (Fig. 5F). These results show that for these two neurons in vivo, spike
synchronization is associated with the network-wide oscillation.

Figure 5: Shared oscillations contribute to spike synchrony between V4 neurons in vivo. (A,D)
Raster plot of spike trains from two neurons recorded simultaneously. Red circles show synchronized
spikes between the two neurons. (B,E) Raw (blue) and 4-25 Hz filtered (red) surrounding LFP related
with each neuron for a single trial. (C,F) The simplified model failed to explain the observed number
of synchronous spikes (C), while the full model containing an oscillatory factor fully accounts for the
observed number of synchronous spikes.
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7 Discussion

In this paper, we have shown how the GLM methods of [Lepage et al., 2011,Lepage et al., 2013,Kass
et al., 2011, Kelly and Kass, 2012] may be combined in order to assess the potential contribution
of network-wide oscillations to neural synchrony. The novel approach presented in this study
complements existing alternatives [Grün et al., 2002, Grün, 2009, Pipa et al., 2008] by: introducing
models of single neuron firing based on stimulus-related fluctuations as well as a network-wide
oscillatory signal; using those models to make predictions about spike synchronization; and
quantifying departures from those predictions in the observed data. We demonstrated the advantages
of this novel approach using both neural simulations and experimental neural recordings in vitro and
in vivo.

In our analyses, we have utilized a repeated-trial structure, which allowed us to estimate the stimulus
effects as a function of time, λ1(t). We note, however, that the same approach could be applied
using a linear response filter [Kelly et al., 2010, Park et al., 2014, Pillow et al., 2008] or analogous
nonlinear methods. Previous work has shown the close relationship between GLM neurons and
integrate-and-fire neurons [Koyama and Kass, 2008, Ostojic and Brunel, 2011, Paninski et al., 2010].
We only considered one band of oscillation in simulation and experimental examples, but it is
straightforward to extend this method to the case of multiple oscillations by including additional
terms in the model of Equation (9). Sometimes the firing probability may be related to the amplitude
of the oscillation At, or the magnitude of an LFP Bt (cf. [Lepage et al., 2013]). If so, we can change
f3(Φt) to f3(At) or f3(Bt). Overall, the key step of this method is to build an approximately correct
GLM. The specific form of GLM depends on the data and we can check model performance using
time rescaling [Brown et al., 2002]. We have also included a simulation to show that even when the
model is mis-specified, and therefore less sensitive, it can detect spike-LFP relationships (S3 Fig.).
We have also defined spike synchrony to involve the firing of two neurons within a few milliseconds
of each other (i.e., with zero lag on average). In other contexts, however, interest may focus on two
neurons firing in procession with a consistent positive or negative lag of many milliseconds. Our
approach could be easily applied to such lagged-synchrony cases as well.

In this paper, we consider only pairwise synchrony. By combining our approach with the procedure
proposed by [Kelly and Kass, 2012], we can also test the role of oscillations in three-way synchrony.
Briefly, we fit all single neuron firing probabilities and then compute the pairwise synchrony coeffi-
cients ζ̂ij ; we can then use an iterative algorithm to estimate the three-way synchrony coefficient ζ̂ijk,
and to test the null hypothesis of two-way interactions, instead of three-way interaction. In principle
the same steps may be followed for more than three neurons, but simulations in [Kelly and Kass,
2012] show that very large data sets would be needed in order to demonstrate higher-order interactions
convincingly in the absence of stronger assumptions about the nature of those interactions.

8 Conclusion

It has been argued that synchronous firing resulting from network-wide oscillations could provide
an essential mechanism of network information flow, and further serve as a a marker distinguishing
normal from diseased states (e.g., see [Bosman et al., 2012, Buzsáki and Draguhn, 2004, Grothe et al.,
2012, Joshua et al., 2009, Ratté et al., 2013, Singer, 1999, Uhlhaas and Singer, 2010, Womelsdorf and
Fries, 2007]). On the other hand, there has been considerable debate on this subject (see [Stanley,
2013] and references therein). We remain agnostic on this, and importantly, the value of our
methods does not depend on the ultimate outcome of this debate. Instead, we view synchrony, more
descriptively, as a feature of spike train data that needs to be explained. To this end, the framework
that we have introduced here is useful for quantifying the extent to which oscillations, as a feature of
neural activity, are associated with synchronous spiking among neurons. Armed with this method,
future experiments can measure oscillations and synchrony in a statistical framework in which their
contributions to cognitive and behavioral processes can be accurately quantified.
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10 Appendix

10.1 Approximate Function with Spline Basis

To fit the smooth functions f1(·), f2(·) and f3(·) we use cubic splines of the form

log (λ(t|Ht, Xt)) =
∑
i

ai(t)αi +
∑
j

bj(t− t∗) · βj +
∑
k

rk(Φt) · γk (13)

where {ai(t)} is a B-spline basis set for f1(t) within the range t ∈ (0, T ], {bj(t− u∗t )} is a B-spline
basis set for f2(t− t∗), and {rk(φ)} is circular spline basis set for f3(Φt). Thus, we use maximum
likelihood to fit the coefficients Θ = {α, β, γ}. We used open source software FDAfuns [Graves
et al., 2009] to create each B-spline basis sets after manually selecting knots. For the circular spline
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we pick knots equally spaced in [−π, π]. Once we get all knots {φi}, acquiring the related basis
function is straightforward [Kaufman et al., 2005] using

rk(φ) =

∞∑
m=1

2

(2πm)
4 cos (2πm (φ− φk)) . (14)

In numerical implementations, we usually cut the summation from m = 1 to m = 4 because
amplitude of each term decreases quickly.

10.2 Maximum Likelihood via Iteratively Re-Weighted Least Squares

Because L in equation (5) is a concave function, we can use iteratively reweighted least squares
(IRLS), as in typical GLM implementations. From Equations (3), (5), and (13), we can rewrite
loglikelihood in matrix form

L =Y T · logµ− I1×K · µ (15)
logµ = [A · α+B · β +R · γ] ∆ (16)

Here we have three parameter sets to fit {α, β, γ}. If we fit all three parameter sets together, the
dimension space of this GLM model is relative large. To make model fitting efficient, we prefer
back-fitting, i.e., fitting each parameter set separately, and iterating cyclically. For example, when we
fit the parameters {α}, we hold the parameters {β, γ} constant and rewrite Equation (16) as

logµ = V · θ + logµ0
t (17)

where θ ∈ {α, β, γ} and V is the corresponding covariate matrix. We fit {α, β, γ} in a sequence
and then iterate the loop until convergence. We also must place identifiability restrictions on {β, γ}
because both the auto-history and oscillatory effects modulate the spike trains and the parameters
must be constrained to provide unique solutions. We use the constraints∫ T

0
exp

[∑
j bj(τ) · βj

]
dτ

T
=1 (18)∫ π

−π exp
[∑

k rk (Φ) γk

]
dΦ

2π
=1. (19)

To avoid over-fitting of the model, we also add an l2 penalty into the objective function. Now the
problem becomes minimizing objective function

Q = −L+
λ

2
|Θ|2 = −Y T · (V ·Θ + log µ0

t ) + I1×K · exp(V ·Θ + log µ0
t ) +

λ

2
·ΘTΘ. (20)

Because the objective function Q is convex, we can iteratively maximize Θ by following the updating
rule

Θi+1 = Θi −H−1 · ∇Q (21)

where H is the Hessian of Q and∇Q is the gradient of the function, which are obtained as

∇Q =V T
[
exp(V ·Θ + log µ0

t )− Y
]

+ λΘ (22)

H =V T ·W · V + λ (23)

where W is a diagonal matrix

Wi,j =

exp
(
V ·Θ + log µ0

t

)
i

if i = j

0 otherwise.
(24)
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The algorithm is summarized as Algorithm 1, shown below.

Data: Y, V,Θ0, logµ0
t , λ

Result: Θ∗ = argminΘQ(Θ)
begin

Q1 ← Q(Θ0);
repeat

Q0 ← Q1;
∇Q← V T

[
exp(V ·Θ0 + logµ0

t )− Y
]

+ λΘ0;
W ← diag

{
exp(V ·Θ0 + logµ0

t )
}

;
H ← V T ·W · V + λ;
Θ1 ← Θ0 −H−1 · ∇Q;
Q1 ← Q(Θ1);
Θ0 ← Θ1;

until |Q1 −Q0| ≤ δ;
return Θ1;

end
Algorithm 1: IRLS method for finding argminΘQ(Θ)

10.3 Parametric bootstrap for testing null hypothesis H0 : log ζ = 0

Once we have log ζ̂ , we also need to determine its standard error and confidence interval. Furthermore,
a p value is required to test the hypothesis log ζ̂ = 0. We use a parametric bootstrap method for these
purposes, as in [Kelly and Kass, 2012]. For example, given λ̂1(t|Ht, Xt) and λ̂2(t|Ht, Xt) we can
obtain the p value as follows:

• For i in 1 : G do

1. Simulate each of the two sets of spike trains, across the same number of trials as in the
data, using the respective spike train models with λ̂1 and λ̂2.

2. Compute log ζi from the spike trains generated in step 1.

• Compute the number of values {log ζi} (out of a total of G such values) for which
|{log ζi}| > | log ζ̂| and divide by G. This is the p value.

10.4 Power analysis

Statistical power is the probability of correctly rejecting the null hypothesis when it is false. We
used the GLM model in Equation (9) to study power as a function of ζ and N (N being the number
of trials). We simulated N trials of spike train data for each of two neurons, independently, using
Equation (9) with intensity functions λ(1)(t|Ht, Xt) for the first neuron and λ(2)(t|Ht, Xt) for the
second. The synchronous spikes in the resulting spike trains occur with probability corresponding to
ζ = 1 (independence). In order to obtain sets of spike trains for other values of ζ we removed all the
synchronous spikes from the N simulated spike trains and replaced them with synchronous spikes
generated from an intensity function ζ ·λ1(t|Ht, Xt) ·λ2(t|Ht, Xt), i.e., for each time bin of width δ,
synchronous spikes occurred with probability ζ · λ1(t|Ht, Xt) · λ2(t|Ht, Xt)δ

2. However, while this
is the desired probability of synchronous spikes, it leaves the wrong marginal probability of spiking
for each neuron. To adjust these we consider the spike trains made up of only the non-synchronous
spikes, and we thin these with probabilities p(j)(t) given by

p(j)(t) =
λ(j) (t|Ht, Xt)− ζ · λ(1) (t|Ht, Xt) · λ(2) (t|Ht, Xt) δ

λ(j) (t|Ht, Xt)− λ(1) (t|Ht, Xt) · λ(2) (t|Ht, Xt) δ

for j = 1, 2. Note that when we multiply the numerator and denominator of this expression by
δ we have the ratio of the desired probability of a non-synchronous spike to the probability of a
non-synchronous spike under independence (the latter probability corresponding to the process we
are thinning). After obtaining all N trials we then fitted the model to these simulated spike trains,
found the estimate ζ̂ , and applied the hypothesis test using the bootstrap method. This procedure was

17



carried out for each ζ and N in our simulation.
Because the simulation is computationally time-consuming, for the benefit of any future efforts
along these lines, we also derived a formula to approximate the number of trials needed to get 0.8
power. Suppose we have N trials, each trial is T seconds, the bin size for synchrony detection is
δ. Denote the instantaneous firing rates for two neurons on trial i by λ(1)

t,i and λ(2)
t,i . The number of

synchronized spikes within the tth bin is y(12)
t,i and y(12)

t,i ∼ Poisson
(
ζ · λ(1)

t,i λ
(2)
t,i · δ2

)
, where ζ is

the synchrony coefficient. The total number of observed synchronized spikes given λ(1)
t,i and λ(2)

t,i is

Nobs|λ(1)
t,i , λ

(2)
t,i =

∑N
i=1

∑T/δ
t=1 y

(12)
t,i . Then we compute ζ̂ conditioned on λ(1)

t,i and λ(2)
t,i ,

ζ̂|λ(1)
t,i , λ

(2)
t,i =

Nobs|λ(1)
t,i , λ

(2)
t,i

Npred
=

∑N
i=1

∑T/δ
t=1 y

(12)
t,i∑N

i=1

∑T/δ
t=1 λ

(1)
t,i λ

(2)
t,i · δ2

.

Since y(12)
t,i ∼ Poisson

(
ζ · λ(1)

t,i · λ
(2)
t,i δ

2
)

, we can easily get

E
[
ζ̂|λ(1)

t,i , λ
(2)
t,i

]
=

E
[∑N

i=1

∑T/δ
t=1 y

(12)
t,i

]
∑N
i=1

∑T/δ
t=1 λ

(1)
t,i λ

(2)
t,i · δ2

=

∑N
i=1

∑T/δ
t=1 ζ · λ

(1)
t,i λ

(2)
t,i δ

2∑N
i=1

∑T/δ
t=1 λ

(1)
t,i λ

(2)
t,i · δ2

= ζ

V ar
(
ζ̂|λ(1)

t,i , λ
(2)
t,i

)
=
V ar

(∑N
i=1

∑T/δ
t=1 y

(12)
t,i

)
(∑N

i=1

∑T/δ
t=1 λ

(1)
t,i λ

(2)
t,i δ

2
)2 =

∑N
i=1

∑T/δ
t=1 ζ · λ

(1)
t,i λ

(2)
t,i δ

2(∑N
i=1

∑T/δ
t=1 λ

(1)
t,i λ

(2)
t,i δ

2
)2

=
ζ∑N

i=1

∑T/δ
t=1 λ

(1)
t,i λ

(2)
t,i δ

2
.

Assuming λ(1)
t,i and λ(2)

t,i are independent, we have

E

 N∑
i=1

T/δ∑
t=1

λ
(1)
t,i λ

(2)
t,i δ

2

 =

N∑
i=1

T/δ∑
t=1

E
[
λ

(1)
t,i

]
E
[
λ

(2)
t,i

]
δ2 = NTλ1λ2δ,

where λ1 and λ2 are the mean firing rates of two neurons. Then we have

E
[
ζ̂
]

=E
[
E
[
ζ̂|λ(1)

t,i , λ
(2)
t,i

]]
= ζ

V ar
(
ζ̂
)

=V ar
(
E
[
ζ̂|λ(1)

t,i , λ
(2)
t,i

])
+ E

[
V ar

(
ζ̂|λ(1)

t,i , λ
(2)
t,i

)]
=

ζ

NTλ1λ2δ
+O

(
ζ

(NTλ1λ2δ)3

)
E
[
log ζ̂

]
≈ log ζ − 1

ζ2
V ar

(
ζ̂
)

= log ζ +O

(
1

NTλ1λ2δζ

)
V ar

(
log ζ̂

)
≈ 1

ζ2
V ar(ζ̂)− 1

4ζ2
V ar

(
ζ̂
)2

=
1

ζ

1

NTλ1λ2δ
+O

( 1

(NTλ1λ2δ)2

)
.

We next assume that the distribution of log ζ̂ is (approximately) normal, i.e., log ζ̂ ∈
N
(

log ζ, 1
ζ

1
NTλ1λ2δ

)
, so that to get the power to equal 0.8 with type I error .05 we need

Φ

 x− log ζ√
1
ζ

1
NTλ1λ2δ

 =0.2

Φ

 x− log 1√
1

NTλ1λ2δ

 =0.95,
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where x is the threshold of rejecting null hypothesis log ζ = 0. We can then solve for N as the
number of needed trials for detecting excess synchony:

N =

⌈
1

Tλ1λ2δ

(
Φ−1(0.95)− Φ−1(0.2)/

√
ζ

log ζ

)2
⌉
.
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