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Abstract

Background Hierarchical clustering methods offer an intuitive and powerful way to
model and explore a wide variety of data sets. However, the assumption of a fixed
hierarchy is often overly restrictive as the hierarchy may evolve when working with data
generated over a period of time. Due to this restriction, existing methods that can only
learn static hierarchies and are unable to model hierarchies that evolve over time.

Aim In this paper we aim to overcome this problem. We expect both the structure of
our hierarchy and the parameters of the clusters to evolve with time. To this end we aim
to model this evolution of both structure of hierarchy and the parameters over time. Our
primary goal in this paper is to show that doing so will lead to better modeling of such
data and help us in discovering interesting trends in data.

Data We explore three different datasets: (a) 79,800 paper titles from the Proceedings
of the National Academy of Sciences (PNAS) between 1915 and 2005, containing 36,901
unique words (b) Presidential State of the Union (SoU) addresses from 1790 through
2002, containing 56,352 sentences and 21,505 unique words (c) 673,102 tweets containing
hashtags relevant to the NFL, collected over 18 weeks in 2011 and containing 2,636 unique
words.

Methods In this paper, we define a distribution over temporally varying trees with
infinitely many nodes (representing clusters) that captures evolving hierarchies. We show
that this model can be used to cluster both real-valued and discrete observations. Finally,
we propose a scalable approximate Markov chain Monte Carlo inference scheme that can
be run in a distributed manner.

Results Quantitatively, we find that our model has significantly better log-likelihood
on test data for all three datasets considered. Qualitatively, we also found interesting
sub-parts of the hierarchies and how they evolve over time. For example, we show how
“Immunology” appeared and then evolved over time in the PNAS dataset after the dis-
covery of the structure of antibodies in 1960.

Conclusion The quantitative experiment shows that as compared to baselines our dy-
namic hierarchical clustering better fits a given dataset and generalizes well to unseen
data. We also show that we are able to find interesting trends that have not been seen
before in the given datasets. Through our experiments we make a compelling case for
using dynamic hierarchical clustering models to explore data generated over a period of
time.
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1 Introduction

Hierarchically structured clustering models offer a natural representation for many forms
of data. For example, we may wish to cluster animals in a hierarchical manner, where for
example “dog” and “cat” are subcategories of “mammal”, and “poodle” and “dachshund” are
subcategories of “dog”. When modeling scientific articles, articles about machine learning
and articles about programming languages may be categorized in subcategories of articles
about computer science. Representing clusters in a tree structure allows us to explicitly
capture these relationships, and allow clusters that are closer in tree-distance to have more
similar parameters.

Since such hierarchical structures occur commonly in the real world, it is not surprising
that there exists a rich literature on statistical models for trees. We are particularly interested
in nonparametric distributions over trees – that is, distributions over trees with infinitely
many leaves and infinitely many internal nodes. We can model any finite data set using a
finite subset of such a tree, marginalizing over the infinitely many unoccupied branches. The
advantage of such an approach is that we do not have to specify the tree dimensionality in
advance, and can grow our representation in a consistent manner if we observe more data.

In many settings, our data points are associated with a point in time – for example
the date when a photograph was taken or an article was written. A stationary clustering
model is inappropriate in such a context: The number of clusters may change over time; the
relative popularities of clusters may vary; and the location of each cluster in parameter space
may change. As an example, consider a topic model for scientific articles over the twentieth
century. The field of computer science – and therefore topics related to it – did not exist
in the first half of the century. The proportion of scientific articles devoted to genetics has
likely increased over the century, and the terminology used in such articles has changed with
the development of new sequencing technology.

Despite this, to the best of our knowledge, there are no nonparametric distributions over
time-evolving trees in the literature. There exist a variety of distributions over stationary
trees [Adams et al., 2010, Rodriguez et al., 2008, Blei et al., 2004, Neal, 2003, Kingman, 1982],
and time-evolving non-hierarchical clustering models [Wang and McCallum, 2006, Caron et al., 2007,
Lin et al., 2010, Ahmed and Xing, 2008, Blei and Frazier, 2011, MacEachern, 1999, Dubey et al., 2013]
– but no models that combine time evolution and hierarchical structure. The reason for this
is likely to be practical: Inference in trees is typically very computationally intensive, and
adding temporal variation will, in general, increase the computational requirements. Design-
ing such a model must, therefore, proceed hand in hand with developing efficient and scalable
inference schemes.

In this paper, we define a distribution over temporally varying trees with infinitely many
nodes that captures the form of variation above. We describe how this model can be used
to cluster both real-valued observations and text data. Further, we propose a scalable ap-
proximate inference scheme that can be run in a distributed manner. We demonstrate the
efficacy of this inference scheme on synthetic data where ground-truth clustering is available,
and demonstrate qualitative and quantitative performance on three text corpora.
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2 Background

A dependent Dirichlet process [MacEachern, 1999] is a distribution over collections of proba-
bility measures, that vary with time or some other covariate, and has the property that, at any
time point, the marginal distribution over the probability measure at that time point is given
by a Dirichlet process [Ferguson, 1973]. This idea can be extended to other nonparametric
processes: A dependent Pitman-Yor process [Sudderth and Jordan, 2008] is a distribution
over collections of probability measures whose marginals are given by the Pitman-Yor pro-
cess [Pitman and Yor, 1997]; a dependent Indian buffet process [Williamson et al., 2010] is
a distribution over collections of binary matrices whose marginals are given by the Indian
buffet process. There exist many similarities in the constructions of such dependent nonpara-
metric processes; in Section 2.2 we discuss some distributions for nonparametric time-varying
clustering models that share properties with our model.

The key difference between our proposed model and the existing range of dependent
nonparametric models is that our model has tree-distributed marginals. There exist a number
of choices for the marginal distribution over trees, as we discuss in Section 2.2. We have
chosen to use a distribution over infinite-dimensional trees known as the Tree Structured
Stick Breaking Process TSSBP [Adams et al., 2010], which we describe in Section 2.1. Unlike
other distributions over infinite-dimensional trees, the TSSBP allows data to be associated
with internal nodes as well as leaves. We discuss how this may be desirable in Section 2.1.

2.1 The tree-structured stick-breaking process

The tree-structured stick-breaking process (TSSBP) is a distribution over trees with infinitely
many leaves and infinitely many nodes. Each node within the tree is associated with a mass
πε such that

∑
ε πε = 1, and each data point is assigned to a node in the tree according to

p(zn = ε) = πε,

where zn is the node assignment of the nth data point. The TSSBP is unique among
the current toolbox of random infinite-dimensional trees, in that data can be assigned to an
internal node, rather than a leaf, of the tree. This property is often desirable: For example in
a topic modeling context, a document could be assigned to a general topic such as “science”
that lives toward the root of the tree, or to a more specific topic such as “genetics” that is a
descendant of the science topic.

The TSSBP can be represented using two interleaving stick-breaking processes – one
(parametrized by α) that determines the size of a node and another (parametrized by γ)
that determines the branching probabilities. Index the root node as node ∅ and let π∅ be
the mass assigned to it. Index its (countably infinite) child nodes as node 1, node 2, . . .
and let π1, π2, . . . be the masses assigned to them; index the child nodes of node 1 as nodes
1 · 1, 1 · 2, . . . and let π1·1, π1·2, . . . be the masses assigned to nodes 1 · 1, 1 · 2 . . . ; etc. Then
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we can sample the infinite-dimensional tree as:

νε ∼ Beta(1, α(|ε|))
ψε ∼ Beta(1, γ)

π∅ = ν∅, φ∅ = 1

φε·i = ψε·i
∏i−1
j=1(1− ψε·j)

πε = νεφε
∏
ε′≺ε(1− νε′)φε′ ,

(1)

where |ε| indicates the depth of node ε, and ε′ ≺ ε indicates that ε′ is an ancestor node of ε.
We refer to the resulting infinite-dimensional weighted tree as Π = ((πε), (φεi)).

The resulting weighted tree-structure can be used to create distributions over hierar-
chically arranged parameters, which can in turn can be used to create distributions over
hierarchically arranged clusters. Unlike other nonparametric tree structures, clusters are not
constrained to lie at leaf nodes. In a topic modeling context, this means that a document
could be assigned to a general topic such as “science” that lives toward the root of the tree,
or to a more specific topic such as “genetics” that is a descendant of the science topic.

2.2 Other related work

In this paper, we propose a method for a temporally varying, tree-structured clustering model
with an unbounded number of clusters. A number of existing models incorporate one or more
of these features.

There exist a wide variety of distributions over trees with infinitely many nodes, in-
cluding the nested Chinese restaurant process [Blei et al., 2004], the Dirichlet diffusion tree
[Neal, 2003], and Kingman’s coalescent [Kingman, 1982]. These models differ from the TSSBP
in that data can only be associated with a leaf node, or equivalently a full path from root to
leaf. We chose to base our clustering model on the TSSBP because, in many applications, it
makes sense to associate data with internal nodes. For example, a document may be narrowly
about Physics or Biology, or may be a more broad article on the sciences in general.

While, to the best of our knowledge, there exist no temporally varying nonparametric tree
distributions, there do exist a wide variety of temporally varying nonparametric clustering
models, several of which are related to the model proposed in this paper. The dependent
Dirichlet process models of [Caron et al., 2007] and [Lin et al., 2010] specify a distribution
over clusterings of data, where the popularity of a cluster can vary over time. These models
are based on the Chinese restaurant process: the probability of joining a cluster at time t
depends on both the number of words associated with that topic at time t (as in the standard
Chinese restaurant process), and on the word counts from previous time periods. We modify
this approach to allow the node weights in our sequence of trees to vary over time.

Other models have been used to allow the parameters associated with clusters to vary
over time. The single-p dependent Dirichlet process [MacEachern, 1999] clusters data ac-
cording to a Dirichlet process, and evolves the cluster parameters according to a stochastic
process. In a parametric setting that is similar to the topic model proposed in Section 3.3,
the Dynamic Topic Model [Blei and Lafferty, 2006], parametrizes each topic, or cluster, us-
ing a logistic normal distribution. Time dependence is induced by allowing the underlying
Gaussian-distributed vector to evolve via multivariate increments.
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Figure 1: Our dependent tree-structured stick breaking process can model trees of arbitrary
size and shape, and captures popularity and parameter changes through time.

3 Dependent tree-structured stick-breaking processes

A dependent nonparametric process [MacEachern, 1999] is a distribution over collections of
random measures indexed by values in some covariate space, such that at each covariate value,
the marginal distribution is given by some known nonparametric distribution. If our covariate
space is time, this results in a distribution over time-varying random measures. There are
two main methods of inducing dependency: Allowing the sizes of the atoms composing the
measure to vary across covariate space, and allowing the parameter values associated with
the atoms to vary across covariate space. In the context of a time-dependent topic model,
these methods correspond to allowing the popularity of a topic to change over time, and
allowing the words used to express a topic to change over time (topic drift).

In this section, we describe a dependent tree-structured stick-breaking process where both
the atom sizes and their locations vary with time. We begin by describing the distribution over
atom sizes, and then use this distribution over collections of trees as the basis for temporally
varying clustering models and topic models.

3.1 A distribution over time-varying trees

We start with the basic TSSBP model of [Adams et al., 2010], described in Section 2.1 and
represented in the top row of Figure 1, and modify it so that the latent variables νε, ψε and πε
are replaced with sequences ν

(t)
ε , ψ

(t)
ε and π

(t)
ε indexed by discrete time t ∈ T (as represented

in the middle row of Figure 1). The forms of ν
(t)
ε and ψ

(t)
ε are chosen so that the marginal

distribution over the π
(t)
ε is as described in Equation 1.
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Let N (t) be the number of observations at time t, and let z
(t)
n be the node allocation of

the nth observation at time t. For each node ε at time t, let X
(t)
ε =

∑Nt
n=1 I(z

(t)
n = ε) be

the number of observations assigned to node ε at time t, and Y
(t)
ε =

∑Nt
n=1 I(ε ≺ z

(t)
n ) be the

number of observations assigned to descendants of node ε. Introduce a “window” parameter
h ∈ N. We can then define a prior predictive distribution over the tree at time t, as

ν(t)ε ∼ Beta
(
1 +

∑t−1
t′=t−hX

(t′)
ε , α(|ε|) +

∑t−1
t′=t−h Y

(t′)
ε

)
ψ
(t)
ε·i ∼ Beta

(
1 +

∑t−1
t′=t−h(X

(t′)
ε·i + Y

(t′)
ε·i ),

γ +
∑

j>i

∑t
t′=t−h(X

(t′)
ε·j + Y

(t′)
ε·j )

)
.

(2)

Following [Adams et al., 2010], we let α(j) = λjα0, for α0 > 0 and λ ∈ (0, 1). This defines

a sequence of trees (Π(t) = ((π
(t)
ε ), (φ

(t)
εi )), t ∈ T ).

Intuitively, the prior distribution over a tree at time t is given by the posterior distribution
of the (stationary) TSSBP, conditioned on the observations in some window t− h, . . . , t− 1.
The following theorem gives the equivalence of dynamic TSSBP (dTSSBP) and TSSBP

Theorem 1. The marginal posterior distribution of the dTSSBP, at time t, follows a TSSBP.

Proof. The exchangeable distribution over partitions associated with a Dirichlet process is
described using the Ewen’s Sampling Formula (ESF). As shown by [Caron et al., 2007], the
resulting random partition still follows an ESF if, at time t we deterministically delete obser-
vations from time t − h. The associated posterior random measure at time t will therefore
follow a Dirichlet process, following de Finetti’s theorem.

This result extends trivially to the dTSSBP. The child nodes in a tree are distributed
according to a Dirichlet process, and maintain Dirichlet process marginals under the described
deletion scheme. The posterior probabilities associated with internal nodes are distributed
according to a beta distribution; the beta distribution is a special case of the Dirichlet process
(where the base measure is atomic with support in two locations), therefore the marginal
distribution under deletion remains a beta distribution.

The proof is a straightforward extension of that for the generalized Pólya urn dependent
Dirichlet process [Caron et al., 2007]. The above theorem implies that Equation 2 defines a
dependent tree-structured stick-breaking process.

We note that an alternative choice for inducing dependency would be to down-weight the
contribution of observations for previous time-steps. For example, we could exponentially de-
cay the contributions of observations from previous time-steps, inducing a similar form of de-
pendency as that found in the recurrent Chinese restaurant process [Ahmed and Xing, 2008].
However, unlike the method described in Equation 2, such an approach would not yield sta-
tionary TSSBP-distributed marginals.

3.2 Dependent hierarchical clustering

The construction above gives a distribution over infinite-dimensional trees, which in turn have
a probability distribution over their nodes. In order to use this distribution in a hierarchical

Bayesian model for data, we must associate each node with a parameter value θ
(t)
ε . We wish

to capture two properties: 1) Within a tree Π(t), nodes have similar values to their parents;
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and 2) Between trees Π(t) and Π(t+1), corresponding nodes ε(t) and ε(t+1) have similar values.
This form of variation is shown in the bottom row of Figure 1. In this subsection, we present
two models that exhibit these properties: One appropriate for real-valued data, and one
appropriate for multinomial data.

3.2.1 A time-varying, tree-structured mixture of Gaussians

An infinite mixture of Gaussians is a flexible choice for density estimation and clustering
real-valued observations. Here, we suggest a time-varying hierarchical clustering model that
is similar to the generalized Gaussian model of [Adams et al., 2010]. The model assumes
Gaussian-distributed data at each node, and allows the means of clusters to evolve in an
auto-regressive model, as below:

θ
(t)
∅ |θ

(t−1)
∅ ∼ N (θ

(t−1)
∅ , σ0σ

a
1I)

θ
(t)
ε·i |θ

(t)
ε , θ

(t−1)
ε·i ∼ N (m, s2I),

(3)

where

s2 =

(
1

σ0σ
|ε·i|
1

+
1

σ0σ
|ε·i|+a
1

)−1

m =s2 ·

(
θ
(t)
ε

(σ0σ
|ε·i|
1 )2

+
ηθ

(t−1)
ε·i

σ0σ
|ε·i|+a
1

)
,

σ0 > 0, σ1 ∈ (0, 1), η ∈ [0, 1), and a ≥ 1. We denote by Θ(t) the set of all parameters θ
(t)
ε

associated with a tree Π(t). We note that, due to self-conjugacy of the Gaussian distribution
this corresponds to a Markov network with factor potentials given by unnormalized Gaussian
distributions: Up to a normalizing constant, the factor potential associated with the link

between θ
(t−1)
ε and θ

(t)
ε is Gaussian with variance σ0σ

|ε|
1 , and the factor potential associated

with the link between θ
(t)
ε and θ

(t)
ε·i is Gaussian with variance σ0σ

|ε·i|+a
1

3.2.2 A time-varying model for hierarchically clustering documents

Given a dictionary of V words, a document can be represented using a V -dimensional term
frequency (TF) or term frequency-inverse document frequency (TF-IDF) vector, that cor-
responds to a location on the surface of the (V − 1)-dimensional unit sphere. The von
Mises-Fisher distribution, with mean direction µ and concentration parameter τ , provides
a distribution on this space. A mixture of von Mises-Fisher distributions can, therefore, be
used to cluster documents [Banerjee et al., 2005, Gopal and Yang, 2014]. Following the ter-
minology of topic modeling [Blei et al., 2003], the mean direction µk associated with the kth
cluster can be interpreted as the topic associated with that cluster.

We construct a time-dependent hierarchical clustering model appropriate for documents
by associating each node of our dependent nonparametric tree with such a topic. Concretely,

let x
(t)
n be the vector associated with the nth document at time t. We assign a mean parameter

θ
(t)
ε to each node ε in each tree Π(t) as
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θ
(t)
∅ |θ

(t−1)
∅ ∼ vMF(τ

(t)
∅ , ρ

(t)
∅ )

θ
(t)
ε·i |θ

(t)
ε , θ

(t−1)
ε·i ∼ vMF(τ

(t)
ε·i , ρ

(t)
ε·i ),

(4)

where

ρ
(t)
∅ =κ0

√
1 + κ2a1 + 2κa1(θ

(t)
−1 · θ

(t−1)
∅ )

τ
(t)
∅ =

κ0θ
(t)
−1 + κ0κ

a
1θ

(t−1)
∅

ρ
(t)
∅

ρ
(t)
ε·i =κ0κ

|ε·i|
1

√
1 + κ2a1 + 2κa1(θ

(t)
ε · θ(t−1)ε·i )

τ
(t)
ε·i =

κ0κ
|ε·i|
1 θ

(t)
ε + κ0κ

|ε·i|+a
1 θ

(t−1)
ε·i

ρ
(t)
ε·i

,

κ0 > 0, κ1 > 1, and θ
(t)
−1 is a probability vector of the same dimension as the θ

(t)
ε that can be

interpreted as the parent of the root node at time t.1 This yields similar dependency behavior
to that described in Section 3.2.1.

Conditioned on Π(t) and Θ(t) = (θ
(t)
ε ), we sample each document x

(t)
n according to

z(t)n ∼Discrete(Π(t))

xn ∼vMF(θ(t), β)
(5)

This is a hierarchical extension of the temporal vMF mixture proposed by [Gopal and Yang, 2014].

4 Online Learning

In many time-evolving applications, we observe data points in an online setting. We are
typically interested in obtaining predictions for future data points, or characterizing the
clustering structure of current data, rather than improving predictive performance on historic
data. We therefore propose a sequential online learning algorithm, where at each time t we
infer the parameter settings for the tree Π(t) conditioned on the previous trees, which we do
not re-learn. This allows us to focus our computational efforts on the most recent (and likely
relevant) data. This has the added advantage of reducing the computational demands of the
algorithm, as we do not incorporate a backwards pass through the data, and are only ever
considering a fraction of the data at a time.

In developing an inference scheme, there is always a trade-off between estimate quality
and computational requirements. MCMC samplers are often the “gold standard” of inference
techniques, because they have the true posterior distribution as the stationary distribution
of their Markov Chain. However, they can be very slow, particularly in complex models.
Estimating the parameter setting that maximizes the data likelihood is a much cheaper, but
cannot capture the full posterior.

1In our experiments, we set θ
(t)
−1 to be the average over all data points at time t. This ensures that the root

node is close to the cetroid of the data, rather than the periphery.
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In order to develop an inference algorithm that is parallelizable, runs in reasonable time,
but still obtains good predictive performance, we combine Gibbs sampling steps for learning

the tree parameters (Π(t)) and the topic indicators (z
(t)
n ) with a MAP method for estimating

the location parameters (θ
(t)
ε ). The resulting algorithm has the following desirable properties:

1. The priors for ν
(t)
ε , ψ

(t)
ε only depend on {z(0)n } . . . {z(t−1)n }, whose sufficient statistics {X(0)

ε , Y
(0)
ε }

. . . {X(t−1)
ε , Y

(t−1)
ε } can be updated in amortized constant time.

2. The posteriors for ν
(t)
ε , ψ

(t)
ε are conditionally independent given {z(1)n } . . . {z(t)n }. Hence

we can Gibbs sample ν
(t)
ε , ψ

(t)
ε in parallel given the cluster assignments {z(1)n } . . . {z(t)n }

(or more precisely, their sufficient statistics {Xε, Yε}). Similarly, we can Gibbs sample

the cluster/topic assignments {z(t)n } in parallel given the parameters {ν(t)ε , ψ
(t)
ε , θ

(t)
ε } and

the data, as well as infer the MAP estimate of {θ(t)ε } in parallel given the data and the
cluster/topic assignments. Because of the online assumption, we do not consider evidence
from times u > t.

Sampling ν
(t)
ε , ψ

(t)
ε Due to the conjugacy between the beta and binomial distributions, we

can easily Gibbs sample the stick-breaking parameters

ν(t)ε |Xε, Yε ∼ Beta
(
1 +

∑t
t′=t−hX

(t′)
ε ,α(|ε|) +

∑t
t′=t−h Y

(t′)
ε

)
ψ
(t)
ε·i |Xε·i, Yε·i ∼ Beta

(
1 +

∑t
t′=t−h(X

(t′)
ε·i + Y

(t′)
ε·i ),γ +

∑
j>i

∑t
t′=t−h(X

(t′)
ε·j + Y

(t′)
ε·j )

)
.

The ν
(t)
ε , ψ

(t)
ε distributions for each node are conditionally independent given the counts X,Y ,

and so the sampler can be parallelized. We only explicitly store π
(t)
ε , φ

(t)
ε , θ

(t)
ε for nodes ε with

nonzero counts, i.e.
∑t

t′=t−hX
(t′)
ε + Y

(t′)
ε > 0.

Sampling z
(t)
n Conditioned on the ν

(t)
ε and ψ

(t)
ε , the distribution over the cluster assign-

ments z
(t)
n is just given by the TSSBP. We therefore use the slice sampling method described in

[Adams et al., 2010] to Gibbs sample z
(t)
n | {ν(t)ε }, {ψ(t)

ε }, x(t)n , θ. Since the cluster assignments
are conditionally independent given the tree, this step can be performed in parallel.

Learning θ It is possible to Gibbs sample the cluster parameters θ; however, in the docu-
ment clustering case described in Section 3.2.2, this requires far more time than sampling all
other parameters. To improve the speed of our algorithm, we instead use maximum a poste-
riori (MAP) estimates for θ, obtained using a parallel coordinate ascent algorithm. Notably,

conditioned on the trees at time t− 1 and t+ 1, the θ
(t)
ε for odd-numbered tree depths |ε| are

conditionally independent given the θ
(t)
ε′ s at even-numbered tree depths |ε′|, and vice versa.

Hence, our algorithm alternates between parallel optimization of odd-depth θ
(t)
ε , and parallel

optimization of even-depth θ
(t)
ε .

In general, the conditional distribution of a cluster parameter θ
(t)
ε depends on the values

of its predecessor θ
(t−1)
ε , its postdecessor θ

(t+1)
ε , its parent at time t, and its children at time t.

In some cases, not all of these values will be available – for example if a node was unoccupied
at previous time steps. In this case, the distribution now depends on the full history of the
parent node. For computational reasons, and because we do not wish to store the full history,
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we approximate the distribution as being dependent only on observed members of the node’s
Markov blanket.

Figure 2: Left: Ground truth tree, evolving over three time steps and Right: Recovered tree
structure, over three consecutive time periods. Each row represents an epoch. Each color indicates a
node in the tree and each arrow indicates a branch connecting parent to child; nodes are consistently
colored across time.
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5 Experimental evaluation

We evaluate the performance of our model on both synthetic and real-world data sets. Eval-
uation on synthetic data sets allows us to verify that our inference algorithm allows us to
recover the “true” evolving hierarchical structure underlying our data. Evaluation on real-
world data allows us to evaluate whether our modeling assumptions are useful in practice.

5.1 Synthetic data

We manually created a time-evolving tree, as shown in Figure 2 left, with Gaussian-distributed
data at each node. This synthetic time-evolving tree features temporal variation in node prob-
abilities, temporal variation in node parameters, and addition and deletion of nodes. Using
the Gaussian model described in Equation 3, we inferred the structure of the tree at each time
period as described in Section 4. Figure 2 right shows the recovered tree structure, demon-
strating the ability of our inference algorithm to recover the expected evolving hierarchical
structure. Note that it accurately captures evolution in node probabilities and location, and
the addition and deletion of new nodes.

5.2 Real-world data

In Section 3.2.2, we described how the dependent TSSBP can be combined with a von
Mises-Fisher likelihood to cluster documents. To evaluate this model, we looked at three
corpora:

• Twitter: 673,102 tweets containing hashtags relevant to the NFL, collected over 18 weeks in 2011
and containing 2,636 unique words (after stopwording). We grouped the tweets into 9 two-week
epochs.

• PNAS: 79,800 paper titles from the Proceedings of the National Academy of Sciences between
1915 and 2005, containing 36,901 unique words (after stopwording). We grouped the titles into 10
ten-year epochs.

• State of the Union (SoU): Presidential SoU addresses from 1790 through 2002, containing
56,352 sentences and 21,505 unique words (after stopwording). We grouped the sentences into 21
ten-year epochs.

In each case, documents were represented using their vector of term frequencies.
Our hypothesis is that the topical structure of language is hierarchically structured and

time-evolving, and that a model that captures these properties will achieve better performance
than models that ignore hierarchical structure and/or temporal evolution. To test these hy-
potheses, we compare our dependent tree-structured stick-breaking process (dTSSBP) against
several online nonparametric models for document clustering:

1. Multiple tree-structured stick-breaking process (T-TSSBP): We modeled the entire corpus using
the stationary TSSBP model, with each node modeled using an independent von Mises-Fisher
distribution. Each time period is modeled with a separate tree, using a similar implementation to
our time-dependent TSSBP.

2. “Online” tree-structured stick-breaking processes (o-TSSBP): This simulates online learning of
a single, stationary tree over the entire corpus. We used our dTSSBP implementation with an

infinite window h =∞, and once a node is created at time t, we prevent its vMF mean θ
(t)
ε from

changing in future time points.
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3. Dependent Dirichlet process (dDP): We modeled the entire corpus using an h-order Markov gener-
alized Pólya urn DDP [Caron et al., 2007]. This model was implemented by modifying our dTSSBP

code to have a single level. Node parameters were evolved as θ
(t)
k ∼ vMF(θ

(t)
k , ξ).

4. Multiple Dirichlet process (T-DP): We modeled the entire corpus using DP mixtures of von Mises-
Fisher distributions, one DP per time period. Each node was modeled using an independent von
Mises-Fisher distribution. We used our own implementation.

5. “Online” Dirichlet process (o-DP): This simulates online learning of a single DP over the entire
corpus. We used our dDP implementation with an infinite window h = ∞, and once a cluster is
instantiated at time t, we prevent its vMF mean θ(t) from changing in future time points.

Evaluation scheme: We divide each dataset into two parts: the first 50%, and last 50%
of time points. We use the first 50% to tune model parameters and select a good random
restart (by training on 90% and testing on 10% of the data at each time point), and then use
the last 50% to evaluate the performance of the best parameters/restart (again, by training
on 90% and testing on 10% data). When training the 3 TSSBP-based models, we grid-
searched κ0 ∈ {1, 10, 100, 1000, 10000}, and fixed κ1 = 1, a = 0 for simplicity. Each value
of κ0 was run 5 times to get different random restarts, and we took the best κ0-restart pair
for evaluation on the last 50% of time points. For the 3 DP-based models, there is no κ0
parameter, so we simply took 5 random restarts and used the best one for evaluation. For all
TSSBP- and DP-based models, we repeated the evaluation phase 5 times to get error bars.
Every dTSSBP trial completed in < 20 minutes on a single processor core, while we observed
moderate (though not perfectly linear) speedups with 2-4 processors.

Parameter settings: For all models, we estimated each node/cluster’s vMF concentration
parameter β from the data. For the TSSBP-based models, we used stick breaking parameters

γ = 0.5 and α(d) = 0.5d, and set θ
(t)
−1 to the average document term frequency vector at time t.

In order to keep running times reasonable, we limit the TSSBP-based models to a maximum
depth of either 3 or 4 (we report results for both)2. For the DP-based models, we used a
Dirichlet process concentration parameter of 1. The dDP’s inter-epoch vMF concentration
parameter was set to ξ = 0.001.

Results: Table 1 shows the average log (unnormalized) likelihoods on the test sets (from the
last 50% of time points). The tree-based models uniformly out-perform the non-hierarchical
models, while the max-depth-4 tree models outperform the max-depth-3 ones. On all 3
datasets, the max-depth-4 dTSSBP uniformly outperforms all models.

Discussion We started of with the assumption that evolving hierarchical clustering is a
better way to model data generated over a period of time. Since all hierarchical models
({d, o, T}-TSSBP) have better test log-likelihood as compared to non-hierarchical models
({d, o, T}-DP) we conclude that hierarchies of clusters are important while modeling text
data. Within hierarchical models, we see that the model (d-TSSBP) that capture evolving
hierarchies performs significantly better than stationary models; thus, making a compelling
case to use evolving hierarchies to model time varying data.

2One justification is that shallow hierarchies are easier to interpret than deep ones; see [Blei et al., 2004,
Ho et al., 2012].
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dTSSBP o-TSSBP T-TSSBP
Depth limit 4 3 4 3 4 3
Twitter 522± 4.35 249± 0.98 414± 3.31 199± 2.19 335± 54.8 182± 24.1
SoU 2708± 32.0 1320± 33.6 1455± 44.5 583± 16.4 1687± 329 1089± 143
PNAS 4562± 116 3217± 195 2672± 357 1163± 196 4333± 647 2962± 685

dDP o-DP T-DP
Twitter 204± 8.82 136± 0.42 112± 10.9
SoU 834± 51.2 633± 18.8 890± 70.5
PNAS 2374± 51.7 1061± 10.5 2174± 134

Table 1: Test set average log-likelihood on three datasets.

30 
virus, murine, leukemia, cells, sarcoma, 
antibody, herpes, induced, simian, type 

Immunology 
1965 - 1974 

209 
virus, simian, rna, cells, vesicular, stomatitis, 

influenza, sequence, antigen, viral 

97 
virus, leukemia, murine, sarcoma, cells, 

induced, mice, herpes, antigens, simplex 

93 
virus, sarcoma, avian, gene, transforming, genome, 

protein, sequences, murine, myeloblastosis 

63 
virus, cells, epstein, barr, murine, antibody, 

sarcoma, leukemia, vitro, antibodies 

Immunology 
1975 - 1984 

133 
virus, simian, rna, cells, vesicular, stomatitis, 

influenza, sequence, antigen, viral 

97 
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induced, mice, herpes, antigens, simplex 
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sarcoma, leukemia, vitro, antibodies 

Immunology 
1985 - 1994 

Figure 3: PNAS dataset: Birth, growth, and death of tree-structured topics in our dTSSBP model.
This illustration captures some trends in American scientific research throughout the 20th century,
by focusing on the evolution of parent and child topics in two major scientific areas: Chemistry and
Immunology (the rest of the tree has been omitted for clarity). At each epoch, we show the number
of documents assigned to each topic, as well as it’s most popular words (according to the vMF mean
θ).

5.3 Qualitative results with Discussions

In addition to better quantitative results, we find that the time-dependent tree model gives
good qualitative performance. Figure 3 shows two time-evolving sub-trees obtained from the
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Indian Wars 
1790 - 1800 

1 
indian, tribes, overtures, friendship, 
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11 
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lands, source, demarcation, practicable, 
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Indian Wars 
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Indian Wars 
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spared, source, lands, commissioners, 
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2 
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mode … 

6 
indian, tribes, friendship, overtures, spared, 

lands, source, demarcation, practicable, 
imposition 

5 
indian, tribes, friendship, overtures, spared, 

lands, source, demarcation, practicable, 
imposition 

Figure 4: State of the Union dataset: Birth, growth, and death of tree-structured topics in our
dTSSBP model. This illustration captures some key events in American history. At each epoch, we
show the number of documents assigned to each topic, as well as it’s most popular words (according
to the vMF mean θ).

PNAS data set. The top level shows a sub-tree concerned with Chemistry; the bottom level
shows a sub-tree concerned with Immunology. Our dynamic tree model discovers closely-
related topics and groups them under a sub-tree, and creates, grows and destroys individual
sub-topics as needed to fit the data. For instance, our model captures the sudden surge in
Immunology-related research from 1975-1984, which happened right after the structure of
the antibody molecule was identified a few years prior.

In the Chemistry topic, the study of mechanical properties of materials (pressure, acoustic
properties, specific heat, etc) has a continued presence throughout the century. The study of
electrical properties of materials starts off with a topic (in purple) that seems to be devoted
to Physical Chemistry. However, following the development of Quantum Mechanics in the
30s, this line of research became more closely aligned with Physics than Chemistry, and it
disappears from the sub-tree. In its wake, we see the growth of a topic more concerned with
electrolytes, solutions and salts, which remained the within the sphere of Chemistry.

Figure 4 shows time-evolving sub-trees obtained from the State of the Union dataset. We
see a sub-tree tracking the development of the Cold War. The parent node contains general
terms relevant to the Cold War; starting from the 1970s, a child node (shown in purple)
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contains terms relevant to nuclear arms control, in light of the Strategic Arms Limitation
Talks of that decade. The same decade also sees the birth of a child node focused on Asia
(shown in cyan), contemporaneous with President Richard Nixon’s historic visit to China
in 1972. In addition to the Cold War, we also see topics corresponding to events such as
the Mexican War, the Civil War and the Indian Wars, demonstrating our model’s ability to
detect events in a timeline.

6 Future Work

One of the drawbacks of having parameters pass down a tree in the manner discussed in
section 3.2.2 is that children nodes may have a lot of similarity among themselves; thereby,
leading to multiple similar topics taking birth at the same time. We believe this can be
solved by using a penalty that ensures diversity among children and leave it for future work.
Another interesting direction would be to explore large scale implementation of our model
which gives near linear speedup. Also, our current model assumes that each item belongs
to a single cluster. In future, it would be interesting to explore ways to handle admixtures
where we relax the assumption so that an item can belong to multiple clusters. In the future
it will also be interesting to see whether we can extend the parallel inference framework
of [Williamson et al., 2013] and [Dubey et al., 2014b] to do exact parallel inference in our
proposed model.
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