
DAP: Robust Spectral Clustering via Iterated
Diffusion Reweighting

Carlton Downey

December 8, 2016

Abstract
BACKGROUND: Clustering is one of the fundamental problems in ma-
chine learning and is widely used in a variety of scientific disciplines. Spec-
tral clustering is a popular modern clustering algorithm which uses the eigen-
decomposition of a similarity matrix to find an embedding of the data, then
clusters the resulting embedding. Unfortunately the poor conditioning of the
eigendecomposition operation causes the performance of spectral clustering
to suffer in the presence of noise.

AIM: In this paper we aim to develop a noise-robust spectral clustering
algorithm.

METHOD: We build on the work of Coifman et al. We show that the
notion of diffusion can be used to identify and reduce the weight of noisy
edges (entries) in the similarity matrix. We propose a new iterative algo-
rithm consisting of three key steps: A diffusion step, a thresholding step,
and a normalization step. By iterating these 3 steps we drive noisy edges
to zero, denoising the adjacency matrix. We call this algorithm Iterative
Diffusion Reweighting (IDR).

RESULTS: We apply IDR to 2 datasets: The Utah teapot dataset and
a geotagged Twitter dataset. Using the Utah teapot we show that IDR
can recover a planted manifold in the presence of noise where alternative
approaches cannot. Specifically IDR can handle almost twice as much noise
as alternative approaches (Gaussian noise with standard deviation of 0.1 vs
0.2). Using the geotagged Twitter dataset we show that IDM results in a
superior clustering. Qualitatively the clusters appear to be more informative
when visualized, and quantitatively the clusters correspond superior tweet
prediction accuracy (0.32 vs 0.30).

CONCLUSION: We show that an iterative diffusion based algorithm can
be used to improve the performance of spectral clustering in the presence of
noise by denoising the adjacency matrix.

1

1 Introduction

Clustering is one of the fundamental problems in machine learning. In clustering
we attempt to partition a data set into groups of objects called clusters, such that
objects within a cluster are similar, while objects in different clusters are dissimilar.

Clustering is a key problem in a wide variety of scientific disciplines: in biology
clustering is used to study proteins by identifying groups of genes with similar
expression patterns [Vesth et al., 2016]; In medicine clustering is used to analyze
patterns of antibiotic resistance [Donia et al., 2014]; In sociology clustering is
used to identify patterns of criminal behavior in former foster youth [McMahon
and Fields, 2015]; and in computer vision clustering is used to detect edges and
objects in pictures [Dinh et al., 2009]. These are only a few examples of the many
problems practitioners use clustering algorithms to solve.

In recent years, spectral clustering [Luxburg, 2007, Ng et al., 2002, Spielman
and Teng, 1996] has become one of the most popular modern clustering algorithms.
It is simple to implement, can be solved efficiently by standard linear algebra
software, and very often outperforms traditional clustering algorithms such as the
k-means algorithm.

Spectral clustering applies traditional clustering techniques (such as k-means)
to a low dimensional, non-linear embedding of the data. This embedding is ob-
tained by analyzing the spectrum, or eigendecomposition, of a matrix representa-
tion of the data. The goal of this embedding is to retain the meaningful information
present in the data, while removing the non-meaningful information.

Unfortunately this embedding is highly susceptible to noise [Zhu et al., 2014,
Balakrishnan et al., 2011] due to the poor conditioning of the eigendecomposi-
tion operator. This is a result of adjacency matrix for most naturally occurring
datasets possessing a small eigengap. Poor conditioning means that a small noise
perturbation to the data set can drastically change the resulting embedding, in
turn resulting in a drastic (and usually negative) change to the resulting cluster-
ing. This significantly limits the effectiveness of spectral clustering on noisy real
world data sets.

A variety of techniques have been proposed to help alleviate this problem,
the most popular of which is known as Diffusion Maps [Coifman and Lafon, 2006].
Diffusion Maps uses the theory of random walks to help de-noise the data, resulting
in improved spectral embeddings, and hence a more noise-robust spectral clustering
algorithm.

While Diffusion Maps outperforms vanilla spectral clustering in many settings,
we believe there is still significant room for improvement.

In this document we introduce a new spectral clustering algorithm which offers
improved robustness to noise over existing techniques. This algorithm is based on
an extension of the random walk analysis made popular in the diffusion maps algo-

2

rithm. We show experimentally that this new algorithm significantly outperforms
existing techniques on two data sets.

2 Background

2.1 Spectral Clustering

Spectral clustering is a popular modern clustering algorithm based on the concept
of manifold embeddings. Spectral clustering algorithms consist of three high level
steps:

(1) Form a similarity matrix based on the data (2) Find a low dimensional
embedding of the data via the eigendecomposition of this similarity matrix (3)
Determine a good clustering using this embedding

Spectral clustering has several advantages over conventional clustering tech-
niques such as k-means: In many settings spectral clustering is guaranteed to con-
verge to the global optimum, and spectral clustering makes very few assumptions
about the shape of the clusters.

We now present the spectral clustering algorithm in detail. LetX = x1, ..., xn ⊂
Rn be a dataset. The first step in spectral clustering is to select a similarity function
S(x, y) : X × X → R which intuitively measures the similarity between pairs of
points. Using S we construct a similarity matrix W such that Wij = S(xi, xj),
i.e., W consists of all n2 pairwise similarities. We normalize the rows of W to
produce Wrw = D−1W where D is the diagonal matrix of row sums. We take
the eigendecomposition, UΣUT = Wrw and use the first few eigenvectors as our
embedding coordinates. Finally we apply a conventional clustering algorithm, such
as k-means, to our embedding to obtain our clusters.

2.2 Diffusion Maps

There have been several attempts to produce spectral clustering algorithms which
are robust to noise. One of the most successful is called the diffusion maps algo-
rithm.

Diffusion maps is based on the simple, yet powerful insight that we can use
random walks to measure the “manifold distance” between two points. The idea is
that we want to take our original similarities and replace them with new similarities
based on the manifold distance between two points. Manifold distances provide
a more robust measure of the similarity between points, because they reflect the
relative connectedness of the points, taking into account other nearby points.

The diffusion maps algorithm is deceptively simple: We replace the similarity
matrix Wrw with the transformed similarity matrix W k

rw where k ∈ N. We take the

3

eigendecomposition UΣkUT = W k
rw and use the first few columns of Uσk as our

embedding. Behind this simple transformation is a beautiful abstraction, where
we can use structural information about the local topology of the manifold to
reweight edges and help remove noise.

Diffusion maps can obtain good results on noisy data sets where vanilla spectral
clustering fails to do so. However there are still datasets which contain a modest
amount of noise where diffusion maps does not perform well. We aim to build on
the diffusion maps framework to further improve the noise-robustness of spectral
clustering.

3 Related Work

Spectral clustering dates back to the work of [Donath and Hoffman, 1973] and
[Fiedler, 1973] who in the same year both proposed partitioning graphs based on
the spectrum of the adjacency matrix. In the following years this approach was
independently rediscovered in a wide variety of fields, see [Spielman and Teng,
1996] for a nice overview of this history and [Luxburg, 2007] for an excellent and
practical tutorial on the method itself.

Since then there has been significant work on improving the performance of
spectral clustering on noisy data sets. The majority of these approaches can be
categorized into two categories: (1) methods which attempt to create robust affin-
ity matrices based on the original data [Zelnik-manor and Perona, 2004, Pavan and
Pelillo, 2007, Premachandran and Kakarala, 2013, Wang et al., 2008, Zhu et al.,
2014] and (2) approaches which attempt to improve the quality of the clustering
based on a fixed (sparse) affinity matrix with no access to the original data [Shi
and Malik, 2000, Ng et al., 2002, Xiang and Gong, 2008].

Within category (1) one popular approach is to use an adaptive scaling pa-
rameter which controls the number of neighbors at each point when learning the
nearest neighbor graph [Zelnik-manor and Perona, 2004, Wang et al., 2008]. This
approach aims to mitigate the problem of regions with different scales existing
within a single data set. Unfortunately this approach has little effect on outliers.

[Pavan and Pelillo, 2007] and [Premachandran and Kakarala, 2013] attempt to
solve the problem of outliers by using graph properties to remove outliers from
the affinity matrix. [Pavan and Pelillo, 2007] uses an approach based on cliques,
while [Premachandran and Kakarala, 2013] uses an approach based on k nearest
neighborhood evaluations at different scales. [Zhu et al., 2014] suggest an approach
where they learn a robust similarity metric based on non-euclidean distance and
feature selection with the goal of producing an improved affinity matrix

Within category (2) [Shi and Malik, 2000] propose a hierarchical spectral clus-
tering algorithm which recursively subdivides the dataset using spectral clustering

4

at each step. This approach allows them to solve a more simple binary classifica-
tion problem at each step. [Xiang and Gong, 2008] note that some eigenvectors are
more useful for clustering than others, and propose an approach based on selecting
an optimal set of eigenvectors.

4 Method

In this section we describe a new, noise-robust spectral clustering algorithm for
manifold data.

One important property of any good clustering algorithm is being robust to
noise: Even if significant noise is added to the data we can expect that it does not
change the output of the clustering algorithm.

Spectral clustering is a powerful and flexible technique; however due its de-
pendence on the eigendecomposition of a matrix it is inherently susceptible to
noise. One approach to improving the robustness of spectral clustering is to add
an additional step which de-noises the adjacency matrix prior to calculating the
embedding. This is the approach taken in diffusion maps, and the approach we
will also take.

We assumed all data points lie on a low dimensional manifold embedded in the
high dimensional space. We assume edges in our graph fall into two categories:
intra-manifold edges and between-manifold edges. Intra-manifold, or data edges,
are edges between two points which are close together on the manifold, while
between-manifold, or noise edges, are edges between two points which are far apart
on the manifold. These edges, which short-circuit the manifold, are the primary
cause of low-quality embeddings.

We want to identify and remove these between-manifold edges from the graph.
Unfortunately to determine which edges are between-manifold edges we first need
to know the manifold, and if we knew the manifold we would have already solved
the embedding problem. Therefore we turn instead to an alternative characteriza-
tion of these edges which does not require knowledge of the entire manifold. We
achieve this via the random walk interpretation of spectral clustering.

Let W be a row normalized similarity matrix, i.e.,
∑

j Wij = 1 ∀i. Let G be
the graph corresponding to this matrix, which has one node for each row/column,
and one weighted edge for each non-zero entry. We can view W as the transition
matrix of a Markov chain acting on G. Under this view each Wij = p(i, j) is the
conditional probability of moving to vertex in j in one step given we started in
vertex i. Furthermore if W is the 1-step transition probabilities, then W n consists
of the n-step transition probabilities. In other words W n

ij is the probability of
moving to vertex j in n steps given we started in vertex i.

The n-step transition probability from i to j can also be calculated combina-

5

torially as the number of distinct length n paths from i to j divided by the total
number of distinct length n paths starting at i. The first key insight behind this
work is that if (i, j) is a between-manifold edge, then there are few paths of length
n between i and j, while if (i, j) is an intra-manifold edge, then there are many
paths of length n between i and j.

Consider a vertex and its edges. If (i, j) is an intra-manifold edge then it con-
nects two distinct regions of the manifold, region A and region B. By assumption
A and B are well separated on the manifold, therefore for short random walks
we can view A and B as two distinct manifolds. This means that any length
n path connecting two points in different regions must pass through one of the
inter-cluster edges. We make the (reasonable) assumption that the number of
between-manifold edges is small relative to the total number of edges. Hence the
number of length n paths between two adjacent points in different regions is small,
while the number of length n paths between two adjacent points in the same region
is large. In other words ∀i, j ∈ A and ∀k ∈ B such that Wij > 0 and Wik > 0
then pn(i, j) > pn(i, k). This discussion suggests that if we replace W with W n

in the spectral clustering algorithm, this will act to denoise the similarity ma-
trix by decreasing the weight on inter-cluster edges, while leaving the weights on
intra-manifold edges unchanged. This is exactly the diffusion maps algorithm.

The problem with replacing W with W n is that W n contains many more edges
than W . This is due to the fact that it is possible to move between two nodes in n
steps even if there is no edge directly connecting them. These edges are undesirable
for both computational and statistical reasons. Diffusion map attempts to solve
this by thresholding the entries of the resulting matrix, however this is problematic
for a number of reasons. This is an additional parameter to tune, it increases the
cost of the eigendecomposition operation, and most importantly a single data set
may contain multiple different structures which require different thresholds.

We suggest that an alternative approach is to restrict the non-zero weights
of W n to the original non-zero weights of W , then re-normalize the rows of the
resulting matrix to produce a new transition matrix. In other words we create a
new matrix X such that X = W n

ij if Wij > 0 and X = 0 otherwise. This edge
re-weighting procedure is summarized in algorithm 1.

This allows us to reweight the edges of the graph according to the graph topol-
ogy without introducing additional edges.

4.1 Iterated Diffusion Reweighting

By replacing W with the thresholded power matrix X we can de-weight noise
edges and decrease their influence on the embedding, however we have not entirely
removed them as desired. We now show how to construct an iterative algorithm
using this procedure which can completely remove such noise edges.

6

Input: Normalized Similarity Matrix W
Random Walk Parameter n

Wold ← W
W ← W n

W (Wold = 0)← 0
normalize(W)
return W

Algorithm 1: Diffusion Reweighting

Unfortunately if we naively iterate the diffusion embedding procedure of the
previous section we will not get the desired result. It will indeed drive the noise
edges to have zero weight, however it will also drive many other edges to also have
zero weight. The problem is that even if two edges which are adjacent with the
same vertex are both intra-vertex edges, they will be assigned different values by
the diffusion embedding procedure — in fact they will converge to a multiple of the
stationary distribution of the matrix. In other words the weight assigned to edge
(i, j) will be proportional to the degree of j, d(j). This is not an issue if we only
apply this procedure once, however if we iterate it will quickly get out of hand.
Specifically in each iteration we will increase the degree of high degree vertices
and decrease the degree of low degree vertices. As we continue to iterate, edges
adjacent to low degree vertices will be driven to zero, disconnecting the graph and
resulting in poor embeddings.

The issue that’s arising here is that we are interested in the short term dynamics
of the system, but W n consists of a mixture of short term and long term dynamics.

We solve this problem by noting that the short term dynamics of the system
are present in both the rows and the columns of W n, however the long term
dynamics of the system are only present in the rows of W n. If we examine W n

we see that each row of the matrix is converging to the stationary distribution,
with probability mass spreading out from the initial vertex following the topology
of the graph. The ith row and the i column of W n exhibit nearly symetrical
behavior, because if pn(i, j) is large, then pn(j, i) is also going to be large. The key
difference is that each column is converging to a multiple of the all ones vector,
rather than a multiple of the stationary distribution. This means that the values
in each column reflect the short term dynamics of the system, while each column
is weighted according to the long term dynamics of the system.

Using this insight and our original projection algorithm we can now construct
an iterative algorithm which completely removes noise edges; see Algorithm 2 for
details. Essentially we repeatedly take an n-step random walk on the graph, take
the transpose, remove all edges which were not present in the original graph, then

7

normalize to obtain a transition matrix. Raising the matrix to a power de-weights
between-manifold edges. Taking the transpose of the matrix and normalizing
remove the long term dynamics from the system so that at each step we reweight
the edges based only on the short term dynamics of the system.

Input: Normalized Similarity Matrix W
Random Walk Parameter n
Power Parameter p
Iteration parameter k

for iter = 1 : k do
Wold ← W
W ← W n

W ← W T

W (Wold = 0)← 0
normalize(W)

end
return W

Algorithm 2: Iterative Diffusion Reweighting (IDR)

5 Theory

We show the effectiveness of our algorithm in a highly simplified setting using a
barbell graph. While this setting is highly unrealistic, and can easily be solved
using vanilla spectral clustering, it nonetheless provides us with a great deal of
intuition into why the algorithm works.

A barbell graph G = (V,E) is a graph consisting of two cliques connected by
a single edge or isthmus. Note that all edges in the graph initially have weight 1.
Let X ⊂ V and Y ⊂ V be the two cliques present in this graph. Suppose x ∈ X
and y ∈ Y are the two points connected by the isthmus, and x′ ∈ X is another
point in X. Let p(a, b) be the transition probability of moving from a to b in one
step of a Markov chain acting on the graph, and pk(a, b) be the k step transition
probability. If each clique is of size n then p(x, x′) = p(x, y) ≈ 1

n
. This implies

that the 2 step transition probability between x and x′ can be approximated as:

p2(x, x′) =
∑
v∈V

p(x, v)p(v, x′) ≈
∑
v∈X

p(x, v)p(v, x′) =
∑
v∈X

1

n

1

n
=

1

n

And that the 2 step transition probability between x and y can be approximated
as:

p2(x, y) =
∑
v∈V

p(x, v)p(v, y) ≈
∑
v∈X

p(x, v)p(v, y) = p(x, x)p(x, y) =
1

n2

8

A single iteration of our IDR algorithm replaces each transition probability with
its n step transition probability. This implies that if we apply a single iteration
of diffusion reweighting to this graph it will decrease the weight of the isthmus
edge by a factor of 1

n
while leaving all other edge weights unchanged. Therefore

applying the IDR algorithm on the barbell graph with random walks of length
2 will achieve exponentially fast convergence of the isthmus edge weight to zero
while leaving the other edges unchanged.

6 Experiments

6.1 Utah Teapot

We begin with a well known semi-synthetic embedding problem called the Utah
Teapot Problem. This dataset consists of a sequence of images taken by a camera
panning 360 degrees around a decorative teapot. Given the images, the goal is to
recover the relationship between them — in other words reconstruct the original
video sequence from the unordered set of images. In order to recover the correct
ordering we embed the set of images into 2D space. In a good embedding the
points are organised in a circle, with the position in the circle based on camera
angle. Given this embedding it is clear that we can easily reconstruct the original
video.

To increase the difficulty of this problem, we corrupt each pixel in the original
images with random Gaussian noise.

The data set we use consists of 400 images, each of size 76x101 pixels. The
Gaussian noise has mean zero and standard deviation 0.20, with the standard de-
viation selected to be sufficiently large to cause existing algorithms to fail. We
calculate a binary mutual-knn adjacency matrix W based on the Euclidean dis-
tance between images.

Figure 1: Example images from Utah Teapot dataset

9

Figure 2: Example images from Utah Teapot dataset perturbed with random
Gaussian noise

We apply 4 distinct spectral clustering algorithms to the featurized data: (1)
Spectral Clustering, (2) Spectral Clustering with Diffusion Maps, (3) Spectral
Clustering with Diffusion Maps and Thresholding, (4) Spectral Clustering with
IDR. We use cross validation to tune the parameters for each of these methods.

6.1.1 Results

(a) Perfect (Ground Truth) (b) Spectral Clustering (c) Spectral Clustering with
Diffusion Maps

(d) Spectral Clustering with
Diffusion Maps and Thresh-
olding

(e) Spectral Clustering with
IDR

Figure 3: 2D embeddings for the Utah Teapot dataset for 4 different embedding
algorithms, together with a ground truth embedding

Figure 3 presents the results of applying each embedding algorithm to the
Utah Teapot dataset described above. We see that IDR clearly outperforms the
other 3 techniques — in fact it is the only technique which is able to recover
the correct embedding. We found that Diffusion maps can correctly recover the
planted manifold when the standard deviation of the noise is at most 0.1, whereas

10

we found that IDR can recover the planted manifold when the standard deviation
of the noise is at most 0.2;

(a) 10% thresholding (b) 20% thresholding (c) 30% thresholding

(d) 40% thresholding (e) 50% thresholding (f) 60% thresholding

(g) 70% thresholding (h) 80% thresholding (i) 90% thresholding

Figure 4: Embeddings using Diffusion Maps with Thresholding for different levels
of thresholding

Figure 4 displays the embeddings resulting from the spectral clustering with
diffusion maps and thresholding, for different levels of thresholding. We see that
a moderate amount of thresholding improves the embedding; however, too much
thresholding causes the embedding to collapse.

Diffusion maps, thresholding, and IDR all aim to improve the quality of the
embedding by modifying the weights matrix. Figure 5 provides a visualization of
the weights matrix resulting from each of these techniques applied to the Utah
Teapot dataset. Each point represents an image, and two points x and y will be
connected by an edge if x is a knn of y and y is a knn of x. The weight of the edge
is indicated by its color: Red edges have high weight while blue edges have low
weight. We have arranged the points based on their location in the ground truth
embedding.

The goal of modifying the weights matrix is to preserve edges between points
which are close together, while removing edges between points which are distant.
In particular we can see a large number of noise edges between points on opposite
sides of the circle in one particular location that we want to remove. Diffusion maps
removes many of these noise edges, but many more are not removed. Thresholding
the weights matrix resulting from diffusion maps removes even more noise edges,

11

(a) Original Weights (b) Weights after Diffusion Maps

(c) Weights after Diffusion Maps and opti-
mal Thresholding

(d) Weights after IDR

Figure 5: Visualization of the Weights generated by each embedding algorithm.
Color corresponds to edge weight: blue edges have small weights, red edges have
large weights. Edges which cross the circle are noise edges and should be elimi-
nated. Dark blue weights are zero to within numerical precision. In panel (d) all
noise edges have been eliminated, while in figures (a)-(c) a significant number of
noise edges remain.

but at the cost of removing many signal edges as well. Furthermore even after
thresholding many noise edges still remain. IDR removes virtually all of the noise
edges while preserving the signal edges.

6.2 NY-NJ Twitter Data

For our second experiment we work with a proprietary Twitter data set courtesy
of Norman Sadeh’s group (sadeh@cs.cmu.edu). This data set consists 6,099,005
tweets from 232,280 New York City (NY) and New Jersey (NJ) Twitter users
collected over a 3 month period. Each tweet consists of a short message, a time
stamp, and lat-long coordinates.

Our goal is to use this dataset to identify mobility patterns and indirectly
generate abstractions of the types of activities in which different groups of people
engage during the course of the day. We investigate different ways of organizing
this data in both time and space, and evaluate the stability and predictive power
of different clustering techniques. Specifically we will use clustering techniques to

12

partition the set of Twitter users into k distinct groups based on the time/location
of their tweets. Users in the same group should have similar tweeting habits i.e they
should tweet at similar locations at similar times; while users in different groups
should have dissimilar tweeting habits. An example would be a group of users who
tweet in a particular suburb of Brooklyn in the morning and downtown Manhattan
at night. We will compare different clusterings qualitatively via visualization,
and quantitatively by their predictive power, i.e. our ability to predict tweet
time/location based on group membership.

We featurize each user using an estimate of their tweet probability at a set of
randomly chosen points in time/space. We use only the time/location of the tweet,
and do not use the text of the tweet in any way. We estimate the tweet probability
using a kernel density estimate: if Xi = {xi,1, ..., xi,m} is the list of all m tweets
for user Ui, where xi,j = (a, b, c) is a 3-tuple of time, latitude, and longitude, then
we can calculate the probability of user Ui making tweet y as:

pi(y) =
1

m

m∑
i=1

N(y, xi,Σ)

where σ is a user specified covariance matrix which determines the level of smooth-
ing. We choose a set of n points (z1, ..., zn) uniformly at random from all possible
(time, lat, long) tuples which lie inside the convex hull of our data set. Using
these two components our feature vector is obtained by evaluating the probability
distribution at each of the random points:

Fkde(Ui) = (pi(z1), ..., pi(zn))

This featurization preserves the manifold structure of the data. The euclidean
distance between two users using this density based featurization can be thought
of as a Monte-Carlo approximation to the distance between their tweet probability
distributions. Hence the distance between two users is a smooth function of the
proximity of their tweets.

We apply 4 distinct spectral clustering algorithms to the featurized data: (1)
Spectral Clustering, (2) Spectral Clustering with Diffusion Maps, (3) Spectral
Clustering with Diffusion Maps and Thresholding, (4) Spectral Clustering with
IDR.

We evaluate the resulting clusterings quantitatively based on their predictive
power. Specifically we use a metric which reflects the ability of group membership
to predict tweet time/location. The idea is that in a good clustering all clus-
ters will be tight, and that all points in the cluster will have similar behaviour,
therefore group membership provides a great deal of information about the tweet-
ing behaviour of group members. In a poor clustering, the clusters are loose,

13

and each cluster will contain a wide variety of disparate behaviour. In this set-
ting cluster membership provides us very little information about the behaviour
of group members. We use a metric which determines the top k most popular
tweet time/location tuples, called hotspots, for each cluster, then measures the
proportion of tweets for each user which are occur in one of these hotspots.

This real world dataset is a good testbed for our technique because it is a
high dimensional dataset with a naturally occurring low dimensional manifold
structure. Each user is a high dimensional point (in fact each user is a probability
distribution over time/space), but we expect the topology of the set of all users to
be low dimensional due to geographical constraints.

Details: We begin by splitting our dataset into a training set and a test set.
We featurize both sets, then cluster the training set. Given a cluster of users
Ci = {U1, ..., Um} let F (Ci) = 1

n

∑m
i=1 F (Ui) be the cluster centroid. For each point

in the test set y let N(y) be the cluster with closest cluster centroid and assign it
to that cluster. To create the hotspots we partition the space of observations using
a grid and assign tweets to the corresponding grid cells. Hotspots corresponding
to the k grid cells containing the largest number of observations. Let H(Ci) =
{h1, ..., hk} be the set of the k hotspots for cluster Ci. We define the predictive
accuracy of our model for a single user Uj given cluster assignment Ci as:

Acc(Uj|Ci) =

∑
x∈Xj

1(x ∈ H(Ci))

|Xj|

An accuracy of 1 would indicate that all user tweets lie within the cluster hotspots.
An accuracy of 0 would indicate that no user tweets lie within the cluster hotspots.
We measure the performance of each clustering algorithm using the mean accuracy
over all users. This metric is particularly useful because it will only be large if
the clusters are well balanced. While small clusters will result in good prediction
accuracy for nearby points, this will result in other large clusters which perform
poorly on all remaining points.

Acc =

∑|U |
i=1

∑
x∈Xi

1(x ∈ H(N(x)))

|Xj|

6.2.1 Results

In Figure 6 we visualize the results of applying our 4 different clustering algorithms
to the NY-NJ Twitter data using a density featurization. We see that spectral and
k-means both produce comparable, low-quality clusterings which contain a single
“mega cluster”. Based on this visualization we can conclude that vanilla spectral
clustering offers little to no benefit over k-means. This theory is supported by the
the data in Table 1 which lists the accuracy of each clustering algorithm based on

14

(a) K-Means (b) Spectral

(c) Spectral with Diffusion Maps (d) Spectral with IDR

Figure 6: Results of clustering NY-NJ Twitter data. Point color indicates cluster
membership

Algorithm Accuracy
K-Means 0.23
Spectral 0.23

Spectral + Diffusion 0.30
Spectral + IDR 0.32

Table 1: Hot spot prediction accuracy

the metric discussed above. We see that both k-means and spectral have identical
accuracy.

In contrast diffusion maps and IDR both have superior quality embeddings.
In both cases there is no mega cluster, the clusters are well balanced, and they
follow the roughly the geographical outlines we would expect. However based
on the visualization it would appear that using IDR we can identify a couple of
clusters not identified using diffusion maps. Again this theory is supported by
the data in Table 1: We see that both Diffusion maps and IDR offer significant
improvements in accuracy over k-means and Spectral clustering. Furthermore IDR
offers a (slight) further performance improvement over Diffusion Maps.

15

The superior clustering provided by IVR presents us with numerous insights
into the dataset. We see clusters emerging for many of the important ny-nj geo-
political boundaries: These include Brooklyn, Staten island, Jersey City, Trenton,
New Brunswick, and Philadelphia, Newark, Brick, Manhattan, and Queens. Many
of these these clusters overlap: For example the individuals in the Brooklyn cluster
also tweet heavily in Manhattan. Conversely individuals in the Manhattan cluster
tend not to tweet in Brooklyn. This matches our expectations: Many people who
live in Brooklyn tend to commute to Manhattan for work and leisure, however
people who live in Manhattan tend not to commute to Brooklyn. Interestingly
some clusters do not have this overlap. For instance the Brick cluster has relatively
little overlap, suggesting that people who live in Brick tend to be far less likely
to commute to another location for work. The Philadelphia cluster is another
example of this pattern..

Furthermore we see many of the major expressways clearly picked out. We
can see which expressways are used primarily by local traffic, and which are used
by commuters, in addition to which expressways are used to commute between
geopolitical areas. For example the Interstate 95 is clearly picked out as being
heavily used by commuters.

Taken together, these results suggest that given a dataset which satisfies our
modelling assumptions (low dimensional manifold structure) IDR allows us to
effectively denoise the adjacency matrix, improving the performance of spectral
clustering and providing us with a useful, high quality clustering of the data.

7 Conclusions and Future Work

We presented a new spectral clustering algorithm which uses iterated diffusion
to detect and remove outliers from the graph adjacency matrix. This approach
is based on the key idea that local diffusion can be used to reduce the weight
of noise edges, and that we can iterate this process to drive noise edges to zero
without affecting the other edges. We analyzed the behavior of this algorithm on a
simple barbell graph and showed that it results in exponentially fast convergence.
We applied this new algorithm two data sets, and showed that in both cases it
provides improved performance when compared with alternative approaches.

In the future we hope to present a thorough theoretical analysis of the IDR
algorithm on general graphs which satisfy a set of reasonable assumptions. We
hope to establish a convergence guarantee, a rate of convergence, and a bound on
the noise tolerance.

16

References

[Balakrishnan et al., 2011] Balakrishnan, S., Xu, M., Krishnamurthy, A., and
Singh, A. (2011). Noise thresholds for spectral clustering. In Shawe-Taylor,
J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems 24, pages 954–962. Curran
Associates, Inc.

[Coifman and Lafon, 2006] Coifman, R. R. and Lafon, S. (2006). Diffusion maps.
Applied and Computational Harmonic Analysis, 21(1):5 – 30. Special Issue:
Diffusion Maps and Wavelets.

[Dinh et al., 2009] Dinh, V. C., Leitner, R., Paclik, P., and Duin, R. P. W. (2009).
Image Analysis: 16th Scandinavian Conference, SCIA 2009, Oslo, Norway,
June 15-18, 2009. Proceedings, chapter A Clustering Based Method for Edge
Detection in Hyperspectral Images, pages 580–587. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Donath and Hoffman, 1973] Donath, W. E. and Hoffman, A. J. (1973). Lower
bounds for the partitioning of graphs. IBM J. Res. Dev., 17(5):420–425.

[Donia et al., 2014] Donia, M. S., Cimermancic, P., Schulze, C. J., Brown, L.
C. W., Martin, J., Mitreva, M., Clardy, J., Linington, R. G., and Fischbach,
M. A. (2014). A systematic analysis of biosynthetic gene clusters in the human
microbiome reveals a common family of antibiotics. Cell, 158(6):1402 – 1414.

[Fiedler, 1973] Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 23(2):298–305.

[Luxburg, 2007] Luxburg, U. (2007). A tutorial on spectral clustering. Statistics
and Computing, 17(4):395–416.

[McMahon and Fields, 2015] McMahon, R. C. and Fields, S. A. (2015). Criminal
conduct subgroups of “aging out” foster youth. Children and Youth Services
Review, 48(C):14–19.

[Ng et al., 2002] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral
clustering: Analysis and an algorithm. In Dietterich, T. G., Becker, S., and
Ghahramani, Z., editors, Advances in Neural Information Processing Systems
14, pages 849–856. MIT Press.

[Pavan and Pelillo, 2007] Pavan, M. and Pelillo, M. (2007). Dominant sets and
pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell., 29(1):167–172.

17

[Premachandran and Kakarala, 2013] Premachandran, V. and Kakarala, R.
(2013). Consensus of k-nns for robust neighborhood selection on graph-based
manifolds. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

[Shi and Malik, 2000] Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905.

[Spielman and Teng, 1996] Spielman, D. A. and Teng, S.-H. (1996). Spectral par-
titioning works: Planar graphs and finite element meshes. In In IEEE Sympo-
sium on Foundations of Computer Science, pages 96–105.

[Vesth et al., 2016] Vesth, T. C., Brandl, J., and Andersen, M. R. (2016). Fun-
geneclusters: Predicting fungal gene clusters from genome and transcriptome
data. Synthetic and Systems Biotechnology, pages –.

[Wang et al., 2008] Wang, J., Chang, S.-F., Zhou, X., and Wong, S. T. C. (2008).
Active microscopic cellular image annotation by superposable graph transduc-
tion with imbalanced labels. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8.

[Xiang and Gong, 2008] Xiang, T. and Gong, S. (2008). Spectral clustering with
eigenvector selection. Pattern Recogn., 41(3):1012–1029.

[Zelnik-manor and Perona, 2004] Zelnik-manor, L. and Perona, P. (2004). Self-
tuning spectral clustering. In Advances in Neural Information Processing Sys-
tems 17, pages 1601–1608. MIT Press.

[Zhu et al., 2014] Zhu, X., Loy, C. C., and Gong, S. (2014). Constructing robust
affinity graphs for spectral clustering. In Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on.

18

