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Abstract

Background: A critical task in the study of biological systems is understanding how gene
expression is regulated within the cell. This problem is typically divided into multiple separate
tasks, including performing eQTL mapping to identify SNP-gene relationships and estimating
gene network structure to identify gene-gene relationships.

Aim: In this work, we pursue a holistic approach to discovering the patterns of gene regulation
in the cell. We present a new method for jointly performing eQTL mapping and gene network
estimation while encouraging a transfer of information between the two tasks.

Data: We evaluate our approach on both synthetic data and on a real yeast eQTL dataset that
contains 1, 157 SNP genotypes and 1, 409 gene expression measurements for 114 yeast samples.

Methods: To construct a unified model for jointly performing eQTL mapping and gene network
inference, we formulate the problem as a multiple-output regression task in which we aim to
learn the regression coefficients while simultaneously estimating the conditional independence
relationships among the set of response variables. The approach we develop uses structured
sparsity penalties to encourage the sharing of information between the regression coefficients
and the output network in a mutually beneficial way. Our model, inverse-covariance-fused lasso,
is formulated as a biconvex optimization problem that we solve via alternating minimization.
We derive new, efficient optimization routines to solve each convex sub-problem that are based
on existing state-of-the-art methods.

Results: We demonstrate the value of our approach by applying our method to both simulated
data and a real yeast eQTL dataset data. Experimental results demonstrate that our approach
outperforms a large number of existing methods on the recovery of the true sparse structure of
both the eQTL associations and the gene network.

Conclusions: We show that inverse-covariance-fused lasso can be used to perform joint eQTL
mapping and gene network estimation on a yeast dataset, yielding more biologically coherent
results than previous work. Furthermore, the same problem setting appears in many different
applications, and therefore our model can be deployed in a wide range of domains.
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1 Introduction

A critical task in the study of biological systems is understanding how gene expression is regulated
within the cell. Although this problem has been studied extensively over the past few decades, it has
recently gained momentum due to the rapid advancement in techniques for high-throughput data
acquisition. Within this broad task, two sub-problems of particular interest are (a) understanding
how various genetic loci regulate gene expression, a problem known as eQTL mapping (Rockman
and Kruglyak, 2006), and (b) determining which genes have a direct influence on the expression of
other genes, a problem known as gene network estimation (Gardner and Faith, 2005). Prior work
on learning regulatory associations has largely treated eQTL mapping and gene network estimation
as completely separate problems.

In this work, we pursue a holistic approach to discovering the patterns of gene regulation in the
cell by integrating eQTL mapping and gene network estimation into a single model and performing
joint inference. Specifically, given a dataset that contains both genotype information for a set of
single nucleotide polymorphisms (SNPs) and mRNA expression measurements for a set of genes,
we aim to simultaneously learn the SNP-gene and gene-gene relationships. The key element of our
approach is that we enable the transfer of knowledge between these two tasks in order to yield more
accurate solutions to both problems. In particular, we assume that two genes that are tightly linked
in a regulatory network are likely to be associated with similar sets of SNPs in an eQTL map, and
vice versa. This allows us to use information about gene-gene relationships to learn more accurate
eQTL associations, and similarly to use information about SNP-gene relationships to learn a more
accurate gene network.

We construct a unified model for this problem by formulating it as a multiple-output regression
task in which we jointly estimate the regression coefficients and the inverse covariance structure
among the response variables. Specifically, given SNPs x = (x1, . . . , xp) and genes y = (y1, . . . , yq),
our goal is to regress y on x and simultaneously estimate the inverse covariance of y. Under this
model, the matrix of regression coefficients encodes the SNP-gene relationships in the eQTL map,
whereas the inverse covariance matrix captures the gene-gene relationships in the gene network.
In order to ensure that information is transferred between the two components of the model, we
incorporate a regularization penalty that explicitly encourages pairs of genes that have a high weight
in the inverse covariance matrix to also have similar regression coefficient values. This structured
penalty enables the two estimates to learn from one another as well as from the data.

A large number of techniques have been developed to address eQTL mapping and gene network
estimation in isolation. The traditional approach to eQTL mapping is to examine each SNP-gene
pair independently and perform a univariate statistical test to determine whether an association
exists between the two. Recently, a series of more complex multivariate models have been utilized
for this task in order to jointly capture the effects of several SNPs on one gene (Michaelson et al.,
2010). Going one step further, a few approaches have been developed that jointly model multi-
ple SNPs and multiple genes (Kim and Xing, 2009; Kim et al., 2012). Conversely, the simplest
method for gene network inference is to construct a graph in which each edge is weighted by the
marginal correlation between the corresponding genes. Another related method that has recently
gained popularity, known equivalently as Gaussian graphical model estimation or inverse covariance
estimation, produces a network in which the edges are instead weighted by the conditional correla-
tions (Dempster, 1972). Other approaches include using Bayesian networks or ordinary differential
equations to model the relationships between genes. (Marbach et al., 2010).

In this work, we will use a multiple-output (also called multi-task) regression model to perform
eQTL mapping and incorporate a Gaussian graphical model over the genes in order to simultane-
ously infer the gene network. However, it is well known that model estimation is challenging in the
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high-dimensional setting in which we have more variables in the model than samples from which to
learn. This is the precisely the setting frequently encountered in genomics, where we see datasets
with at most a few hundred samples but as many as 1 million SNPs and thousands of genes. As a
result, we will incorporate several regularization penalties in order to facilitate model estimation.

The challenge of high-dimensional data has already inspired a remarkable number of useful
methods for penalized multi-task regression. Parameter estimation can be improved by leveraging
sparse regularizers to encourage the outputs to share an underlying representation. For example,
mixed-norm penalties such as the `1,2 or `1,∞ norm can be used to encourage all outputs to have
nonzero coefficients for the same set of inputs (Obozinski et al., 2008). In other cases, structured
sparsity can be used to encourage similarities only among responses that are known to be related.
Examples of such approaches include the group lasso (Yuan and Lin, 2006), which encourages groups
of related outputs to have nonzero coefficients for the same subset of inputs, and the graph-guided
fused lasso (Kim and Xing, 2009), which encourages pairs of outputs that are connected in a graph
to have similar coefficient values. These penalties leverage prior knowledge of the relationships
among the outputs (e.g. group or graph structures) to enforce similarity constraints.

The principal limitation of using such structured sparsity in multi-task regression is that it
typically requires extensive prior knowledge of the relationships among the outputs, which is not
always readily available. To circumvent this, another class of models have been developed that
jointly learn the regression coefficients along with the output dependency structure (Rothman
et al., 2010; Zhang and Yeung, 2010; Lee and Liu, 2012; Sohn and Kim, 2012; Rai et al., 2012).
However, none of these approaches use a regularization penalty to explicitly encourage shared
structure between the estimate of the regression parameters and the output network. Furthermore,
the majority of these methods do not learn the covariance structure of the outputs y but rather
the conditional covariance of the outputs given the inputs y |x. This can be interpreted as the
covariance of the noise matrix, and does not capture the true relationships between outputs.

In high-dimensional settings, inverse covariance estimation models can also benefit from penal-
ties that induce sparsity or encourage a particular structure. For example, Tan et al. (2014) use a
row-column overlap norm penalty to encourage a network structure with hubs. When the goal is
to learn a series of related networks for different conditions or time points, regularization can be
used to encourage similarities between the networks (Mohan et al., 2014; Peterson et al., 2015).

Here we present a novel approach that jointly performs eQTL mapping and gene network
inference while simultaneously leveraging structured sparsity. In particular, our work has three
significant contributions: (1) we construct a novel multiple-output regression model that jointly
estimates the regression coefficients and the output network while encouraging shared structure;
(2) we develop an efficient alternating minimization procedure for our model, which has a biconvex
objective, and derive nontrivial extensions to two state-of-the-art optimization techniques to solve
each sub-problem; (3) we perform synthetic and real data experiments to demonstrate that our
approach leads to more accurate estimation of the sparsity pattern of the regression coefficients,
more accurate estimation of the sparse network structure, and a lower prediction error than baseline
methods. To the best of our knowledge, there are no existing approaches that jointly estimate
regression coefficients and output relationships while also incorporating regularization penalties to
encourage the explicit sharing of information between the two estimates.

The remainder of this article is organized as follows. We begin by providing some background
in Section 2, and then present our model and optimization technique in Sections 3 and 4. Next we
demonstrate the value of our approach in Sections 5 and 6 by applying our model to both synthetic
and real data, and comparing the results to several baselines. Finally, we conclude in Section 7 by
discussing the implications of our findings.
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2 Background

Before introducing our approach, we provide some background on the problems of penalized
multiple-output regression and sparse inverse covariance estimation, which will form the building
blocks of our unified model.

In what follows, we assume X is an n-by-p dimensional matrix of SNP genotypes, which we
also call inputs, and Y is an n-by-q dimensional matrix of gene expression values, which we also
call outputs. Here n is the number of samples, p is the number of SNPs, and q is the number of
genes. The element xij ∈ {0, 1, 2} represents the genotype value of sample i at SNP j, encoded as
0 for two copies of the minor allele, 1 for one copy of the minor allele, and 2 for two copies of the
minor allele. Similarly yik ∈ R represents the expression value of sample i in gene k. We assume
that the expression values for each gene are mean-centered.

2.1 Multiple-Output Lasso

Given input matrix X and output matrix Y , the standard `1-penalized multiple-output regression
problem, also known as the multi-task lasso (Tibshirani, 1996), is given by

min
B

1
n‖Y −XB‖

2
F + λ‖B‖1 (1)

where B is a p-by-q dimensional matrix and βjk is the regression coefficient that maps SNP xj to
gene yk. Here ‖ · ‖1 is an `1 norm penalty that induces sparsity among the estimated coefficients,
and λ is a regularization parameter that controls the degree of sparsity. The objective function
given above is derived from the penalized negative log likelihood of a multivariate Gaussian distri-
bution, assuming y |x ∼ N (xTB, ε2I) where we let ε2 = 1 for simplicity. Although this problem is
formulated in a multiple-output framework, the `1 norm penalty merely encourages sparsity, and
does not enforce any shared structure between the regression coefficients of different outputs. As a
result, the objective function given in (1) decomposes into q independent regression problems.

2.2 Graph-Guided Fused Lasso

Given a weighted graph W ∈ Rq×q that encodes a set of pairwise relationships among the outputs,
we can modify the regression problem by imposing an additional fusion penalty that encourages
genes yk and ym to have similar parameter vectors β·k and β·m when the weight of the edge
connecting them is large. This problem is known as the graph-guided fused lasso (Kim et al., 2009;
Kim and Xing, 2009; Chen et al., 2010) and is given by

min
B

1
n‖Y −XB‖

2
F + λ‖B‖1

+ γ
∑

(k,m) |wkm| · ‖β·k − sgn(wkm)β·m‖1 (2)

Here the `1 norm penalty again encourages sparsity in the estimated coefficient matrix. In contrast,
the second penalty term, known as a graph-guided fusion penalty, encourages similarity among the
regression parameters for all pairs of outputs. The weight of each term in the fusion penalty is
dictated by |wkm|, which encodes the strength of the relationship between yk and ym. Further-
more, the sign of wkm determines whether to encourage a positive or negative relationship between
parameters; if wkm > 0 (i.e. genes yk and ym are positively correlated), then we encourage β·k to
be equal to β·m, but if wkm < 0 (i.e. genes yk and ym are negatively correlated), we encourage β·k
to be equal to −β·m. If wkm = 0, then genes yk and ym are unrelated, and so we don’t fuse their
respective regression coefficients.
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2.3 Sparse Inverse Covariance Estimation

In the graph-guided fused lasso model defined in (2), the graph W must be known ahead of time.
However, it is also possible to learn a network over the set of genes. One way to do this is to
estimate their pairwise conditional independence relationships. If we assume y ∼ N (µ,Σ), where
we let µ = 0 for simplicity, then these conditional independencies are encoded in the inverse
covariance matrix, or precision matrix, defined as Θ = Σ−1. We can obtain a sparse estimate of
the precision matrix using the graphical lasso (Friedman et al., 2008) given by

min
Θ

1
ntr(Y TY Θ)− log det(Θ) + λ‖Θ‖1 (3)

This objective is again derived from the penalized negative log likelihood of a Gaussian distribution,
where this time the `1 penalty term encourages sparsity among the entries of the precision matrix.

3 The Inverse-Covariance-Fused Lasso

In this section, we introduce a new approach for jointly estimating the coefficients in a multiple-
output regression problem and the edges of a network over the regression outputs. We apply this
technique to the problem of simultaneously learning an eQTL map and a gene regulatory network
from genome (SNP) data and transcriptome (gene expression) data. Although we focus exclusively
on this application, the same problem formulation appears in other domains as well, such as the
task of modeling the dependencies between a set of economic indicators and the stock prices of
various companies while also understanding the relationships among the companies.

3.1 A Joint Regression and Network Estimation Model

Given SNPs x ∈ Rp and genes y ∈ Rq, in order to jointly model the n-by-p regression parameter
matrix B and the q-by-q inverse covariance matrix Θ, we begin with two core modeling assumptions,

x ∼ N (0, T ) (4)

y |x ∼ N (xTB,E) (5)

where T is the covariance of x and E is the conditional covariance of y |x. Given the above model,
we can also derive the marginal distribution of y. To do this, we first use the fact that the marginal
distribution p(y) is Gaussian.1 We can then use the law of total expectation and the law of total
variance to derive the mean and covariance of y, as follows.

Ey(y) = Ex(Ey|x(y|x)) = 0 (6)

Covy(y) = Ex(Covy|x(y|x)) + Covx(Ey|x(y|x)) = E +BTTB (7)

Using these facts, we conclude that the distribution of y is given by

y ∼ N (0,Θ−1) (8)

where Θ−1 = E + BTTB denotes the marginal covariance of y. This allows us to explicitly relate
Θ, the inverse covariance of y, to B, the matrix of regression parameters. Lastly, we simplify our
model by assuming T = τ2Ip×p and E = ε2Iq×q. With this change, the relationship between B and
Θ−1 can be summarized as Θ−1 ∝ BTB because B is now the only term that contributes to the
off-diagonal entries of Θ and hence to the inverse covariance structure among the genes.

1We refer the reader to Equation B.44 of Appendix B in Bishop (2006).
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3.2 Estimating Model Parameters with a Fusion Penalty

Now that we have a model that explicitly captures B and Θ, we want to jointly estimate these
parameters from the data while encouraging the relationship Θ−1 ∝ BTB. To do this, we formulate
our model as a convex optimization problem with an objective function of the form

lossy|x(B) + lossy(Θ) + penalty(B,Θ) (9)

where lossy|x(B) is a loss function derived from the negative log likelihood of y |x, lossy(Θ) is a loss
function derived from the negative log likelihood of y, and penalty(B,−Θ) is a penalty term that
encourages shared structure between the estimates of B and Θ.

Given n i.i.d. observations of x and y, let X be a matrix that contains one observation of x
per row and let Y be a matrix that contains one observation of y per row. Then we define the
inverse-covariance-fused lasso optimization problem as

min
B,Θ

1
n‖Y −XB‖

2
F + 1

ntr(Y TY Θ)− log det(Θ)

+ λ1‖B‖1 + λ2‖Θ‖1
+ γ

∑
(k,m) |θkm| · ‖β·k + sgn(θkm)β·m‖1 (10)

This objective effectively boils down to a combination of problems (1) and (3), with the addition
of a graph-guided fusion penalty from (2) to encourage transfer learning between the estimate of
B and Θ. We deconstruct the above objective by describing the role of each term in the model:

• The first term 1
n‖Y − XB‖2F is the standard squared error loss for multiple-output

regression, and is derived from the log likelihood of y |x ∼ N (xTB, ε2I). Its role is to
encourage the coefficients B to map X to Y .

• The second term 1
ntr(Y TY Θ) − log det(Θ) is the loss function for inverse covariance

estimation over Y , and is derived from the log likelihood of y ∼ N (0,Θ−1). Its role is
to encourage the network Θ to reflect the partial correlations among the outputs.

• The third term λ1‖B‖1 = λ1
∑

j,k |βjk| is an `1 norm penalty over the matrix of regres-
sion coefficients that induces sparsity in B.

• The fourth term λ2‖Θ‖1 = λ2
∑

k,m |θkm| is an `1 norm penalty over the precision
matrix that induces sparsity in Θ.

• The final term γ
∑

(k,m) |θkm|·‖β·k+sgn(θkm)β·m‖1 is a graph-guided fusion penalty that
encourages similarity between the coefficients of closely related outputs; specifically,
when yk and ym have a positive partial correlation and βjk 6= βjm for any j, it imposes
a penalty proportional to |θkm|, and when yk and ym have a negative partial correlation
and βjk 6= −βjm for any j, it imposes a penalty proportional to |θkm|.2

2Note that θkm is negatively proportional to the partial correlation between yk and ym, meaning that a negative
value of θkm indicates a positive partial correlation and a positive value of θkm indicates a negative partial correlation.
The partial correlation coefficient between yj and yk is given by ρjk = −θjk/

√
θiiθjj and is defined as the correlation

between the errors of the best linear predictions of yj and yk when conditioned on covariates {ym : m 6= j, k} (see,
e.g., Peng et al. (2009)). This explains why the sign is flipped in the fusion penalty in (10) relative to the one in (2).

6



A derivation of the two loss functions can be found in Appendix A. These come directly out
of the modeling assumptions given in (5) and (8). The two `1 norm penalties induce sparsity in
the estimates of B and Θ, which makes estimation feasible in the high-dimensional setting where
p, q > n and furthermore is necessary for interpreting the eQTL map and gene network. Lastly,
we prove that the graph-guided fused lasso penalty encourages the structure Θ−1 ∝ BTB, thereby
linking the two estimates. Note that λ1, λ2, and γ are regularization parameters that determine
the relative weight of each penalty term.

First we consider the optimization problem Θ̂ = arg minΘ f(Θ) ≡ tr(BTBΘ)− log det(Θ). We
can solve this problem in closed form by taking the gradient ∇Θf(Θ) = BTB −Θ−1 and setting it
to 0, which yields the solution Θ̂−1 = BTB. This suggests that the penalty tr(BTBΘ) encourages
the desired structure, while the log determinant term enforces the constraint that Θ be positive
semidefinite, which is necessary for Θ to be a valid inverse covariance matrix.

Instead of directly using this penalty in our model, we demonstrate its equivalence to the
graph-guided fused lasso penalty shown in (2) when we substitute −Θ for W . We compare the
trace penalty, denoted TRP, and the graph-guided fused lasso penalty, denoted GFL, below.

TRP(B,Θ) = tr(BTBΘ) =

q∑
k=1

q∑
m=1

θkm · βT·kβ·m (11)

GFL(B,−Θ) =

q∑
k=1

q∑
m=1

|θkm| · ‖β·k + sgn(θkm)β·m‖1 (12)

We show how these penalties are equivalent by considering three different cases.

• Case of θkm = 0. When θkm = 0, the corresponding term in (11) becomes 0 ·βT·kβ·m =
0 and the corresponding term in (12) becomes 0 · ‖β·k + sgn(θkm)β·m‖1 = 0. Therefore
there is nothing linking β·k and β·m when θkm = 0 in either penalty.

• Case of θkm < 0. When θkm < 0, the corresponding term in (11) is minimized when
βT·kβ·m is large and positive, which occurs when β·k and β·m point in the same direction.
Similarly, the corresponding term in (12) becomes |θkm| ·‖β·k−β·m‖1 and the penalty is
minimized when β·k = β·m. Therefore when θkm is negative, both penalties encourage
similarity between β·k and β·m with strength proportional to the magnitude of θkm.

• Case of θkm > 0. When θkm > 0, the corresponding term in (11) is minimized when
βT·kβ·m is large and negative, which occurs when β·k and β·m point in opposite directions.
Similarly, the corresponding term in (12) becomes |θkm| ·‖β·k+β·m‖1 and the penalty is
minimized when β·k = −β·m. Therefore when θkm is positive, both penalties encourage
similarity between β·k and −β·m with strength proportional to the magnitude of θkm.

We choose to use the graph-guided fused lasso penalty instead of the trace penalty because it more
strictly enforces the relationship between B and Θ−1 by fusing the regression parameter values of
highly correlated genes.

3.3 Relationship to Other Methods

There are currently two existing approaches that jointly estimate regression coefficients and network
structure: multivariate regression with covariance estimation (MRCE), from Rothman et al. (2010),
and conditional Gaussian graphical models (CGGMs), originally from Sohn and Kim (2012) and
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further developed by Wytock and Kolter (2013) and Yuan and Zhang (2014). In this section, we
describe how our approach differs from these others.

All three methods (including ours) assume that the inputs X and outputs Y are related accord-
ing to the basic linear model Y = XB +E, where E is a matrix of Gaussian noise. However, each
approach imposes a different set of additional assumptions on top of this, which we discuss below.

MRCE: This method assumes that E ∼ N (0,Ω−1), which leads to Y |X ∼ N (XB,Ω−1).
MRCE estimates B and Ω by solving the following objective:

min
B,Ω

1
ntr((Y −XB)T (Y −XB) Ω)

− log det(Ω) + λ1‖B‖1 + λ2‖Ω‖1 (13)

It’s very important to note that Ω is the conditional inverse covariance of Y |X, which actually
corresponds to the inverse covariance of the noise matrix E rather than the inverse covariance of
the output matrix Y . We therefore argue that Ω doesn’t capture any patterns that are shared
with the regression coefficients B, since by definition Ω encodes the structure in Y that cannot be
explained by XB.

CGGM: This approach makes an initial assumption that X and Y are jointly Gaussian with
the following distribution: (

X
Y

)
∼ N

([
0
0

]
,

[
Γ Λ

ΛT Ω

])
In this formulation, the distribution of Y |X is given by Y |X ∼ N (−XΛΩ−1,Ω−1). This corre-
sponds to the reparameterization of B as −ΛΩ−1, where Ω is the conditional inverse covariance
matrix and Λ represents the “direct” influence of X on Y . CGGMs estimate Λ and Ω by solving
the following optimization problem, where sparsity penalties are applied to Λ and Ω instead of B
and Ω as was the case in (13):

min
Λ,Ω

1
ntr((Y +XΛΩ−1)T (Y +XΛΩ−1) Ω)

− log det(Ω) + λ1‖Λ‖1 + λ2‖Ω‖1 (14)

Here the meaning of Ω has not changed, and it once again represents the inverse covariance of the
noise matrix.

ICLasso: Our method implicitly assumes two underlying models: Y |X ∼ N (XB, I) and
Y ∼ N (0,Θ−1). In this case, Θ represents the marginal inverse covariance of Y rather than the
conditional inverse covariance of Y |X, which was captured by Ω in (13) and (14). The optimization
problem in (10) is obtained by combining the loss functions derived from the log likelihood of each
model and then incorporating sparsity penalties over B and Θ and an additional graph-guided
fusion penalty to encourage shared structure.

Both MRCE and CGGMs have two important drawbacks that are not shared by our approach.
First, both of these methods estimate Ω, the precision matrix of the noise term, rather than Θ, the
precision matrix of the outputs Y . This means that they are estimating a network over the outputs
in which each edge represents a partial correlation after conditioning on both the xs and all other
ys. Second, neither method incorporates a structured sparsity penalty that explicitly encourages
shared structure between the network and the regression coefficients. In fact, it would not make
sense for these methods to apply a joint penalty over B and Ω because, as discussed above, we
wouldn’t expect these parameters to have any shared structure. By comparison, our method learns
the true output network Θ and uses a graph-guided fused lasso penalty to explicitly encourage
outputs that are closely related in Θ to have similar parameter values in B.
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4 Optimization via Alternating Minimization

In this section we present an efficient algorithm to solve the inverse-covariance-induced fused lasso
problem defined in (10). We start by rewriting the fusion penalty as follows:

GFL(B,−Θ)

= γ
∑

(k,m) |θkm| · ‖β·k + sgn(θkm)β·m‖1
= γ

∑
(k,m) max{θkm, 0} · ‖β·k + β·m‖1

+ γ
∑

(k,m) max{−θkm, 0} · ‖β·k − β·m‖1,

from which it is clear that GFL is a bi-convex function, meaning that with fixed B, it is convex in
Θ, and vice versa. Thus, upon defining

g(B) = 1
n‖Y −XB‖

2
F + λ1‖B‖1

h(Θ) = 1
ntr(Y TY Θ)− log det(Θ) + λ2‖Θ‖1,

we can rewrite the original objective as

min
B,Θ

g(B) + h(Θ) + GFL(B,−Θ). (15)

The function g is the usual lasso formulation in (1), the function h is the graphical lasso formulation
in (3), and the graph-guided fusion penalty couples the two problems. Fortunately, since GFL is
bi-convex, we can solve the joint problem (15) using an alternating minimization strategy. Next we
leverage and extend state-of-the-art convex optimization routines to solve each convex sub-problem.

Fix Θ, Minimize B. When Θ is fixed, minimizing the objective over B reduces to the well-
known graph-guided fused lasso problem,

fΘ(B) = g(B) + GFL(B,−Θ), (16)

which we optimize using the proximal-average proximal gradient descent (PA-PG) algorithm from
Yu (2013). This algorithm is very simple. On each iteration, we first take a gradient step of the
form B − ηX>(XB − Y ) using some small step size η. Then we compute the weighted average
of the component proximal operators for each pair of outputs, where the prox that corresponds to
pair (k,m) is given by:

B̂ = arg min
B

1
2η‖B − Z‖

2
F + ‖β.k + sgn(θkm)β.m‖1 (17)

and the weight of this term is given by |θkm|/θtot where θtot =
∑

(k,m) |θk,m|. Due to the separability
of (17) over the rows of B, we can solve for each βj· independently. Furthermore, it’s clear that
for any i 6∈ {k,m}, we have βji = zji. Solving for the remaining elements βjk and βjm leads to the
following two-dimensional subproblem:

β̂jk, β̂jm = arg min
βjk,βjm

1
2η (βjk − zjk)2 + (βjm − zjm)2 + |βjk + sgn(θkm)βjm|. (18)

which can be solved in closed form. Therefore the full solution to the prox operator can be written
compactly as follows, where dkm = z·k + sgn(θkm)z·m.

β̂·i = z·i for i /∈ {k,m}
β̂·k = z·k − sgn(dkm) ·min{η, 1

2 |dkm|}
β̂·m = z·m − sgn(θkm) · sgn(dkm) ·min{η, 1

2 |dkm|}
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From these formulas, we can see that βjk and −sgn(θkm)βjm are always “fused” towards each other.
For example, when sgn(θkm) < 0, we want to push βjk and βjm towards the same value. In this
case, the larger of zjk and zjm will be decremented and the smaller value will be incremented by
the same quantity. In contrast, when sgn(θkm) > 0, the solution pushes βjk towards −βjm.

We summarize the procedure in Algorithm 1 of Appendix B. In practice, we use the acceler-
ated version of the algorithm, PA-APG. Using the argument from Yu (2013), we can prove that
this accelerated algorithm converges to an ε-optimal solution in at most O(1/ε) steps, which is
significantly better than the converge rate of subgradient descent, which is O(1/

√
ε).

Fix B, Minimize Θ. When B is fixed, minimizing the objective over Θ reduces to a variation
of the well-known graphical lasso problem,

fB(Θ) = h(Θ) + GFL(B,−Θ), (19)

which can be optimized by adapting the block coordinate descent (BCD) algorithm of Friedman
et al. (2008). Indeed, we can rewrite the objective by introducing two q× q dimensional coefficient
matrices U and L whose elements are defined as

Ukm = 1
nY
>
.k Y.m + λ2 + γ‖β.k + β.m‖1 (20)

Lkm = 1
nY
>
.k Y.m − λ2 − γ‖β.k − β.m‖1. (21)

Using this notation, we collect all linear terms involving Θ+ := max{Θ, 0} and Θ− := max{−Θ, 0}
and reformulate the objective given in (19) as

min
Θ
− log det(Θ) + 〈Θ+, U〉 − 〈Θ−, L〉. (22)

The graphical lasso is a special case of the above problem in which U = L. In our case, U and L
differ because of the structure of the GFL penalty. Nevertheless, we can derive a block coordinate
algorithm for this more general setting.

First we dualize (22) to get the following problem:

max
L≤Ξ≤U

log det Ξ. (23)

where Θ = Ξ−1. Then it can be shown that the diagonal of the covariance Ξ must attain the upper
bound, i.e. we must have Ξjj = Ujj ∀ j = 1, . . . , q. Next, we perform block coordinate descent by
cycling through each column (or row, due to symmetry) of Ξ. We denoted an arbitrary column of
Ξ by ξj , with corresponding columns uj and `j in U and L, respectively. Let Ξ̃j be the submatrix
of Ξ obtained by deleting column j and row j. Then, by applying Schur’s complement, maximizing
(23) with respect to ξj with all other columns fixed amounts to:

min
`j≤ξj≤uj

1
2ξ
>
j Ξ̃−1

j ξj . (24)

Dualizing again, with ξj = −Ξ̃jα, we obtain

min
α

1
2α
>Ξ̃jα+ u>α+ − `>α−, (25)

which is essentially a lasso problem that we can solve using any known algorithm. Algorithm 2 of
Appendix B outlines our procedure for solving (19). We use coordinate descent and apply a variant
of the soft-thresholding operator to solve for each coordinate. This algorithm converges very quickly
because there is no tuning of the step size, and each iteration involves only a matrix-vector product.
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B −− Truth

Θ −− Truth

B −− GFLasso1

Covariance −− GFLasso1

B −− GFLasso2

Precision −− GFLasso2

B −− CGGM

Ω −− CGGM

B −− ICLasso

Θ −− ICLasso

Figure 1: A comparison of results on a single synthetic dataset with p = 60, q = 60, and a block-
structured output graph. The far left panel contains the ground truth for B and Θ. The remaining
panels show the estimates of the regression coefficients for each method (top) along with the graph
structure that was used or estimated by the method (bottom).

5 Simulation Study

We first evaluate our method on synthetic data with known values of B and Θ so that we can
directly measure how well the the true parameter values are recovered. We compare our regression
estimates to several baselines, including B̂ standard multi-task lasso (Lasso), graph-guided fused
lasso using a sparse covariance matrix as its graph (GFLasso1), graph-guided fused lasso using
a sparse precision matrix as its graph (GFlasso2), sparse multivariate regression with covariance
estimation (MRCE), and the conditional Gaussian graphical model (CGGM). We also compare our
network estimates Θ̂ to the graphical lasso (GLasso). For each method, we selected hyperparameter
values by minimizing the error on a held-out validation set.

For this analysis, we used two different synthetic data settings, each imposing a different network
structure over the outputs:

• block-structured network: the outputs are divided into non-overlapping groups, and each
group forms a fully connected sub-graph in the network

• tree-structured network: the outputs are related to one another according to a tree with a
single root node and a branching factor of three, and all nodes share edges with their parents
and children in the network

Each synthetic dataset is generated using p = 60 inputs, q ∈ {30, 60, 90, 120} outputs, and n = 50
samples. After constructing a network over the outputs using one of the structures described
above, we generate the sparsity pattern and parameter values for the coefficient matrix B. For the
block-structured network, we choose a random 5% of inputs for each group, and assign positive
weights between these inputs and all nodes in the group. We draw coefficient values according to
vj ∼ Unif(0.2, 0.8) and set βjk = vj ∀ k ∈ group, such that all members of the group have the
same coefficient value for these inputs. We also randomly select 5% additional inputs for each
group that will be shared across all members of that group and one other group, and generate
coefficients in the same way. For the tree-structured network, we choose a random 5% of inputs
for each node, and assign a positive weight between those inputs and both the node and each
of its children. We similarly generate coefficient values according to vj ∼ Unif(0.2, 0.8) and set
βjk = vj ∀ k ∈ {parent,children}. Next we generate X ∼ N (0,Σ) where Σjk = 0.6|j−k|. Finally,
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Figure 2: Average precision-recall curves for B (left) and Θ (right) for synthetic datasets with two
different parameter settings: p = 60, q = 120, block-structured graph (top), and p = 60, q = 60,
tree-structured graph (bottom).

given X and B, we generate Y ∼ N (XB, I). We create multiple synthetic datasets by varying
the network structure and the number of outputs. For each setting, we average our results over 15
synthetic datasets.

A synthetic data example is shown in Figure 1. The ground truth for both B and Θ is given
in the far left panel. The next three columns show the estimated values of B for three competing
methods, and the results of our method are shown on the far right. In this example, the drawbacks
of each of the baseline methods are evident. The covariance matrix used for the network structure
in GFLasso1 captures many spurious patterns in Y that don’t correspond to true patterns in the
regression map, which confuses the estimate of B. The precision matrix used for the network
structure in GFLasso2 does not accurately capture the true inverse covariance structure because of
the low signal-to-noise ration in Y . This prevents the fusion penalty from effectively influencing the
estimate of B. Finally, although CGGM gets a reasonable estimate of the network, this structure
is not explicitly enforced in B, which still leads to a poor estimate of the regression parameters. In
contrast, the cleanest estimate of both B̂ and Θ̂ comes from ICLasso.

Next we quantitatively evaluate how well each method is able estimate the sparsity structure
of B and Θ. Since the hyperparameter values selected by minimizing the error on a validation
set do not usually correspond to the values that lead to the most accurate sparsity, we calculate a
precision-recall curve on top of B̂ and Θ̂. To do this, we vary the threshold at which each parameter
value is considered “zero” or “nonzero” and we calculate the precision and recall at each threshold.
Figure 2 shows the precision-recall curves for B and Θ averaged over 15 datasets in two different
parameter settings. The top two plots show results for a block-structured network with q = 120.
Here it’s evident that ICLasso significantly outperforms all of the baselines in its estimate of both
the regression map and network structure. The bottom two plots show results for a tree-structured
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Figure 3: Area under the precision-recall curve and best F1 score over all regularization parameter
values for B and Θ shown for different numbers of outputs q and averaged over 30 synthetic datasets
generated with both graph types.

Prediction Error of Y on a Test Set

Lass
o
GFL

asso
1
GFL

asso
2

MRC
E

CGG
M

ICLa
sso

0.36

0.4

0.44

0.48

0.52

Figure 4: Test set prediction error on synthetic data with p = 60, q = 120, and a block-structured
graph. Each box shows the mean (red), standard error interval (blue), and standard deviation
(black) over 15 random datasets.

network with q = 60. Although ICLasso wins on B by a small margin, it’s true advantage in this
setting is its estimate of Θ. To further quantify these results, the the average area under the PR
curve for B is 0.87± 0.01 for ICLasso and 0.79± 0.02 for GFLasso2, which is the closest baseline.
The average area under the PR curve for Θ is 0.91± 0.01 for ICLasso and 0.82± 0.06 for GLasso.

Figure 3 shows the average area under the precision-recall curve and best F1 score (over all
hyperparameter values) for B and Θ averaged over both network structures for each value of
q. This shows that ICLasso consistently outperforms all baselines over multiple random datasets
generated with multiple parameter settings. Finally, we examine the prediction error of each model
when using B̂ to predict Y from X. Figure 4 shows a box plot of the error values obtained in one
parameter setting. This demonstrates that ICLasso obtains lower error than the other methods.

The results on synthetic data demonstrate that ICLasso performs significantly better than
competing methods on a wide variety of metrics (accurate recovery of sparse structure in B, accurate
recovery of sparse structure in Θ, and prediction of Y ) when our data assumptions hold.
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Table 1: Regression Error on Yeast Data

density
training

error
validation

error

Lasso 1.65% 0.502 0.718

GFLasso 2.87% 0.392 0.715

ICLasso 6.88% 0.395 0.703

6 Yeast eQTL Mapping

In order to evaluate our approach in a real-world setting, we applied ICLasso to a yeast eQTL
dataset from Brem and Kruglyak (2005) that consists of 2, 956 SNP genotypes and 5, 637 gene
expression measurements across 114 yeast samples. Before running our method, we removed 1, 799
SNPs with duplicate genotypes and retained only the top 25% of genes with the highest variance
in expression, leaving p = 1, 157 SNPs and q = 1, 409 genes in our analysis.

We used our approach to jointly perform eQTL mapping and gene network inference on the yeast
dataset, treating the the SNPs as inputs X and the genes as outputs Y . We trained our model on
91 samples and used the remaining 23 samples as a validation set for tuning the hyperparameters.
This yielded λ1 = 0.154, λ2 = 0.157, and γ = 0.118. Given the trained model, we read the
eQTL associations from the regression coefficient matrix B̂, which encodes SNP-gene relationships,
and obtained the gene network from the inverse covariance matrix Θ̂, which encodes gene-gene
relationships. In addition to ICLasso, we ran Lasso and GFlasso on the yeast data to obtain two
additional estimates of B, and ran graphical lasso to obtain another estimate of Θ.3

Table 1 shows the density of B̂ obtained with each method, along with the prediction error
of Y on the training set and on the held-out validation set, which were calculated using ‖Ytrain −
XtrainB̂‖2F and ‖Yvalid −XvalidB̂‖2F , respectively. We chose not to sacrifice any data for a test set,
but these results indicate that ICLasso achieves an equivalent or better fit to the training and
validation sets than lasso and glasso.

6.1 Quantitative Analysis

Because the true yeast eQTLs and gene network structure are not known, there is no ground
truth for this problem. We instead analyzed the output of each method by performing a series of
enrichment analyses that together provide a comprehensive picture of the biological coherence of
the results. An enrichment analysis uses gene annotations to identify specific biological processes,
functions, or structures that are over-represented among a group of genes relative to the full set
of genes that is examined (Subramanian et al., 2005). To evaluate our yeast data results, we per-
formed three types of enrichment analyses: biological process and molecular function enrichment
using annotations from the Gene Ontology (GO) database (Ashburner et al., 2000), and path-
way enrichment using annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Kanehisa and Goto, 2000). We used a hypergeometric test to compute a p-value for each
term, and then adjusted the values to account for multiple hypothesis testing. Significance was
determined using an adjusted p-value cutoff of 0.01.

3The hyperparameters for each of these methods were selected with the same validation set, and we used λ = 0.307
for lasso, λ = 0.231 and γ = 0.039 for gflasso, and λ = 0.471 for glasso.
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Table 2: GO and KEGG Enrichment Analysis on Yeast eQTL Map

number of enriched terms average
increase

number of enriched SNPs average
increase

GO-BP GO-MF KEGG GO-BP GO-MF KEGG

Lasso 1862 804 205 — 198 132 127 —

GFLasso 3499 1528 312 + 77% 286 211 172 +47%

ICLasso 8046 3147 1025 +155% 590 453 441 +126%

Table 3: GO and KEGG Enrichment Analysis on Yeast Gene Network

number of enriched terms average
increase

number of enriched clusters average
increase

GO-BP GO-MF KEGG GO-BP GO-MF KEGG

GLasso 173 77 31 — 14 12 11 —

ICLasso 321 127 41 +61% 29 26 22 +108%

We first analyzed B̂ by performing a per-SNP enrichment analysis. For each SNP j, we used
the nonzero elements in βj· to identify the set of genes associated with the SNP. Next we performed
GO and KEGG enrichment analyses on this group of genes by comparing their annotations to the
full set of 1, 409 genes that we included in our study. We repeated this procedure for each SNP, and
calculated the total number of terms that were enriched over all SNPs to obtain a global measure
of enrichment for B̂. In addition, we calculated the total number of SNPs that were enriched for
at least one term in each category. These results are summarized in Table 2. It is evident that
ICLasso vastly outperforms both GFLasso and Lasso on estimating the regression coefficients, since
it has more than twice as many enriched terms in GO biological process, GO molecular function,
and KEGG than either baseline method.

Next we used a similar approach to evaluate the structure present in Θ̂. We first obtained groups
of genes by using spectral clustering to perform community detection among the genes based on
the inferred network structure. After clustering the genes into 100 groups,4 we performed GO
and KEGG enrichment analyses on each cluster and calculated the total number of enriched terms
along with the total number of clusters that were enriched for at least one term. These results are
summarized in Table 3. Once again, our approach has more enrichment than the baseline in every
category, which implies that the gene network estimated by ICLasso has a much more biologically
correct structure than the network estimated by GLasso.

6.2 Qualitative Analysis

The quantitative results in Tables 2 and 3 indicate that, compared to other methods, our approach
identifies more eQTLs that are associated with genes significantly enriched in certain biological
processes and pathways. A more detailed examination of our results revealed that many of the
enriched terms correspond to metabolic pathways, and that the eQTLs we identified agree with
those discovered in a previous study that analyzed the effect of genetic variations on the yeast
metabolome.

4We also clustered with 25, 50, and 200 groups and obtained similar results.
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Breunig et al. (2014) identified the metabolite quantitative trait loci (mQTLs) for 34 metabolites
and then examined each mQTL for the presence of metabolic genes in the same pathway as the
linked metabolite. We found that 10 of these 34 metabolites were linked to metabolic genes where
our identified eQTLs reside. For example, Breunig et. al. determined that the metabolite valine
is linked to an mQTL in a region spanned by the ILV6 gene, which encodes a protein involved in
valine biosynthesis. In our study, we also identified an eQTL located in ILV6. Moreover, we found
that the eQTL in ILV6 is associated with 365 genes that are significantly enriched for pathways
involved in the metabolism and biosynthesis of various amino acids. This is consistent with the
fact that the metabolism and biosynthesis of amino acids in the cell needs to be coordinated.

Furthermore, our enrichment analysis shows that the eQTL-associated genes we identified
are enriched for various metabolic pathways (e.g. sulfur, riboflavin, protein, starch, and sucrose
metabolism, oxidative phosphorylation, glycolysis), as well as more general pathways, such as cell
cycle pathways, and MAPK pathways. This is consistent with the roles of the mQTLs identified
by Breunig et al. Interestingly, among these genes, SAM1, encoding an S-adenosylmethionine syn-
thetase, is also among the eQTLs in our list. Our results show that the eQTL we found in SAM1
is associated with 252 genes that are enriched for cytoplasmic translation and ribosome functions,
consistent with the fact that SAM is the methyl donor in most methylation reactions and is essential
for DNA methylation of proteins, nucleic acids, and lipids (Roberts and Selker, 1995).

7 Conclusion

In this work, we propose a new model called the inverse-covariance-induced fused lasso which
jointly estimates regression coefficients B and an output network Θ while using a graph-guided
fused lasso penalty to explicitly encourage shared structure. Our model is formulated as a biconvex
optimization problem, and we derive new, efficient optimization routines for each convex sub-
problem based on existing methods.

Our results on both synthetic and real data unequivocally demonstrate that our model achieves
significantly better performance on recovery of the structure of B, recovery of the structure of Θ,
and prediction error than all six baselines that we evaluated. In this paper, we demonstrated that
our approach can effectively be used to perform joint eQTL mapping and gene network estimation
on a yeast dataset, yielding more biologically coherent results than previous work. However, the
same problem setting appears in many different applications, and the inverse-covariance-induced
fused lasso model can therefore be effectively used within a wide range of domains.
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Appendix A Proofs

Derivation of loss function over B. Given the model y |x ∼ N (xTB, ε2I), we can estimate
B by minimizing the negative log likelihood of y |x. The optimization objective is given below.

f(B) = − log
∏n
i=1 p(yi|xi) = −

∑n
i=1 log p(yi|xi)

= −
∑n

i=1 log(|2πε2I|−
1
2 exp{−1

2(yi − xTi B)T (ε2I)−1(yi − xTi B)})

= 1
2

∑n
i=1 log (|2πE|) + 1

2ε2
∑n

i=1(yi − xTi B)T (yi − xTi B)

∝
∑n

i=1(yi − xTi B)T (yi − xTi B)

= ‖Y −XB‖2F

Derivation of loss function over Θ. Given the model y ∼ N (0,Θ−1), we can estimate Θ by
minimizing the negative log likelihood of y. The optimization objective is given below.

f(Θ) = − log
∏n
i=1 p(yi) = −

∑n
i=1 log p(yi)

= −
∑n

i=1 log(|2πΘ|
1
2 exp{−1

2y
T
i Θyi})

= −1
2

∑n
i=1 log |2πΘ|+ 1

2

∑n
i=1 y

T
i Θyi

∝ −n log |Θ|+
∑n

i=1 y
T
i Θyi

= −n log |Θ|+ tr(Y TYΘ)
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Appendix B Algorithms

Algorithm 1 PA-PG for Graph-Guided Fused Lasso

1: input: data X,Y , graph Θ, step size η
2: initialize: B = 0
3: repeat
4: B ← B − ηX>(XB − Y )
5: for each edge (k,m) with θkm 6= 0 do
6: dkm ← β.k + sgn(θkm)β.m
7: β.k ← β.k − (θkm/θtot) ·min{η, 1

2 |dkm|}
8: β.m ← β.m − (θkm/θtot) ·min{η, 1

2 |dkm|}
9: end for

10: until convergence

Algorithm 2 BCD for the Generalized Graphical Lasso

1: input: coefficient matrices U,L
2: repeat
3: for j = 1 to q do
4: Ξjj ← Ujj
5: ξ ← Ξ\j,j , u← U\j,j , `← L\j,j , Ξ̃← Ξ\j,\j
6: repeat
7: for j = 1 to q − 1 do
8: δ ←

∑
k 6=j Ξ̃jkαk

9: if δ ≥ −lj then
10: αj = (−δ − lj)/Ξ̃jj
11: else if δ ≤ −uj then
12: αj = (−δ − uj)/Ξ̃jj
13: else
14: αj = 0
15: end if
16: end for
17: until convergence
18: Ξ\i,\i ← −Ξ̃β
19: end for
20: until convergence
21: Θ = Ξ−1
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