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Abstract

We present a scalable Gaussian process model for identifying and characterizing

smooth multidimensional changepoints, and automatically learning changes in expres-

sive covariance structure. We use Random Kitchen Sink features to flexibly define

a change surface in combination with expressive spectral mixture kernels to capture

the complex statistical structure. Through the use of novel methods for additive non-

separable kernels, we scale the model to large datasets. We demonstrate the model

on numerical simulations as well as applying it to real world spatio-temporal data.

Specifically, we model state level incidence rates of measles in the United States both

before and after the introduction of the measles vaccine. Additionally we model zip

code level requests for lead testing kits in New York City over the past two years in

the midst of heightened concerns about lead-tainted water.
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1 Introduction

In human systems we are often confronted with changes or perturbations which may not

immediately disrupt an entire system. Instead, changes such as policy interventions and

natural disasters take time to affect deeply engrained habits or trickle through a complex

bureaucracy. The dynamics of these changes are non-trivial, with sophisticated distribu-

tions, rates, and intensity functions. Specifically, in the spatio-temporal domain changes

are often heterogeneously distributed across space and time. Capturing the complexity of

these changes can provide useful insight for future policy makers or scientists, enabling

them to better target interventions, structure policy interventions, or predict natural phe-

nomena.

To concretize the notion of complex changes, throughout the paper we refer to change

surfaces as the multidimensional generalization of changepoints. Unlike the discrete notion

of changepoints, a change surface can have a variable rate of change and non-monotonicity

in the transition between functional regimes. Additionally, changes can occur heteroge-

neously across the input dimensions. We formalize the notion of a change surface through

our model specification in Section 3.1.

We develop a highly expressive Gaussian process model able to characterize complex

changes and model multiple functional regimes simultaneously. By exploring the potential

demographic, political, and natural factors that affect the contours of the change surface,

this model can provide insight to policy makers.

In Section 4 we use our model to analyze two real world spatio-temporal datasets and

provide policy and scientifically relevant insights. First, we analyze monthly incidence data

for measles from 1935 to 2003 in each of the continental United States and the District of

Columbia. Our model identifies a change between two distinct regimes in the 1960s. The

change surface varies heterogeneously over space and time, with the midpoint of the change

surface in each state occurring between 1961 and 1968. This corresponds to the introduction

of the measles vaccine in 1963. The heterogeneity that we observed is important since it may

indicate differential penetration or effectiveness of the measles vaccine program in the initial

years of its implementation. We conduct a preliminary regression analysis to understand

the sources of this heterogeneity and discover that later change dates are significantly

correlated with family income inequality. This suggests that delayed effectiveness of the

measles vaccination program may have been due to difficulties with implementation in

rural and economically disadvantaged communities. Additionally, our results show that
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states with later change dates had steeper change surfaces and thus switched regimes more

quickly. This may have been a result of increased immunity nationwide making it easier

for states with later change dates to effectively control the disease in their borders. These

conclusions can provide insight to policy makers interested in structuring future vaccination

programs, encouraging them to focus on rural communities and ensure reliable delivery to

socioeconomically disadvantaged areas.

We also analyze a dataset related to concerns about lead-tainted water in New York

City. Since 2015, concerns about lead poisoning in Flint, Michigan’s water supply have

garnered national attention. We used weekly requests for residential lead testing kits in

New York City between January 2014 and April 2016 as a proxy for measuring the concern

about lead tainted water in each zip code of the city. Unlike the measles data, there is no

ground truth change or single event of importance in this domain. Applying our change

surface model we identify a change surface with shifts occurring mostly in 2015 and with

distinct geographic trends within the city. Analyzing the demographic and housing factors

that are associated with this change, we found that residents who are less affluent and

who rent their homes were associated with earlier changes. This suggests that residents

who are less knowledgeable about the infrastructure of their residence or who may feel

more vulnerable, are quicker to be concerned with environmental dangers in their homes.

Additionally, we find that households with residents over 60 are also associated with earlier

change dates. This may indicate a particular advantage of having older members in a

household who potentially have the insight and forethought to take action and test for

potential environmental hazards.

While our conclusions do not constitute causal results, they demonstrate that our

change surface model can provide unique insight to real world problems. By modeling

change surfaces and characterizing the various functional regimes we hope this method can

enable policy makers and scientists to design interventions that account for the heteroge-

neous complexity of human behaviors.

1.1 Literature review

Typically, changepoint methods (Chernoff and Zacks, 1964) model system perturbations as

discrete, or near-discrete, changepoints. These points are either identified sequentially using

online algorithms, or retrospectively. Here we consider retrospective analysis (Brodsky and

Darkhovsky, 2013; Chen and Gupta, 2011).
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Gaussian processes have been used for changepoint modeling to provide a nonparamet-

ric framework. Saatçi et al. (2010) extend the sequential Bayesian Online Changepoint

Detection algorithm (Adams and MacKay, 2007), by using a Gaussian process to model

temporal covariance within a particular regime. Similarly, Garnett et al. (2009) provide

Gaussian processes for sequential changepoint detection with mutually exclusive regimes.

These models focus on discrete changepoints, where regimes defined by distinct Gaussian

processes change instantaneously at t = t0. While such models may be appropriate for me-

chanical systems, they do not permit modeling of the complex changes common to many

human systems.

A small collection of pioneering work has briefly considered the possibility of non-

discrete Gaussian process change-points (Wilson, 2014; Lloyd et al., 2014). Yet these

models rely on sigmoid transformations of linear functions which are restricted to fixed

rates of change, and are demonstrated exclusively on small, one-dimensional time series

data. They cannot expressively characterize non-linear changes or feasibly operate on large

multidimensional data.

Applying changepoints to multiple dimensions, such as spatio-temporal data, is theoret-

ically and practically non-trivial, and has thus been seldom attempted. Notable exceptions

include Majumdar et al. (2005) who consider discrete spatio-temporal changepoints with

three additive Gaussian processes: one for times t ≤ t0, one for t > t0, and one for all t.

Alternatively, Nicholls and Nunn (2010) use a Bayesian onset-field process on a lattice to

model the spatio-temporal distribution of human settlement on the Fiji islands.

The limitations of these models reflect a common criticism that Gaussian processes are

unable to convincingly respond to changes in covariance structure. We propose addressing

this deficiency with an expressive, flexible, and scalable change surface model.

1.2 Main contributions

We introduce a scalable Gaussian process model, which is capable of automatically learning

expressive covariance functions, including a sophisticated continuous change surface. We

derive scalable inference procedures leveraging Kronecker structure, and a lower bound on

the marginal likelihood using the Weyl inequality, as a principled means for scalable kernel

learning. Our contributions include:

1. A non-discrete Gaussian process change surface model over multiple input dimen-

sions. Our model specification learns the change surface from data, enabling it to
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approximate discrete changes or gradual shifts between regimes. The input can have

arbitrary dimension, though we primarily focus our attention on spatio-temporal

modeling over 2D space and 1D time.

2. The first scalable Gaussian process changepoint model by using novel Kronecker

methods. Modern datasets require methods which can scale to hundreds of thousands

of instances.

3. A novel method for estimating the log determinant of additive positive semidefinite

matrices using the Weyl inequality. This enables scalable additive Gaussian process

models with non-separable kernels in space and time.

4. Random Kitchen Sink features to sample from a Gaussian process change surface.

This flexibility permits arbitrary changes which can adapt to heterogeneous effects

over multiple dimensions. It also allows us to analytically optimize the entire model.

5. We use logistic functions to normalize the weights on all latent functions (one per

regime), thereby providing a very interpretable model. Additionally, we permit arbi-

trary specification of the change surface parameterization, allowing experts to specify

interpretable models for how the change surface behaves over the input space.

6. A novel initialization method for spectral mixture kernels by fitting a Gaussian mix-

ture model to the Fourier transform of the data. This provides good starting values

for hyperparameters of expressive stationary kernels, allowing for proper optimization

over a multimodal parameter space.

7. A nonparametric Bayesian framework for discovering and characterizing continuous

changes in large observational data. We demonstrate our approach on numerical and

real world data, including a recently developed public health dataset. We demon-

strate how the effect of the measles vaccine introduced in the U.S. in 1963 was spatio-

temporally varying. Our model discovers the time frame in which the measles vaccine

was introduced, and accurately represents the change in dynamics before and after

the introduction, thus providing new insights into the spatial and temporal dynamics

of reported disease incidence. Additionally, we apply the model to requests for lead

testing kits in New York City over the past two years. Our results illustrate distinct

spatial patterns in increased concern about lead-tainted water.
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1.3 Outline

In the remainder of the paper, section 2 provides background on Gaussian processes. Sec-

tion 3.1 describes our change surface model including the weighting, warping, and kernel

functions. Section 3.2 introduces our novel algorithm for approximating the log deter-

minant of additive kernels. Section 3.3 details our initialization procedure including our

new approach for spectral mixture hyperparameter initialization. Section 4 describes our

numerical and real-world experiments. Finally, we conclude with summary remarks in

section 5.

2 Gaussian Processes

Given data (y,x), where y = {y1...yn} are outputs or response variables, and x =

{x1...xn}, xi ∈ RD, are inputs or covariates, we assume that the responses are generated

from the inputs by a latent function with a Gaussian process prior and Gaussian noise, such

that y = f(x) + ε, f(x) ∼ GP (m, k), ε ∼ N (0, σε). A Gaussian process is a nonparametric

prior over functions completely specified by mean and covariance functions:

f(x) ∼ GP(m(x), k(x, x′)) (1)

m(x) = E[f(x)] (2)

k(x, x′) = cov(f(x), f(x′)) (3)

Any finite collection of function values is normally distributed [f(x1)...f(xp)] ∼ N (µ,K)

where µi = m(xi) and p× p matrix Ki,j = k(xi, xj).

In order to learn hyperparameters, we often desire to optimize the marginal likelihood

of the data, conditioned on kernel hyperparameters θ, and inputs, x.

p(y|θ,x) =

∫
p(y|f,x)p(f |θ)df (4)

In the case of a Gaussian observation model we can express the log marginal likelihood as,

log p(y|θ) ∝ − log |K + σεI| − y>(K + σεI)−1y (5)

We assume familiarity with the basics of Gaussian processes as described by Rasmussen

and Williams (2006).
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3 Methodology

3.1 Smooth Change Surface Model

Change surface data consists of latent functions f1, . . . , fr defining r regimes in the data.

The transition between any two functions is considered a change surface. Were these r

functions not mutually exclusive, we could consider an input dependent mixture model

such as (Wilson et al., 2012),

y(x) = w1(x)f1(x) + · · ·+ wr(x)fr(x) + εn (6)

where the weighting functions, wi(x) : RD → R1, describe the mixing proportions over the

input domain. However, for data with changing regimes we are particularly interested in

latent functions that exhibit some amount of mutual exclusivity.

We induce this partial discretization with a warping function, σ(z) : R1 → [0, 1], which

has support over the entire real line but a range which is concentrated towards 0 and 1.

Additionally, we choose σ(z) such that it produces a convex combination over the weighting

functions,
∑r

i=1 σ(wi(x)) = 1. In this way, each wi(x) defines the strength of latent fi over

the domain, while σ(z) normalizes these weights to induce weak mutual exclusivity.

A natural choice for flexible, smooth change surfaces is the softmax function since it

can approximate a Heaviside step function or gradual changes. For r latent functions, the

resulting warping function is

σ(wi(x)) = softmax(w(x))i =
exp(wi(x))∑r
j=1 exp(wj(x))

. (7)

Our model is thus,

y(x) = σ(w1(x))f1(x) + · · ·+ σ(wr(x))fr(x) + εn (8)

If we assume Gaussian process priors on all latent functions f1(x), . . . , fr(x) we can define

y(x) = f(x) + ε where f(x) has a Gaussian process prior with covariance function,

k(x, x′) = σ(w1(x))k1(x, x
′)σ(w1(x

′))+

· · ·+ σ(wr(x))kr(x, x
′)σ(wr(x

′))
(9)

This assumption does not limit the expressiveness of Eq. 8 since each Gaussian process may
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be defined with different mean and covariance functions. Indeed, where the data exhibits

latent functional change we expect that the latent functions will have correspondingly

different hyperparameters even if the kernel forms are identical.

σ(w1(x)) . . . σ(wr(x)) induce non-stationarity since they are dependent on the input

x. Thus, even if we use stationary kernels for all ki, our model results in a flexible, non-

stationary kernel.

Each σ(wi(x)) defines how the coverage of fi(x) varies over the input domain. Where

σ(wi(x)) ≈ 1, fi(x) dominates and primarily describes the relationship between x and y,

and in cases where there is no i such that σ(wi(x)) ≈ 1, a number of functions are dominant

in defining the relationship between x and y. Since σ(z) pushes values towards 1 or 0,

the regions with multiple dominant functions are transitory and thus considered change

regions. Therefore, we can interpret how the change surface develops and where different

regimes dominate by evaluating σ(w(x)) over the input domain.

3.1.1 Design choices for w(x)

The functional form of w(x) determines how changes can occur in the data, and how many

can occur. For example, a linear parametric weighting function,

w(x) = β0 + β>1 x , (10)

only permits a single linear change surface in the data. Yet even this simple model is more

expressive than discrete changepoints since it permits flexibility in the rate of change and

extends to change regions in RD.

In order to develop a general framework we do not require any prior knowledge about

the functional form of w(x) and instead assume a Gaussian process prior on w(x). While

in principle we could sample from the full Gaussian process prior, this would lead to a

non-conjugate model which would thus be less computationally attractive and significantly

constrain the “plug and play” nature of choices for σ(z), w(x), and K. Instead, we approx-

imate the Gaussian process with Random Kitchen Sink (RKS) features and analytically

derive inference procedures using the log marginal likelihood (Lázaro-Gredilla et al., 2010).

Rahimi and Recht (2007) demonstrate that if we consider the vector of RKS features
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which maps the D dimensional input x to an m dimensional feature space,

φ(x)> =

√
2

m
[cos(ω>i x+ bi)]

m
i=1 (11)

then we can approximate any stationary kernel by taking the Fourier transform of k(x, x′) =

k(x− x′),

p(ω) =
1

2π

∫
exp(−jωδ)k(δ)dδ (12)

and putting priors over the parameters of the RKS feature mapping,

ωi ∼ p(ω) (13)

bi ∼ Uniform(0, 2π) (14)

For an RBF kernel where Λ = diag(l21, . . . , l
2
D) is a diagonal matrix of length-scales, we

sample,

ωi ∼ N (0,
1

4π2
Λ−1) (15)

Therefore, if we want to place a Gaussian process prior over our weighting functions,

w(x) ∼ GP (0,K), we can use RKS features to create a compact representation of the

kernel (Lázaro-Gredilla et al., 2010). For any finite input x we know that,

g(x) ∼ N (0,K) (16)

Equivalently, we can define parameters a such that,

a ∼ N (0,
σ0
m
I) (17)

w(x) = φ(x)>a (18)

which we can write in the explicit RKS feature space representation,

w(xi) =
r∑
i=1

ai cos(ω>i x+ bi) (19)
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allowing us to sample from w(x) with a finite sum of RKS features. Initialization of

hyperparameters σ0 and Λ is discussed in Section 3.3.

Experts with domain knowledge can specify a parametric form for w(x) other than

RKS features. Such specification can be advantageous, requiring relatively few, highly

interpretable parameters to optimize. Additionally, specifying the functional form of w(x)

does not require prior knowledge about if, where, or how rapidly changes occur.

3.1.2 Design choices for K

Each latent function is specified by a kernel with unique hyperparameters. By design, each

ki may be of a different form. For example, one function may have a Matérn kernel, another

a periodic kernel, and a third an exponential kernel. Such specification is useful when

domain knowledge provides insight into the covariance structure of the various regimes.

In order to maintain maximal generality and expressivity, we develop the model using

spectral mixture kernels (Wilson and Adams, 2013) where kSM (x̃, x̃′) =

Q∑
q=1

ωqcos(2π(x̃− x̃′)>mq)
P∏
p=1

exp(−2π2(x̃p − x̃′p)2v(p)q ) ,

where x̃ ∈ RP and Σq = diag(v
(1)
q , . . . , v

(P )
q ) is a diagonal covariance matrix for multidi-

mensional inputs. With a sufficiently large Q, spectral mixture kernels can approximate

any stationary kernel, providing the flexibility to capture complex patterns over multiple

dimensions. These kernels have been used in pattern prediction, outperforming complex

combinations of standard stationary kernels (Wilson et al., 2014).

Using spectral mixture kernels extends previous work on Gaussian processes change-

point modeling which has been restricted in practice to RBF (Saatçi et al., 2010; Garnett

et al., 2009) or exponential kernels (Majumdar et al., 2005). Expressive covariance func-

tions are particularly important with multidimensional and spatio-temporal data where the

dynamics are complex and unknown a priori. While most Gaussian process models provide

the theoretical flexibility to choose any kernel, the practical mechanics of initializing and

fitting more expressive kernels is a challenging problem. We describe an initialization pro-

cedure in Section 3.3 which we hope can enable other models to exploit expressive kernels

as well.
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3.2 Scalable inference

Analytic optimization and inference requires computation of the log marginal likelihood

(Eq. 5). Yet calculating the inverse and log determinant of n × n covariance matrices

requires O(n3) computations and O(n2) memory (Rasmussen and Williams, 2006), which is

impractical for large datasets. Recent advances in scalable Gaussian processes have reduced

this computational burden by exploiting Kronecker structure under two assumptions. One,

the inputs lie on a grid formed by a Cartesian product, x ∈ X = X(1)× ...×X(D). Two, the

kernel is multiplicative across each dimension. The assumption of separable, multiplicative

kernels is commonly employed in spatio-temporal Gaussian process modeling (Martin, 1990;

Majumdar et al., 2005; Flaxman et al., 2015). Under these assumptions, the n×n covariance

matrix K = K1 ⊗ · · · ⊗KD, where each Kd is nd × nd such that
∏D

1 nd = n.

Using efficient Kronecker algebra, Saatçi (2012) calculates the inverse and log determi-

nant calculations in O(Dn
D+1
D ) operations using O(Dn

2
D ) memory. Furthermore, Wilson

et al. (2014) extends the Kronecker methods for incomplete grids. Yet for an additive ker-

nel such as that needed for change surface modeling (Eq. 9), calculating the inverse and log

determinant is no longer feasible using Kronecker algebra as in Saatçi (2012) because the

sum of the matrix Kronecker products does not decompose as a single Kronecker product.

Instead, calculations involving the inverse can be efficiently carried out using linear con-

jugate gradients as in Flaxman et al. (2015) because the key subroutine is matrix-vector

multiplication and the sum of Kronecker products can be efficiently multiplied by a vector.

However, there is no exact method for efficient computation of the log determinant

of the sum of Kronecker products. Instead, Flaxman et al. (2015) upper bound the log

determinant using the Fiedler bound (Fiedler, 1971) which says that for n× n Hermitian

matrices A and B with sorted eigenvalues α1, . . . , αn and β1, . . . , βn respectively,

log(|A+B|) ≤
n∑
i=1

log(αi + βn−i+1) (20)

While this yields fast, O(n) computation, the Fiedler bound does not generalize for

more than two matrices. Instead, we bound the log determinant of the sum of multiple

covariance matrices using Weyl’s inequality (Weyl, 1912) which states that for n×n Hermi-

tian matrices, M = A+B, with sorted eigenvalues µ1, . . . , µn, α1, . . . , αn, and β1, . . . , βn,

µi+j−1 ≤ αi + βj (21)
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Since log(|A + B|) = log(|M |) =
∑n

i=1 log(µi) we can bound the log determinant by∑n
i+j−1=1 log(αi + βj). Furthermore, we can use the Weyl bound iteratively over pairs of

matrices to bound the sum of r covariance matrices K1, . . . ,Kr.

As the bound indicates, there is flexibility in the choice of which eigenvalue pair {αi, βj}
to sum in order to bound µi+j−1. One might be tempted to minimize over all possible

pairs for each of the n eigenvalues of M in order to obtain the tightest bound on the log

determinant. Unfortunately, this requires O(n2) computations. Instead we explore two

possible alternatives:

1. For each µi+j−1 we choose the “middle” pair such that i = j when possible, and

i = j + 1 otherwise. This heuristic requires O(n) computations.

2. We employ a greedy search by using the previous i′ and j′ to choose the minimum

of 2s pairs of eigenvalues {αi, βj}i=i
′+s

i=i′−s. When s = 0 this corresponds to the middle

heuristic. When s = n
2 this corresponds to the exact Weyl bound. The greedy search

requires O(2sn) computations.

In addition to bounding the sum of kernels, we must also deal with the scaling functions,

σ(wi(x)). We can rewrite Eq. 9 in matrix notation,

K = S1K1S
′
1 + · · ·+ SrKrS

′
r (22)

where Si = diag(σ(wi(x))) and S′i = diag(σ(wi(x
′))). Employing the bound on eigenvalues

of matrix products (Bhatia, 2013),

sort(eig(A ∗B)) ≤ sort(eig(A)) ∗ sort(eig(B)) (23)

we can bound the log determinant ofK in Eq. 22 with a Weyl approximation over [{si,l∗ki,l∗
s′i,l}nl=1]

r
i=1 where si,l is the lth largest eigenvalue of Si and ki,l is the lth largest eigenvalue

of Ki

We empirically evaluate the exact Weyl bound, middle heuristic, and greedy search with

s = 40 for our model using synthetic data (generated according to the procedure in Section

4.1). We compare these results against the Fiedler bound (in the case of two kernels), and a

recently proposed method for estimating the log determinant using Chebyshev polynomials

coupled with stochastic Hutchinson trace approximation (Han et al., 2015).

Figures 1 and 2 depict the ratio of each approximation to the true log determinant, and
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Figure 1: Left plot shows the ratio of approximations to the true log determinant of 2
additive kernels. Right plot shows the time to compute each approximation and the true
log determinant of 2 additive kernels.

the time to compute each approximation over increasing number of observations for 2 and 3

kernels. We note that all Weyl and Fiedler approximations converge to ≈ 0.8 of the true log

determinant, which was negative in the experiments. While the exact Weyl bound scales

poorly, as expected, both approximate Weyl bounds scale well. In practice, we use the

middle heuristic since it provides the fastest results. Finally, the Chebyshev-Hutchinson

method scales poorly in our case due to expensive matrix-matrix multiplications required

to construct a full K matrix.

3.3 Initialization

Since our model uses expressive spectral mixture kernels and flexible RKS features, the

parameter space is highly multimodal. Therefore, it is essential to initialize the model

hyperparameters appropriately. Below we present a method where we first initialize the

w(x) RKS features and then use those values in a novel initialization method for the

spectral mixture kernels.

To initialize w(x) defined by RKS features we first simplify our change surface model

and assume that each latent function f1, ..., fr from Eq. 8 is drawn from a Gaussian process

14



10
2

10
3

10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
3 Kernels

Lo
g 

de
te

rm
in

an
t a

pp
ro

xi
m

at
io

n 
ra

tio

Observations (#)
10

2
10

4
10

6
10

−4

10
−2

10
0

10
2

10
4

Observations (#)

T
im

e 
(s

ec
)

3 Kernels

 

 
Weyl exact
Weyl middle
Weyl greedy
Cheb−Hutch
True log det

Figure 2: Left plot shows the ratio of approximations to the true log determinant of 3
additive kernels. Right plot shows the time to compute each approximation and the true
log determinant of 3 additive kernels.

with an RBF kernel. Since RBF kernels have many fewer hyperparameters than spectral

mixture kernels, this enables the initialization to focus on w(x). Algorithm 1 provides

the procedure for initializing this simplified change surface model. Note that depending

on the application domain, a model with latent functions defined by RBF kernels may be

sufficient.

Algorithm 1 Initialize RKS w(x) by optimizing a simplified model with RBF kernels

1: for i = 1 : g do
2: Draw a, ω, b for RKS features in w(x)
3: Draw h random values for RBF kernels. Choose the best with maximum marginal

likelihood
4: Partial optimization of w(x) and RBF kernels
5: end for
6: Choose the best set of hyperparameters with maximum marginal likelihood
7: Optimize all hyperparameters until convergence

In the algorithm, we test multiple possible sets of values for w(x) by drawing the

hyperparameters a, ω, and b from their respective prior distributions (see Section 3.1.1) g
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number of times. We set reasonable values for hyperparameters in those prior distributions.

Specifically, we let Λ = ( range(x)2 )2, σ0 = std(y), and σn = mean(|y|)
10 . These choices are

similar to those used in Lázaro-Gredilla et al. (2010).

For each set of w(x) hyperparameters that we sample, we sample sets of hyperparam-

eters for the RBF kernels h number of times and select the set that yields the maximum

marginal likelihood. Then we run an abbreviated optimization procedure over each set of

w(x) and RBF hyperparameters and finally select the joint set that yields the maximum

marginal likelihood. Finally, we optimize all the resulting parameters until convergence.

In order to initialize the spectral mixture kernels, we use the initialized w(x) from

above to define the subset {x : σ(wi(x)) > 0.5} where each latent function fi from Eq.

8 is dominant. We then take a Fourier transform of y(x) over each dimension, x(d), of

{x : σ(wi(x)) > 0.5} to obtain the empirical spectrum in that dimension. Note that

we consider each dimension of x individually since we have a multiplicative Q-component

spectral mixture kernel over each dimension. Since spectral mixture kernels model the

spectral density with Q Gaussians on R1, we fit a 1D Gaussian mixture model,

p(x) =

Q∑
q=1

φqN (µq, σq) (24)

to the the empirical spectrum for each dimension. Using the learned mixture model we

initialize the parameters of our spectral mixture kernels for fi(x).

Algorithm 2 Initialize spectral mixture kernels

1: for ki : i = 1 : r do
2: for d = 1 : D do
3: Compute x(d) ∈ {x : σ(wi(x)) > 0.5}
4: Sample s ∼ |FFT (sort(y(x(d))))|2
5: Fit Q component 1D GMM to s
6: Initialize ωq = std(y) ∗ φq; mq = µq; vq = σq
7: end for
8: end for

After initializing w(x) and spectral mixture hyperparameters, we jointly optimize the

entire model using marginal likelihood and standard gradient techniques (Rasmussen and

Nickisch, 2010).
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4 Results

We demonstrate the model on multidimensional numerical simulations as well as real world

data. There do not exist standard datasets for evaluating multidimensional or spatio-

temporal changepoint models. For example, Majumdar et al. (2005) used simulations to

demonstrate the effectiveness of their model. Therefore, we illustrate our method on a stan-

dard 1D changepoint dataset frequently used in the changepoint literature. Additionally

we apply our model to two real world multidimensional datasets.

4.1 Numerical Experiments

We generate a 50 × 50 grid of synthetic data by drawing independently from two latent

functions. Each function is characterized by a 2D RBF kernel with different length-scales

and variances. The synthetic change surface between the functions is defined by σ(wpoly(x))

where wpoly(x) =
∑3

i=0 β
T
i x

i, βi ∼ N (0, 3ID).

We apply our change surface model with two latent functions, spectral mixture kernels,

and w(x) defined by 5 RKS features. We do not provide the model prior information

about the change surface or latent functions. As emphasized in Section 3.3, successful

convergence is dependent on reasonable initialization. Therefore, we use g = 100 and

h = 20 for Algorithm 1. Figures 3 and 4 depict typical results using the initialization

procedure followed by analytic optimization. The model captures the change surface and

produces an appropriate regression over the data.

Using synthetic data, we create a predictive test by splitting the data into training

and testing sets. We compare our smooth change surface model to three other expressive,

scalable methods: sparse spectrum Gaussian process with 500 basis functions (Lázaro-

Gredilla et al., 2010), sparse spectrum Gaussian process with fixed spectral points with 500

basis functions (Lázaro-Gredilla et al., 2010), and a Gaussian process with multiplicative

spectral mixture kernels in each dimension. For each method we average the results for

10 random restarts. Table 1 shows the normalized mean squared error (NMSE) of each

method,

NMSE =
‖ytest − ypred‖22
‖ytest − ȳtrain‖22

(25)

where ȳtrain is the mean of the training data.

Our change surface model performed best due to the expressive non-stationary co-
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Figure 3: Numerical data experiment. The top-left depicts the data; the bottom-left
shows the true change surface with the range from blue to red depicting σ(w1(x)). The top-
right depicts the predicted output; the bottom-right shows the predicted change surface.

variance function that fits to the different functional regimes in the data. Although the

alternate methods can flexibly adapt to the data, they must account for the change in

covariance structure by setting an effectively shorter length-scale over the data. Thus their

predictive accuracy is reduced compared to the change surface model.

4.2 British Coal Mining Data

British coal mining accidents from 1861 to 1962 have been well studied in the point process

and changepoint literature (Raftery and Akman, 1986; Adams and MacKay, 2007). We

use yearly counts of accidents from Carlin et al. (1992). Domain knowledge suggests that

the Coal Mines Regulation Act of 1887 affected the underlying process of coal mine acci-

dents. This act limited child labor in mines, detailed inspection procedures, and regulated

construction standards.

We apply our change surface model with two latent functions, spectral mixture kernels,
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Figure 4: Numerical data experiment. The top-left depicts the data; the bottom-left
shows the true change surface with the range from blue to red depicting σ(w1(x)). The top-
right depicts the predicted output; the bottom-right shows the predicted change surface.

and w(x) defined by 5 RKS features. We do not provide the model with prior information

about the 1887 legislation date. Figure 5 depicts the cumulative data and predicted change

surface. The red line marks the year 1887 and the magenta line marks x : σ(w(x)) = 0.5.

Our algorithm correctly identified the change region and suggests a gradual change that

took 5.6 years to transition from σ(w1(x)) = 0.25 to σ(w1(x)) = 0.75.

Using the coal mining data we apply a number of well known univariate changepoint

methods using their standard settings. We compared Pruned Exact Linear Time (PELT)

(Killick et al., 2012) for changes in mean and variance and a nonparametric method named

“ecp” (James and Matteson, 2013). Additionally, we tested the batch changepoint method

described in Ross (2013) with Student-t and Bartlett tests for Gaussian data as well as

Mann-Whitney and Kolmogorov-Smirnov tests for nonparametric changepoint estimation.

Figure 2 compares the dates of change identified by these methods to the date where

σ(w1(x)) = 0.5 in our method.
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Table 1: Comparison of prediction using flexible, scalable Gaussian process methods on
synthetic multidimensional change-surface data.

Method NMSE

Smooth change surface 0.00078

SSGP 0.01530

SSGP fixed 0.02820

Spectral mixture 0.00200

Figure 5: British coal mining accidents from 1851 to 1962. The blue line depicts cumu-
lative annual accidents, the green line plots σ(w(x)), the vertical red line marks the Coal
Mines Regulation Act of 1887, and the vertical magenta line indicates σ(w1(x)) = 0.5.

Most of the methods identified a change date between 1886 and 1895 except the Bartlett

test. While each method provides a point estimate of the change date, only the the change

surface model yields a clear analysis of the development of this change. Indeed the 5.6

years that the change surface transitions between σ(w1(x)) = 0.25 to σ(w1(x)) = 0.75 well

encapsulates most of the point estimate method results.

4.3 United States Measles Data

Measles was nearly eradicated in the United States following the introduction of the measles

vaccine in 1963. However, due to the vast geographic, ethnic, bureaucratic, and socio-

economic heterogeneity in the United States we may expect differential effectiveness of the

vaccination program, particularly in its initial years. We analyze monthly incidence data

for measles from 1935 to 2003 in each of the continental United States and the District of

Columbia. Incidence rates per 100,000 population based on historical population estimates

are made publicly available by Project Tycho (van Panhuis et al., 2013). We fit the model

to ≈ 33, 000 data points where x ∈ R3 with two spatial dimensions representing centroids
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Table 2: Comparing methods for estimating the date of change in coal mining data.

Method Estimated date

Change surface σ(w1(x)) = 0.5 1888.8

PELT mean change 1886.5

PELT variance change 1882.5

ecp 1887

Student-t test 1886.5

Bartlett test 1947.5

Mann-Whitney test 1891.5

Kolmogorov-Smirnov test 1896.5

of each state and one temporal dimension.

We apply our change surface model with two latent functions, spectral mixture kernels,

and w(x) defined by 5 RKS features. We do not provide prior information about the 1963

vaccination date. Results for three states are shown in Figure 6 along with the predicted

change surface. The red line marks the vaccine year of 1963, while the magenta line marks

the points where σ(w(xstate)) = 0.5.

Our algorithm correctly identified the time frame when the measles vaccine was released

in the United States. Additionally, the model suggests that the effect of the measles vaccine

varied both temporally and spatially. In Figure 7 we depict the midpoint, σ(w(xstate)) =

0.5, for each state. We illustrate the spatial variation in the change surface midpoint by

shading states with an early midpoint in red and states with later midpoint in blue. We

discover that there is an approximately 6 year difference in midpoint between states with

California being the earliest and North Dakota being the latest.

In Figure 8 we depict the change surface slope from σ(w(xstate)) = 0.25 to σ(w(xstate)) =

0.75 for each state to estimate the rate of change. We illustrate the variation in slope by

shading states with the flatter change regions in red and the steeper change regions in blue.

Here we find that some states had approximately twice the rate of change as others, with

Arizona being the flattest and Maine being the steepest.

These variations in the change surface indicate that the measles vaccine may have

affected states heterogeneously over space and time. In order to better understand these

dynamics we considered demographic information that may have contributed to differences

in measles vaccine program implementation and effectiveness. Specifically we examined po-

tential factors influencing the shift between the two regimes, σ(w(xstate)) = 0.5, which we
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Figure 6: Measles incidence levels from 3 states, 1935 - 2003. The green line plots
σ(w(xstate)), the vertical red line indicates the vaccine in 1963, and the magenta line
indicates σ(w(xstate)) = 0.5.

refer to henceforth as the change date. Since the change surface shifts primarily during

the 1960’s, we consider data only from that decade, averaging among years when data is

available for multiple years. These factors included average annual birth rates, death rates

of four age segments in the population, and absolute numbers of four age segments of the

population in each state. Since measles is often contracted by children and people are

rarely diagnosed for the disease twice in their life (it is a permanently immunizing disease),

previous literature have shown that birth rates and the size of a young non-immune pop-

ulation is important for understanding the pre-vaccination dynamics of measles vaccines

(Earn et al., 2000). We also consider average annual per capita income, median household

income, and household income inequality for each state. Additionally, we use an average

of the 1962 and 1967 censuses to compute the number of hospital and health workers in

each state per population as a proxy for the size of the state government bureaucracy

dedicated to implementing health policy. While this is an imperfect proxy as it neglects

private hospitals and doctors, it does include health care workers focussed on immuniza-
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Figure 7: US states colored by the date where σ(w(xstate)) = 0.5. Red indicates earlier
dates, with California being the earliest. Blue indicates later dates, with North Dakota
being the latest. Grayed out states were missing in the dataset.

tion. Unfortunately we were not able to separate out the number of employees concerned

specifically with immunization. Finally, we also consider the slope of the change surface

and average temperature in each state. Data were derived from historical census data

(Census Bureau, 1999).

The results of a linear regression over all factors can be seen in Table 3. Two variables

were statistically significant at a p-value < 0.05: the Gini coefficient of annual family

income per state and the slope of the change surface from σ(w(xstate)) = 0.25 to 0.75.

Both of these features have relatively large, positive coefficients. This suggests that wider

family income inequality is associated with later dates of switching to the post-vaccine

regime. One potential explanation of this phenomenon may be that states with higher

Gini coefficients may have had large socio-economically depressed communities as well as

substantial rural populations. Inoculation and vaccination education may have been more

difficult in those communities and regions, thus delaying the change date in those states.

For example, Arkansas, Alabama, Kentucky, and Tennessee are all relatively rural states

and have among the highest Gini coefficients. These states all have relatively late change

dates sometime in 1966. Another interesting example is the District of Columbia, which
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Table 3: Results from a linear regression to the United States measles change date,
σ(w(xstate)) = 0.5.

Dependent variable:

Change date

Average date rate 0-4 −228.924
(687.066)

Average date rate 5-9 8, 928.639
(6, 153.325)

Average birth rate −0.210
(0.188)

Gini of family income 32.317∗

(12.071)

Per capita income 0.00001
(0.0002)

Slope of change surface 37.913∗∗

(8.976)

Gov’t health and hospitals employees per population 326.952
(165.077)

Population 0-4 −0.00002
(0.00003)

Population 5-9 0.00002
(0.00003)

Average temperature (◦F) 0.025
(0.041)

Constant 1, 946.783∗∗

(7.614)

Observations 46
R2 0.618
Adjusted R2 0.446

Note: ∗p<0.05; ∗∗p<0.0124
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Figure 8: US states colored by the slope of σ(w(xstate)) from 0.25 to 0.75. Red indicates
flatter slopes, with Arizona being the lowest. Blue indicates steeper slopes, with Maine
being the highest. Grayed out states were missing in the dataset.

had the highest Gini coefficient. Although Washington DC is an urban center, it has long

been an area of poverty and substandard local government, which may have contributed

to its late change.

The correlation between change slope and change date suggests that states with later

changes transition more quickly from the pre-vaccine regime to the post-vaccine regime.

The steeper change slope may be due to other states already having inoculated their res-

idents. Fewer measles cases nationwide could have enabled states with later change dates

to more effectively contain the disease in their borders.

While this analysis does not provide conclusive results about underlying causal mech-

anisms, it suggests that further scientific research is warranted to understand the political

and demographic factors that contributed to differential effectiveness in the early years of

the measles vaccine program. Our conclusions indicate that future vaccination programs

should particularly consider how to quickly and effectively provide vaccinations to rural

areas and provide additional resources to socioeconomically disadvantaged communities.
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4.4 New York City Lead Data

In recent years there has been heightened concern about lead-tainted water in major U.S.

metropolitan areas. Specifically, since 2015, concerns about lead poisoning in Flint, Michi-

gan’s water supply have garnered national attention including Congressional hearings. Sim-

ilar, if potentially less extensive, lead contamination issues have been reported in a spate

of United States cities such as Cleveland, OH, New York City, NY, and Newark, NJ (Edi-

torial Board, 2016). Lead concerns in New York City have focused on lead-tainted water in

schools and public housing projects, prompting reporting in some local and national media

(Gay, 2016).

In order to understand the evolving dynamics of New York City residents’ concern

about lead-tainted water, we analyzed requests for residential lead testing kits in New

York City. These kits can be freely ordered by any resident of New York City and allow

individuals to test their household’s water for elevated levels of lead (New York, 2016). We

considered weekly requests for each zip code in New York City from January 2014 through

April 2016. This provides a proxy for measuring the concern about lead tainted water.

Figure 9 shows the aggregated requests over the entire city for lead testing kits during the

observation period. It could be argued that this is an imperfect reflection of citizen concern

since is unlikely that a household will request more than one testing kit within a relatively

short period of time. Thus a reduction in requests may be due to saturation in demand

for kits rather than a decrease in concern. However, we contend that since there were only

28,057 requests for lead testing kits over the entire observation period, and New York City

contains approximately 3,148,067 households, there is a substantial pool of households in

New York City that are able to signal their concern through requesting a lead testing kit

(Census Bureau, 2014a).

While there is a distinct uptick in requests for kits towards the middle and end of the

observation period, unlike the coal mining and measles examples there is no known ground

truth change point. We apply the change surface model with two latent functions, spectral

mixture kernels, and w(x) defined by 5 RKS features.

The model suggests that residents’ concerns about lead tainted water had distinct

spatial and temporal variation. In Figure 10 we depict the midpoint, σ(w(xzip)) = 0.5, for

each zip code. We illustrate the spatial variation in the change surface midpoint by shading

states with an early midpoint in red and states with later midpoint in blue. Regions in

Staten Island and Brooklyn experienced the earliest midpoints, with Bulls Head in Staten
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Figure 9: Requests for residential lead testing kits in New York City aggregated at a
weekly level across the entire city.

Island (zip code 10314) being the first area to reach σ(w(xzip)) = 0.5 and New Hyde Park

at the eastern edge of Queens (zip code 11040) being the last. The model detects certain

zip codes changing in mid to late 2014, which somewhat predates the national publicity of

the Flint water crisis. However, most zip codes have change dates sometime in 2015.

In Figure 11 we depict the change surface slope from σ(w(xzip)) = 0.25 to σ(w(xzip)) =

0.75 for each zip code to estimate the rate of change. We illustrate the variation in slope

by shading states with the flatter change regions in red and the steeper change regions in

blue. The flattest change surface occurred in Mariner’s Harbor in Staten Island (zip code

10303) while the steepest change surface occurred in Woodlawn Heights in the Bronx (zip

code 10470). We find that some zip codes had approximately four times the rate of change

as others.

These variations in the change surface indicate that the concerns about lead-tainted

water may have varied heterogeneously over space and time. In order to better under-

stand these patterns we considered demographic and housing characteristics that may

have contributed to differential concern among residents in New York City. Specifically

we examined potential factors influencing the change date between the two regimes, where

σ(w(xzip)) = 0.5. All data were taken from the 2014 American Community Survey 5 year

average at the zip code level (Census Bureau, 2014b). Factors we considered included infor-

mation about residents such as race of householder, education of householder, whether the

householder was the home owner, previous year’s annual income of household, number of

people per household, and whether a minor or senior lived in the household. Additionally,
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Figure 10: NYC zip codes colored by the date where σ(w(xzip)) = 0.5. Red indicates
earlier dates, with Bulls Head in Staten Island being the earliest. Blue indicates later dates,
with New Hyde Park at the eastern edge of Queens being the latest.

we considered information about when the homes were built. Finally, we also considered

the slope of the change surface in that household’s zip code.

Results of a linear regression over all factors can be seen in Table 4. Three variables

were significantly positively correlated with change dates: median annual household income

for the previous year, percentage of owner occupied households, and slope of the change

surface. Since none of the education variables were significantly correlated we believe that

the correlation with income is not a proxy for education. Instead, people with lower incomes

may tend to live in housing that is less well maintained, or at least they fear is less well

maintained. Similarly, renter households (the inverse of owner occupied households) may

be less knowledgable about the infrastructure and plumbing in their homes. Thus renters

and less affluent households may require less “activation energy” to request lead testing

kits when faced with possible environmental hazards. The positive correlation between
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Table 4: Results from a linear regression to the NYC lead change date, σ(w(xstate)) = 0.5

Dependent variable:

Change date

Median annual household income 0.00005∗∗ (0.00002)
House built after 2010 (%) 0.259 (2.798)
House built 2000-09 (%) 0.320 (2.801)
House built 1980-099 (%) 0.327 (2.798)
House built 1960-79 (%) 0.375 (2.799)
House built 1940-59 (%) 0.377 (2.796)
House built before 1939 (%) 0.390 (2.798)
Householder African American (%) −0.009 (0.081)
Householder Native American (%) −0.490 (0.749)
Householder Asian (%) 0.057 (0.089)
Householder Pacific Islander (%) −0.975 (1.993)
Householder other race (%) −0.010 (0.048)
Householder Hispanic (%) −0.009 (0.071)
Householder White (%) −0.055 (0.083)
Education less than high school −4.459 (3.438)
Education high school equivalent −4.569 (3.441)
Education some college −4.302 (3.437)
Education at least college −4.519 (3.442)
Household owner occupied (%) 7.665∗∗∗ (2.437)
Household average size −4.267 (2.969)
Family average size 2.315 (2.271)
Household with member 18 or younger (%) 0.034 (0.073)
Household with member 60 or older (%) −0.212∗∗∗ (0.071)
Household with one member (%) −0.111 (0.076)
Household with one member 65 or older (%) 0.152 (0.154)
Slope of change surface 7.655∗∗∗ (0.149)
Constant 2, 831.763∗∗∗ (434.697)

Observations 174
R2 0.979
Adjusted R2 0.975
Residual Std. Error 2.381 (df = 147)
F Statistic 260.107∗∗∗ (df = 26; 147)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 11: NYC zip codes colored by the slope of σ(w(xzip)) from 0.25 to 0.75. Red
indicates flatter slopes, with Mariner’s Harbor in Staten Island being the flattest. Blue
indicates steeper slopes, with Woodlawn Heights in the Bronx being the steepest.

change date and change slope is evident from a visual inspection of Figures 10 and 11.

This relation indicates that in zip codes that changed later, their changes were relatively

quicker.

The percentage of households with persons 60 and older was significantly negatively

correlated with change date. While the coefficient of this variable is proportionally smaller

than the previous variables, it suggest that households with older people may be more

sensitive to environmental dangers. Indeed, it may be that these older citizens have the

time to spend reading the latest news reports and concerning themselves with issues such

as lead-tainted water, or else they have the historical memory to recall the dangers such

issues have posed in the past.

This analysis indicates that more educational outreach from utility providers and the

New York City Department of Environmental Protection could help address residents con-
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cerns about lead-tainted water. Additionally, it suggests an information disparity between

renters and owner-occupiers that may be of interest to policy makers. Finally, it shows

that in certain cases there may be a particular advantage of older members in a house-

hold who potentially have the insight and forethought to take action and test for potential

environmental hazards.

Beyond the statistical analysis of demographic data, we also qualitatively examined

media coverage related to the Flint water crisis as detailed by the Flint Water Study

(Water Study, 2015). While a few articles and news reports were reported in 2014, the

vast majority began in 2015. The increased rate and national scope of this coverage in

2015 and 2016 may explain why zip codes with later change dates shifted more rapidly.

Additionally, it may be that residents with lower incomes identified earlier with those in

Flint and thus were more concerned about potentially contaminated water than their more

affluent neighbors.

5 Conclusion

We presented a scalable, multidimensional Gaussian process model with expressive kernel

structure which can learn a complex change surface from data. Using the Weyl inequal-

ity, we perform efficient inference with additive kernel structure using Kronecker methods,

enabling a multidimensional non-separable kernel. Additionally, we introduce a novel ini-

tialization algorithm for learning the w(x) RKS features and spectral mixture kernels.

Finally, we apply our model to numerical and real world data, illustrating how it can char-

acterize heterogeneous spatio-temporal change surfaces. The analysis of measles data in

the United States and requests for lead testing kits in New York City demonstrate how the

model can be used to yield scientifically and policy relevant insights.

The work on changepoint modeling is extensive and the current work cannot address

all facets of the literature. Future work can extend our retrospective analysis to address

sequential change surface detection. Additionally, the current method can be extended

to automatically determine the number of latent functions using a automatic modeling

discovery approach such as Lloyd et al. (2014).
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