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Abstract

Background. Large datasets are often collected or stored in a distributed fashion over a number
of machines. We would like to develop scalable Bayesian inference algorithms for these datasets.
Most existing algorithms require all data to be sent to a central node for processing, or regular
communication between machines during parallel processing (both of which require a great deal
of communication of information or parameters between machines). Additionally, we often want
inference results on many different subsets of these datasets, for example, when analyzing local
portions of large spatiotemporal data; most existing methods must rerun inference algorithms for
each queried subset, which can take a great deal of time when the number of queries grows large.

Aim. The aim of this project is to develop an “embarrassingly parallel” method of Bayesian
inference, in which each machine performs inference on a subset of data without any commu-
nication to other machines. By doing this, we hope to be able to perform statistical learning of
large, distributed datasets without needing the regular transfer of data or parameters.

Data. We demonstrate the advantages of this method on multiple real datasets. We first show the
ability of this method to increase the speed of inference in Bayesian regression and mixture models.
We then show the ability to use this technique to analyze spatiotemporal data; in particular, our
method is able to yield inference results on arbitrarily selected subsets of data without rerunning
any of our initial inference algorithms. Here, we design a generative model for taxi trip data, and
run our inference method on a set of 14 million taxi trips in New York City.

Methods. We work in a Bayesian framework; hence the goal of the learning methods will
be to compute a posterior distribution over model parameters. The strategy here is to perform
Bayesian inference on each machine (on its subset of data) in parallel. After inference is complete,
we transfer all inference results to a single machine and combine the local results to infer a
global result (i.e. the posterior distribution given the entire, global dataset). More specifically, we
perform Markov chain Monte Carlo (MCMC), a sampling algorithm, to conduct local inference.
To combine the local results, we develop a sample combination algorithm that combines the local
sample sets to produce samples from the full-data (global) posterior distribution.

Results. We develop a method to perform inference in an embarrassingly parallel manner:
on each node we conduct local inference on a subset of data, and afterwards, we combine the
local results to yield a global inference result. We show that our combination procedure yields
asymptotically exact global inference results (i.e. our results converge to the same value as if
we had used the full data on a single machine), and we use our method to analyze several large
real-world datasets.

Conclusions. The goal of our project was to develop an embarrassingly parallel method of
Bayesian inference, in which each machine performs inference on a subset of data without any
communication to other machines. This method allows us to perform statistical learning on large,
distributed datasets (e.g. spatiotemporal data, which may be split over time and space) without
needing the regular transfer of data or parameters.



1. Introduction

Many large, modern datasets are collected and stored in a distributed fashion by multiple sensors
or data-collecting agents. Examples of this include medical data recorded in hospitals throughout a
country, weather data gathered by a collection of sensors, cell phone data collected on users’ phones,
and social network data generated by each member (node) of a social network.

This paper is concerned with statistical inference algorithms that can operate in these data-
distributed settings. These algorithms, which operate by processing subsets of data separately and in
parallel, are particularly advantageous. This is because they mitigate the need for transferring data
to a central location for analysis, reduce both the memory usage and computation time of inference
[14, 16], allow for continuous data collection from independently operating agents [4], and allow for
sensitive data to be processed independently in secure locations (which can yield privacy guarantees
[18D).

Here, we are primarily concerned with general inference procedures for latent variable (i.e.
“graphical”) models. For example, Markov chain Monte Carlo (MCMC) methods are popular tools
for performing approximate Bayesian inference via posterior sampling. One major benefit of these
techniques is that they guarantee asymptotically exact recovery of the posterior distribution as the
number of posterior samples grows. However, MCMC methods may take a prohibitively long time, since
for N data points, most methods must perform O(N) operations to draw a sample. Furthermore, MCMC
methods might require a large number of “burn-in” steps before beginning to generate representative
samples. Further complicating matters is the issue that, for many big data applications, it is necessary
to store and process data on multiple machines, and so MCMC must be adapted to run in these
data-distributed settings.

Researchers currently tackle these problems independently, in two primary ways. To speed up
sampling, multiple independent chains of MCMC can be run in parallel [24, 12, 15]; however, each
chain is still run on the entire dataset, and there is no speed-up of the burn-in process (as each chain
must still complete the full burn-in before generating samples). To run MCMC when data is partitioned
among multiple machines, each machine can perform computation that involves a subset of the data
and exchange information at each iteration to draw a sample [11, 17, 22]; however, this requires a
significant amount of communication between machines, which can greatly increase computation
time when machines wait for external information [1, 8].

We aim to develop a procedure to tackle both problems simultaneously, to allow for quicker
burn-in and sampling in settings where data are partitioned among machines. To accomplish this,
we propose the following: on each machine, run MCMC on only a subset of the data (independently,
without communication between machines), and then combine the samples from each machine to
algorithmically construct samples from the full-data posterior distribution. We’d like our procedure to
satisfy the following four criteria:

1. Each machine only has access to a portion of the data.

2. Each machine performs MCMC independently, without communicating (i.e. the procedure is
“embarrassingly parallel”).

3. Each machine can use any type of MCMC to generate samples.

4. The combination procedure yields provably asymptotically exact samples from the full-data
posterior.

The third criterion allows existing MCMC algorithms or software packages to be run directly on
subsets of the data—the combination procedure then acts as a post-processing step to transform
the samples to the correct distribution. Note that this procedure is particularly suitable for use in a
MapReduce [5] framework. Also note that, unlike current strategies, this procedure does not involve
multiple “duplicate” chains (as each chain uses a different portion of the data and samples from a
different posterior distribution), nor does it involve parallelizing a single chain (as there are multiple
chains operating independently). We will show how this allows our method to, in fact, parallelize and
greatly reduce the time required for burn-in.



In this paper we will (1) introduce and define the subposterior density—a modified posterior given
a subset of the data—which will be used heavily, (2) present methods for the embarrassingly parallel
MCMC and combination procedure, (3) prove theoretical guarantees about the samples generated
from our algorithm, (4) describe the current scope of the presented method (i.e. where and when
it can be applied), and (5) show empirical results demonstrating that we can achieve speed-ups for
burn-in and sampling while meeting the above four criteria.

2. Embarrassingly Parallel MCMC

We draw from [16] for the description of our method. The basic idea behind our method is to partition
a set of N i.i.d. data points x¥ = {x;,---,xy} into M subsets, sample from the subposterior—the
posterior given a data subset with an underweighted prior—in parallel, and then combine the resulting
samples to form samples from the full-data posterior p(6|x"), where 8 € R?¢ and p(6|x") o<
p(0)p(x"16) = p(OI [T, p(x;16).

More formally, given data x" partitioned into M subsets {x™,...,x™}, the procedure is:

1. Form=1,...,M (in parallel):
Sample from the subposterior p,,, where

Pw(6) o< p(8)7 p(x™16). @)

2. Combine the subposterior samples to produce samples from an estimate of the subposterior
density product p;---py;, which is proportional to the full-data posterior, i.e. p;:-py(0) o<
p(O1x™).

We want to emphasize that we do not need to iterate over these steps and the combination stage
(step 3) is the only step that requires communication between machines. Also note that sampling
from each subposterior (step 2) can typically be done in the same way as one would sample from the
full-data posterior. For example, when using the Metropolis-Hastings algorithm, one would compute

oy nn(g*y . * N|p* .
‘w instead of %, where 0* is the proposed move. In the
) p(OMp(xmmio) PP ,
next section, we show how the combination stage (step 3) is carried out to generate samples from the
full-data posterior using the subposterior samples.

the likelihood ratio as

3. Combining Subposterior Samples

Our general idea is to combine the subposterior samples in such a way that we are implicitly sampling
from an estimate of the subposterior density product function p;--p,,(8). If our density product
estimator is consistent, then we can show that we are drawing asymptotically exact samples from the
full posterior. Further, by studying the estimator error rate, we can explicitly analyze how quickly the
distribution from which we are drawing samples is converging to the true posterior (and thus compare
different combination algorithms).

In the following three sections we present procedures that yield samples from different estimates
of the density product. Our first example is based on a simple parametric estimator motivated by
the Bernstein-von Mises theorem [13]; this procedure generates approximate (asymptotically biased)
samples from the full posterior. Our second example is based on a nonparametric estimator, and
produces asymptotically exact samples from the full posterior. Our third example is based on a
semiparametric estimator, which combines beneficial aspects from the previous two estimators while
also generating asymptotically exact samples.

3.1 Approximate posterior sampling with a parametric estimator

The first method for forming samples from the full posterior given subposterior samples involves using
an approximation based on the Bernstein-von Mises (Bayesian central limit) theorem, an important



result in Bayesian asymptotic theory. Assuming that a unique, true data-generating model exists
and is denoted 6, this theorem states that the posterior tends to a normal distribution concentrated
around 6, as the number of observations grows. In particular, under suitable regularity conditions,
the posterior P(0|x") is well approximated by N, (6,, F ;1) (where Fy is the fisher information of
the data) when N is large [13]. Since we aim to perform posterior sampling when the number of
observations is large, a normal parametric form often serves as a good posterior approximation. A
similar approximation was used in [2] in order to facilitate fast, approximately correct sampling.
We therefore estimate each subposterior density with B,,(6) = Ny(6|fi,y, %,,) where [i,, and %, are
the sample mean and covariance, respectively, of the subposterior samples. The product of the M
subposterior densities will be proportional to a Gaussian pdf, and our estimate of the density product
function py+--py(0) o< p(0|xN) is

m(ﬂ) =D1Dm(6) oc Ny (GlﬁM: f:M) s

where the parameters of this distribution are

M -1
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These parameters can be computed quickly and, if desired, online (as new subposterior samples
arrive).

3.2 Asymptotically exact posterior sampling with nonparametric density product estimation

In the previous method we made a parametric assumption based on the Bernstein-von Mises theorem,
which allows us to generate approximate samples from the full posterior. Although this parametric esti-
mate has quick convergence, it generates asymptotically biased samples, especially in cases where the
posterior is particularly non-Gaussian. In this section, we develop a procedure that implicitly samples
from the product of nonparametric density estimates, which allows us to produce asymptotically exact
samples from the full posterior. By constructing a consistent density product estimator from which we
can generate samples, we ensure that the distribution from which we are sampling converges to the
full posterior.

T

Given T samples' {6} _

Pm(0) as,

from a subposterior p,,, we can write the kernel density estimator

T m
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where we have used a Gaussian kernel with bandwidth parameter h. After we have obtained the
kernel density estimator p,,(6) for M subposteriors, we define our nonparametric density product

1. For ease of description, we assume each machine generates the same number of samples, T. In practice, they do not have
to be the same.



estimator for the full posterior as
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This estimate is the probability density function (pdf) of a mixture of T™ Gaussians with unnormalized
mixture weights w,.. Here, we use t- = {t;,..., t);} to denote the set of indices for the M samples
{thl, ey 9% } (each from a separate machine) associated with a given mixture component, and we
define
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Although there are TV possible mixture components, we can efficiently generate samples from this
mixture by first sampling a mixture component (based on its unnormalized component weight w,.)
and then sampling from this (Gaussian) component. In order to sample mixture components, we use
an independent Metropolis within Gibbs (IMG) sampler. This is a form of MCMC, where at each step
in the Markov chain, a single dimension of the current state is proposed (i.e. sampled) independently
of its current value (while keeping the other dimensions fixed) and then is accepted or rejected. In
our case, at each step, a new mixture component is proposed by redrawing one of the M current
sample indices t,, € t- associated with the component uniformly and then accepting or rejecting the
resulting proposed component based on its mixture weight. We give the IMG algorithm for combining
subposterior samples in Algorithm 1.2

In certain situations, Algorithm 1 may have a low acceptance rate and therefore may mix slowly.
One way to remedy this is to perform the IMG combination algorithm multiple times, by first applying
it to groups of M < M subposteriors and then applying the algorithm again to the output samples
from each initial application. For example, one could begin by applying the algorithm to all % pairs
(leaving one subposterior alone if M is odd), then repeating this process—forming pairs and applying
the combination algorithm to pairs only—until there is only one set of samples remaining, which are
samples from the density product estimate.

3.3 Asymptotically exact posterior sampling with semiparametric density product estimation

Our first example made use of a parametric estimator, which has quick convergence, but may be
asymptotically biased, while our second example made use of a nonparametric estimator, which
is asymptotically exact, but may converge slowly when the number of dimensions is large. In this
example, we implicitly sample from a semiparametric density product estimate, which allows us to
leverage the fact that the full posterior has a near-Gaussian form when the number of observations is
large, while still providing an asymptotically unbiased estimate of the posterior density, as the number
of subposterior samples T — ©o.

We make use of a semiparametric density estimator for p,, that consists of the product of a
parametric estimator f,,(6) (in our case N¢1§9|ﬁm, flm) as above) and a nonparametric estimator 7(6)
of the correction function r(6) = p,,(8)/f,(0) [7]. This estimator gives a near-Gaussian estimate
when the number of samples is small, and converges to the true density as the number of samples

2. Again for simplicity, we assume that we generate T samples to represent the full posterior, where T is the number of
subposterior samples from each machine.



Algorithm 1 Asymptotically Exact Sampling via Nonparametric Density Product Estimation

Input: Subposterior samples: {Qtll}tT1=1 ~p,(0), .. {9 t _, ~pu(6)
Output: Posterior samples (asymptotically, as T — 00): {91}1411 ~ pypu(0) o< p(8]xN)

1: Draw t- = {t,,..., ty} ~ Unif({1,...,T})
2: fori=1to T do

3 Seth« i~V

4: form=1toM do

5: Set ¢ « t-

6: Draw c,, ~ Unif({1,...,T})
7 Draw u ~ Unif([0,1])

8 ifu<w,./w,. then

9: Set t- «c-
10: end if
11:  end for
12:  Draw 6; ~ N(6,., MId)
13: end for

grows. Given T samples {9'” from a subposterior p,,, we can write the estimator as

t,=1
Bm(0) = Fu(0)T(0)
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where we have used a Gaussian kernel with bandwidth parameter h for the nonparametric component
of this estimator. Therefore, we define our semiparametric density product estimator to be
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This estimate is proportional to the pdf of a mixture of T™ Gaussians with unnormalized mixture
weights,

W Ny (ét.lﬁM, f:M + %Id)
[T N6 [y E)

where 6,. and w,. are given in Egs. 5 and 6. We can write the parameters of a given mixture component
Na(Olu,, Zp) as



where [, and %, are given by Eq. 2 and 3. We can sample from this semiparametric estimate using
the IMG procedure outlined in Algorithm 1, replacing the component weights w,. with W,. and the
component parameters 6, and %I q with u,. and Z,..

We also have a second semiparametric procedure that may give higher acceptance rates in the
IMG algorithm. We follow the above semiparametric procedure, where each component is a normal
distribution with parameters u,. and %,., but we use the nonparametric component weights w,. instead
of W,.. This procedure is also asymptotically exact, since the semiparametric component parameters
u,. and ,. approach the nonparametric component parameters 6,. and %Id as h — 0, and thus this
procedure tends to the nonparametric procedure given in Algorithm 1.

4. Method Complexity and Scope

Given M data subsets, to produce T samples in d dimensions with the nonparametric or semiparametric
asymptotically exact procedures (Algorithm 1) requires O(d T M?) operations. The variation on this
algorithm that performs this procedure M—1 times on pairs of subposteriors (to increase the acceptance
rate; detailed in Section 3.2) instead requires only O(d T M) operations.

We have presented our method as a two step procedure, where first parallel MCMC is run to
completion, and then the combination algorithm is applied to the M sets of samples. We can instead
perform an online version of our algorithm: as each machine generates a sample, it immediately sends
it to a master machine, which combines the incoming samples® and performs the accept or reject step
(Algorithm 1, lines 3-12). This allows the parallel MCMC phase and the combination phase to be
performed in parallel, and does not require transfering large volumes of data, as only a single sample
is ever transferred at a time.

The total communication required by our method is transferring O(d T M) scalars (T samples from
each of M machines), and as stated above, this can be done online as MCMC is being carried out.
Further, the communication is unidirectional, and each machine does not pause and wait for any
information from other machines during the parallel sampling procedure.

The algorithms in this paper hold for posterior distributions over finite-dimensional real spaces.
These include generalized linear models (e.g. linear, logistic, or Poisson regression), mixture models
with known weights, hierarchical models, and (more generally) finite-dimensional graphical models
with unconstrained variables. This also includes both unimodal and multimodal posterior densities
(such as in Section 6.4). However, the methods and theory presented here do not yet extend to cases
such as infinite dimensional models (e.g. nonparametric Bayesian models [6]) nor to distributions
over the simplex (e.g. topics in latent Dirichlet allocation [3]). In the future, we hope to extend this
work to these domains.

5. Related Work

In [23, 2, 20], the authors develop a way to sample approximately from a posterior distribution when
only a small randomized mini-batch of data is used at each step. In [10], the authors used a hypothesis
test to decide whether to accept or reject proposals using a small set of data (adaptively) as opposed
to the exact Metropolis-Hastings rule. This reduces the amount of time required to compute the
acceptance ratio. Since all of these algorithms are still sequential, they can be directly used in our
algorithm to generate subposterior samples to further speed up the entire sampling process.

Several parallel MCMC algorithms have been designed for specific models, such as for topic mod-
els [22, 17] and nonparametric mixture models [25]. These approaches still require synchronization
to be correct (or approximately correct), while ours aims for more general model settings and does
not need synchronization until the final combination stage.

Consensus Monte Carlo [21] is perhaps the most relevant work to ours. In this algorithm, data
is also portioned into different machines and MCMC is performed independently on each machine.
Thus, it roughly has the same time complexity as our algorithm. However, the prior is not explicitly

3. For the semiparametric method, this will involve an online update of mean and variance Gaussian parameters.



reweighted during sampling as we do in Eq 1, and final samples for the full posterior are generated by
averaging subposterior samples. Furthermore, this algorithm has few theoretical guarantees. We find
that this algorithm can be viewed as a relaxation of our nonparametric, asymptotically exact sampling
procedure, where samples are generated from an evenly weighted mixture (instead of each component
having weight w,.) and where each sample is set to 6,. instead of being drawn from A/ (ét,, %Id). This
algorithm is one of our experimental baselines.

6. Experiments

In the following sections, we demonstrate empirically that our method allows for quicker, MCMC-
based estimation of a posterior distribution, and that our consistent-estimator-based procedures yield
asymptotically exact results. We furthere show that our methods allow for analysis of selected subsets
of data, which is of particular use when applied to spatiotemporal data.

6.1 Data and Models

We apply our method to a few Bayesian models using both synthetic and real data, where we show
both quantitative comparisons of the accuracy and performance of our method, as well as exploratory
analysis, showing insights into real-world large-scale datasets. We perform experiments on the
following models and data:

1. A Bayesian logistic regression model applied to synthetic data drawn according to the gener-
ative process of the assumed model.

2. A Bayesian logistic regression model applied to data from a forest covertype prediction chal-
lenge.

3. A hierarchical Poisson-gamma regression model applied to synthetic data drawn according
to the generative process of the assumed model.

4. A Gaussian mixture model applied to synthetic data drawn according to the generative process
of the assumed model.

5. A hidden segments mixture model of taxi records applied to 14 million New York City taxi
trip records.

6.2 Comparison Methods and Performance Evaluation

In each experiment, we compare the following strategies for parallel, communication-free sampling:*

¢ Single chain full-data posterior samples (regularChain)—Typical, single-chain MCMC for
sampling from the full-data posterior.

e Parametric subposterior density product estimate (parametric)—For M sets of subposte-
rior samples, the combination yielding samples from the parametric density product estimate.

e Nonparametric subposterior density product estimate (nonparametric)—For M sets of
subposterior samples, the combination yielding samples from the nonparametric density product
estimate.

e Semiparametric subposterior density product estimate (semiparametric)—For M sets of
subposterior samples, the combination yielding samples from the semiparametric density product
estimate.

e Subposterior sample average (subpostAvg)—For M sets of subposterior samples, the average
of M samples consisting of one sample taken from each subposterior.

o Subposterior sample pooling (subpostPool)—For M sets of subposterior samples, the union
of all sets of samples.

4. We did not directly compare with the algorithms that require synchronization since the setup of these experiments can be
rather different.
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Figure 1: Bayesian logistic regression posterior ovals. We show the posterior 90% probability mass
ovals for the first 2-dimensional marginal of the posterior, the M subposteriors, the subposterior
density product (via the parametric procedure), and the subposterior average (via the subpostAvg
procedure). We show M =10 subsets (left) and M=20 subsets (right). The subposterior density
product generates samples that are consistent with the true posterior, while the subpostAvg produces
biased results, which grow in error as M increases.

o Duplicate chains full-data posterior sample pooling (duplicateChainsPool)—For M sets
of samples from the full-data posterior, the union of all sets of samples.

To assess the performance of our sampling and combination strategies, we ran a single chain of
MCMC on the full data for 500,000 iterations, removed the first half as burn-in, and considered the
remaining samples the “groundtruth” samples for the true posterior density. We then needed a general
method to compare the distance between two densities given samples from each, which holds for
general densities (including multimodal densities, where it is ineffective to compare moments such as
the mean and variance®). Following work in density-based regression [19], we use an estimate of the

L, distance, d,(p, p), between the groundtruth posterior density p and a proposed posterior density p,
1/2

where dy(p, p) = lIp —ll, = ( (p(6) —B(6))%d6) .

In the following experiments involving timing, to compute the posterior L, error at each time
point, we collected all samples generated before a given number of seconds, and added the time taken
to transfer the samples and combine them using one of the proposed methods. In all experiments and
methods, we followed a fixed rule of removing the first % samples for burn-in (which, in the case of
combination procedures, was applied to each set of subposterior samples before the combination was
performed).

Experiments were conducted with a standard cluster system. We obtained subposterior samples
by submitting batch jobs to each worker since these jobs are all independent. We then saved the
results to the disk of each worker and transferred them to the same machine which performed the
final combination.

6.3 Generalized Linear Models

Generalized linear models are widely used for many regression and classification problems. Here
we conduct experiments, using logistic regression as a test case, on both synthetic and real data to
demonstrate the speed of our parallel MCMC algorithm compared with typical MCMC strategies.

5. In these cases, dissimilar densities might have similar low-order moments. See Section 6.4 for an example.
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Figure 2: Posterior L, error vs time for logistic regression. Left: the three combination strate-
gies proposed in this paper (parametric, nonparametric, and semiparametric) reduce the
posterior error much more quickly than a single full-data Markov chain; the subpostAvg and
subpostPool procedures yield biased results. Right: we compare with multiple full-data Markov
chains (duplicateChainsPool); our method yields faster convergence to the posterior even though
only a fraction of the data is being used by each chain.

6.3.1 SYNTHETIC DATA

Our synthetic dataset contains 50,000 observations in 50 dimensions. To generate the data, we drew
each element of the model parameter 8 and data matrix X from a standard normal distribution, and
then drew each outcome as y; ~ Bernoulli(logit™(X;)) (where X; denotes the i*" row of X)°. We
use Stan, an automated Hamiltonian Monte Carlo (HMC) software package,’ to perform sampling for
both the true posterior (for groundtruth and comparison methods) and for the subposteriors on each
machine. One advantage of Stan is that it is implemented with C++ and uses the No-U-Turn sampler
for HMC, which does not require any user-provided parameters [9].

In Figure 1, we illustrate results for logistic regression, showing the subposterior densities, the
subposterior density product, the subposterior sample average, and the true posterior density, for the
number of subsets M set to 10 (left) and 20 (right). Samples generated by our approach (where we
draw samples from the subposterior density product via the parametric procedure) overlap with the
true posterior much better than those generated via the subpostAvg (subposterior sample average)
procedure— averaging of samples appears to create systematic biases. Futher, the error in averaging
appears to increase as M grows. In Figure 2 (left) we show the posterior error vs time. A regular
full-data chain takes much longer to converge to low error compared with our combination methods,
and simple averaging and pooling of subposterior samples gives biased solutions.

We next compare our combination methods with multiple independent “duplicate” chains each
run on the full dataset. Even though our methods only require a fraction of the data storage on each
machine, we are still able to achieve a significant speed-up over the full-data chains. This is primarily
because the duplicate chains cannot parallelize burn-in (i.e. each chain must still take some n steps
before generating reasonable samples, and the time taken to reach these n steps does not decrease as
more machines are added). However, in our method, each subposterior sampler can take each step
more quickly, effectively allowing us to decrease the time needed for burn-in as we increase M. We

6. Note that we did not explicitly include the intercept term in our logistic regression model.
7. http://mc-stan.org
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Figure 3: Left: Bayesian logistic regression classification accuracy vs time for the task of predicting
forest cover type. Right: Posterior error vs dimension on synthetic data at 1000 seconds, normalized
so that regularChain error is fixed at 1.

show this empirically in Figure 2 (right), where we plot the posterior error vs time, and compare with
full duplicate chains as M is increased.

Using a Matlab implementation of our combination algorithms, all (batch) combination procedures
take under twenty seconds to complete on a 2.5GHz Intel Core i5 with 16GB memory.

6.3.2 REAL-WORLD DATA

Here, we use the covtype (predicting forest cover types)® dataset, containing 581,012 observations
in 54 dimensions. A single chain of HMC running on this entire dataset takes an average of 15.76
minutes per sample; hence, it is infeasible to generate groundtruth samples for this dataset. Instead
we show classification accuracy vs time. For a given set of samples, we perform classification using a
sample estimate of the posterior predictive distribution for a new label y with associated datapoint x,
ie.

P(ylx,yN,xN) = J P(ylx, 8, yN, xM)P(Blx™, yV)

o]

D P(ylx, B)

s=1

N+

where xV and y" denote the N observations, and P(y|x, 8;) = Bernoulli(logit™!(x " f,)). Figure 3
(left) shows the results for this task, where we use M =50 splits. The parallel methods achieve a higher
accuracy much faster than the single-chain MCMC algorithm.

6.3.3 SCALABILITY WITH DIMENSION

We investigate how the errors of our methods scale with dimensionality, to compare the different
estimators implicit in the combination procedures. In Figure 3 (right) we show the relative posterior
error (taken at 1000 seconds) vs dimension, for the synthetic data with M=10 splits. The errors at
each dimension are normalized so that the regularChain error is equal to 1. Here, the parametric
(asymptotically biased) procedure scales best with dimension, and the semiparametric (asymp-
totically exact) procedure is a close second. These results also demonstrate that, although the

8. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Figure 4: Gaussian mixture model posterior samples. We show 100,000 samples from a single 2-d
marginal (corresponding to the posterior over a single mean parameter) of the full-data posterior (top
left), all subposteriors (top middle—each one is given a unique color), the subposterior average via the
subpostAvg procedure (top right), and the subposterior density product via the nonparametric
procedure (bottom left), semiparametric procedure (bottom middle), and parametric procedure
(bottom right).

nonparametric method can be viewed as implicitly sampling from a nonparametric density estimate
(which is usually restricted to low-dimensional densities), the performance of our method does not
suffer greatly when we perform parallel MCMC on posterior distributions in much higher-dimensional
spaces.

6.4 Gaussian mixture models

In this experiment, we aim to show correct posterior sampling in cases where the full-data posterior,
as well as the subposteriors, are multimodal. We will see that the combination procedures that are
asymptotically biased suffer greatly in these scenarios. To demonstrate this, we perform sampling
in a Gaussian mixture model. We generate 50,000 samples from a ten component mixture of 2-d
Gaussians. The resulting posterior is multimodal; this can be seen by the fact that the component
labels can be arbitrarily permuted and achieve the same posterior value. For example, we find after
sampling that the posterior distribution over each component mean has ten modes. To sample from
this multimodal posterior, we used the Metropolis-Hastings algorithm, where the component labels
were permuted before each step (note that this permutation results in a move between two points in
the posterior distribution with equal probability).

In Figure 4 we show results for M=10 splits, showing samples from the true posterior, overlaid
samples from all five subposteriors, results from averaging the subposterior samples, and the results
after applying our three subposterior combination procedures. This figure shows the 2-d marginal
of the posterior corresponding to the posterior over a single mean component. The subpostAvg
and parametric procedures both give biased results, and cannot capture the multimodality of the
posterior. We show the posterior error vs time in Figure 5 (left), and see that our asymptotically exact
methods yield quick convergence to low posterior error.
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Figure 5: Left: Gaussian mixture model posterior error vs time results. Right: Poisson-gamma
hierarchical model posterior error vs time results.

6.5 Hierarchical models

We show results on a hierarchical Poisson-gamma model of the following form

a ~ Exponential(A)
b ~ Gamma(a, 3)
g; ~ Gamma(a, b) fori =1,...,N

x; ~ Poisson(q;t;) fori =1,...,N

for N=50,000 observations. We draw {x; }Ii\’: , from the above generative process (after fixing values
for a, b, A, and {ti}]i\’: 1), and use M=10 splits. We again perform MCMC using the Stan software
package.

In Figure 5 (right) we show the posterior error vs time, and see that our combination methods
complete burn-in and converge to a low posterior error very quickly relative to the subpostAvg and
subpostPool procedures and full-data chains.

7. Analyzing New York City Taxi Records

Our final experiment involves a large-scale exploratory analysis of spatiotemporal transportation-flow
data, which allows users to flexibly analyze traffic patterns at arbitrarily chosen portions of, for example,
the day, week, and year. To achieve this analysis, we design a graphical model for this data and use it
in a large scale distributed inference experiment.

Our data consisted of New York City taxi records from the year 2015 °. Each taxi record consists of
a time and location for both pickup (i.e. start of the trip) and dropoff (i.e. end of the trip.). There are
roughly 14 million taxi trips each month and 170 million total trips in 2015. Taxi locations range over
the five New York City Boroughs, as well as some nearby locations in New Jersey (and, in rare cases,
other states).

In this experiment we aim to demonstate the ability of our method to allow for flexible analysis of
spatiotemporal data. In particular, we aim to show that our embarrassingly parallel MCMC methods
can allow for analysis of arbitrarily chosen subsets of a large datset after inference has already been
completed. As an example use case, consider the taxi records datset. This is a time-varying dataset,

9. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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Figure 6: Graphical model for the hidden segments mixture model (HSMM) for taxi records.

and we can use this temporal component to split up the data into groups. In this case, we split our
data into fine grained groups of taxi trips with pickup times occuring in the same hour (for example, in
the Month of February of 2015 alone, this yields 672 groups of data). We can then perform MCMC on
each subset (i.e. each hour) of data. In previous experiments, we have been interested in combining
all locally inferred models. Here, we are interested in taking any subset of models (i.e. any arbitrary
group of hours) and selectively combining those. By doing this, we can yield an inference result on
queries such as the flow of traffic during weekdays versus weekends, or in morning rush hours versus
evening rush hours; we can also aim to analyze traffic patterns on days with certain, for example,
weather events (i.e. hours where it was sunny versus stormy) or in the presence of other covariates.

We next describe our model. Denote the i taxi trip pickup location as x; and dropoff location as
x{. In this model, we assume that pickup and dropoff locations tend to cluster at common locations
in the city; we will refer to these clusters as “hubs” or “transportation hubs”. Our model includes
an independent set of hubs for both pickup locations and dropoff locations. Let z; be an assignment
variable for pickup location x}, which labels the identity of the associated pickup hub for the ith
record, and let z; be a similar assignment variable for dropoff x?. Further, assume there are K pickup
hubs (i.e. z; € {1,...,K;}) and K, dropoff hubs (i.e. z{ € {1,...,K,}). Additionally, let 6; denote the
parameters of the emission distribution f, for the k™ pickup hub (i.e. parameters of the distribution
f; that generates the x; assigned to pickup hub k) and let 6, denote the parameters of the emission
distribution f, for the k™ dropoff hub (i.e. parameters of the distribution f, that generates the x;
associated with pickup hub k). Finally, assume there is an appropriately normalized transition matrix
T that dictates the transition, or relationship, between a taxi record’s pickup hub and its dropoff hub;
more specifically, the entry T , in this matrix will dictate the probability of transitioning to dropoff
hub k, from pickup hub k;.

The generative process of our model, which we call a hidden segments mixture model (HSMM)
for taxi records i = 1,...,N, can be written as following:

05 ~ gi(a,), fork={1,...,K}
0¢ ~ g.(a,), for k=1{1,...,K}
z! ~ Uniform ({1,...,K})

z{ ~ Categorical(T,; .)

xi~ £.(65)
xt~ £.(62)
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Figure 7: One hour of (a) taxi pickup locations in blue, and (b) taxi dropoff locations in red.

where g, and g, are, respectively, prior distributions over pickup hub and dropoff hub parameters
(and are parameterized by a, and a,) and T . denotes the k™ row of transition matrix T. In the
following experiments, we will assume very simple emission distributions for both taxi pickups and
dropoffs: we choose f, and f, to be Gaussian, and hub parameter priors g, and g, to be Normal-Wishart.
Furthermore, we fix K = 30 through all experiments; this value was chosen via visual inspection of
inference results on a subset of the data. A graphical depiction of this model is drawn in Figure 6. When
performing the combination procedure in this model, we use the parametric combination strategy
(Section 3.1), which yields better results given the highly multimodal posterior density landscape in
this latent variable model.

We plot one hour of this data in Figure 7. Plot (a) shows all pickup locations in blue, and plot
(b) shows all dropoff locations in red. There are slightly over 30,000 taxi records in this hour alone.
On individual groups of data (i.e. over individual hours), we perform inference in this model using
Gibbs sampling. We run each of these chains of MCMC for 50,000 steps, and then thin and randomly
permute the resulting samples. Our Gibbs sampling implementation takes on the order of one hour
to yield these samples. We also run our combination algorithm for 50,000 steps; in the following
visualizations, we plot the parameters yielded by the final step of this algorithm (we are therefore
plotting an approximate point estimate, as it is difficult to visualize a posterior distribution over the
parameters of this model).

In this set of experiments, we combine selective subsets of the inferred local (hourly) results
to analyze taxi traffic flow; in particular, we determine pickup hubs, dropoff hubs, and transition
probabilities between the hubs, at different times of the day and week, over the course of the month
of February 2015. We show results in Figure 8. In each plot, we overlay the found pickup hubs (blue
crosses) and dropoff hubs (red circles) on top of the outlines of the five New York City boroughs (note
that some of the hubs are positioned outside of the boroughs in New Jersey). To show the transition
probabilities between the hubs, we plot arrows between hubs for the 40 highest weighted entries
of the transition matrix T; these arrows are colored based on their weights, with a darker arrow
corresponding to a stronger transition between hubs. As an example, we show an inference result
for a single hour (17:00-18:00 on Thursday, February 2015) in Figure 8 (d); Note that this result is
yielded directly from local inference, without any futher combination.

In Figure 8, plot (a) shows the inference result of combining all possible hours (i.e. the model
posterior over the full dataset). We see here that the hubs are fairly evenly distributed over Manhattan,
Brooklyn, and Queens (with a concentration along the East and West side of Manhattan), and a
small collection of pickup hubs in New Jersey. We furthermore see that the transitions between hubs
concentrate in Manhattan and East Queens, but are all fairly homogeneous (without a large pattern
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Figure 8: Combined inference results for the HSMM applied to one month of taxi data, showing taxi
traffic patterns at different times of the day and week. Each plot shows the inferred pickup hubs (blue
crosses), dropoff hubs (red circles), and highest-weighted transitions between pickup and dropoff
hubs (directed edges denote the largest 40 elements of T, where a darker edge corresponds with a
stronger weight). See text for details on individual plots.

of specific highly weighted transitions). Plots (b) and (c) show the traffic of pattern during morning
rush hour (06:00-09:00) and evening rush hour (16:00-19:00), respectively. In (b), we see a strong
concentration of traffic going to midtown Manhattan (particularly, midtown east) and the financial
district (South Manhattan). In these morning hours, there is relatively little taxi traffic in Brooklyn
and Queens (though we do see a major flow from a hub associated with LaGuardia airport, in North
Queens, to midtown Manhattan). In (c), during the evening hours, we see major traffic to and between
Greenwich Village and East Village in Manhattan, and to the West and East sides of cental park;
we also see increased activity in both Queens and Brooklyn. Plots (e), (f), (h), and (i) aim to elicit
the differences in traffic patterns between weekdays and weekends. In particular, plots (e) and (f)
show combined model results during weekdays (i.e. Mondays through Fridays), where (e) shows
results for the 09:00 hour only, and (f) shows results taken over all hours in the day. Likewise, plots
(h) and (i) show combined model results during weekends (i.e. Saturday and Sunday), where (h)
shows results taken for the 09:00 hour only, and (i) shows results taken over all hours in the day. We
see in weekdays, there is a much higher concentration of taxi traffic in Manhattan (and looking at
the 09:00 hour, we see a particular concentration in Midtown Manhattan and East Queens near the
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Figure 9: Combined inference results for the HSMM applied to one month of taxi data, showing taxi
traffic patterns either to or from a selected individual hub. Each plot shows the inferred pickup hubs
(blue crosses), dropoff hubs (red circles), and highest-weighted transitions for a single pickup or
dropoff hub (directed edges denote the largest 20 elements of the row or column of T associated with
this pickup or dropoff hub, where a darker edge corresponds with a stronger weight). The top row
of plots shows the distribution over pickup hubs for three dropoff hubs (one in Manhattan, one in
Queens, and one in Brooklyn), while the bottom row of plots shows the distribution over dropoff hubs
for three pickup hubs (in three similar locations). See text for more details on individual plots.

border of Manhattan), while in weekends, there is a much higher concentration around the border of
central park, throughout Queens, and in Brooklyn. Finally, in plot (g), we show taxi traffic results
combined only over late-night hours (00:00-04:00). In this plot, we see far more traffic in small
clusters throughout Brooklyn, Queens, and the Bronx, and a cluster near Greenwich Village and East
Village in Manhattan.

We can also use the inferred model results to show the transportation patterns for a selected
individual hub. For example, we might select the hub closest to the LaGuardia airport in North
Queens, and want to see the distribution over hubs that people take the taxi to (from LaGuardia) or
the distribution over hubs that people take the taxi from (to LaGuardia). We can get these types of
results for any of our inferred hubs. In Figure 9, we show such results for a few selected hubs. Plot (a)
shows the distribution over pickup hubs for a single dropoff hub in midtown Manhattan. We see that
most taxi trips are from neighboring hubs in Manhattan, and from LaGuardia airport in North Queens
and John E Kennedy airport in Southeast Queens. Similarly, in Plot (b), we show the distribution
over dropoff hubs for a single pickup hub in Manhattan, and see a similar transportation pattern.
In plots (b) and (e) we show the same type of results for a dropoff hub and pickup hub in North
Queens, and in plots (c) and (f) we show the same type of results for a dropoff hub and pickup hub in
central Brooklyn. Of note is that plots (b) and (e) correspond to the dropoff and pickup hubs closest to
LaGuardia airport in queens; we see that the highest weighted pickup hubs traveling to to this airport
are in Queens and Brooklyn (including the hub located at John E Kennedy Airport), while the highest
weighted dropoff hubs traveling from this airport are in West Queens and Manhattan.
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8. Conclusion

In this paper, we present an embarrassingly parallel MCMC algorithm and provide theoretical guaran-
tees about the samples it yields. Experimental results demonstrate our method’s potential to speed up
burn-in and perform faster asymptotically correct sampling. Further, it can be used in settings where
data are partitioned onto multiple machines that have little intercommunication—this is ideal for use
in a MapReduce setting. Currently, our algorithm works primarily when the posterior samples are real,
unconstrained values and we plan to extend our algorithm to more general settings in future work.

18



References

(1]
(2]
(3]

(4]
(5]

(6]
(7]

(8]

(9]
(10]
(11]
(12]

[13]
[14]

[15]
[16]
(17]

(18]

[19]
[20]
[21]
[22]
(23]

[24]
[25]

Alekh Agarwal and John C Duchi, Distributed delayed stochastic optimization, Decision and Control (CDC),
2012 IEEE 51st Annual Conference on, IEEE, 2012, pp. 5451-5452.

Sungjin Ahn, Anoop Korattikara, and Max Welling, Bayesian posterior sampling via stochastic gradient fisher
scoring, Proceedings of the 29th International Conference on Machine Learning, 2012, pp. 1591-1598.

David M Blei, Andrew Y Ng, and Michael I Jordan, Latent dirichlet allocation, The Journal of Machine
Learning Research 3 (2003), 993-1022.

Trevor Campbell and Jonathan How, Approximate decentralized bayesian inference, 2014.

Jeffrey Dean and Sanjay Ghemawat, Mapreduce: simplified data processing on large clusters, Communications
of the ACM 51 (2008), no. 1, 107-113.

Samuel J Gershman and David M Blei, A tutorial on bayesian nonparametric models, Journal of Mathematical
Psychology 56 (2012), no. 1, 1-12.

Nils Lid Hjort and Ingrid K Glad, Nonparametric density estimation with a parametric start, The Annals of
Statistics (1995), 882-904.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Gregory R. Ganger,
Garth Gibson, and Eric P Xing, More effective distributed ml via a stale synchronous parallel parameter server,
Advances in Neural Information Processing Systems, 2013.

Matthew D Hoffman and Andrew Gelman, The no-u-turn sampler: Adaptively setting path lengths in hamilto-
nian monte carlo, arXiv preprint arXiv:1111.4246 (2011).

Anoop Korattikara, Yutian Chen, and Max Welling, Austerity in MCMC land: Cutting the Metropolis-Hastings
budget, arXiv preprint arXiv:1304.5299 (2013).

John Langford, Alex J Smola, and Martin Zinkevich, Slow learners are fast, Advances in Neural Information
Processing Systems, 2009.

Kathryn Blackmond Laskey and James W Myers, Population Markov chain Monte Carlo, Machine Learning
50 (2003), no. 1-2, 175-196.

Lucien Le Cam, Asymptotic methods in statistical decision theory, New York (1986).

Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin, and Joseph Hellerstein,
Graphlab: A new framework for parallel machine learning, arXiv preprint arXiv:1408.2041 (2014).

Lawrence Murray, Distributed Markov chain Monte Carlo, Proceedings of Neural Information Processing
Systems Workshop on Learning on Cores, Clusters and Clouds, vol. 11, 2010.

Willie Neiswanger, Chong Wang, and Eric Xing, Asymptotically exact, embarrassingly parallel mcmc, Proceed-
ings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014), 2014.

David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling, Distributed algorithms for topic models,
The Journal of Machine Learning Research 10 (2009), 1801-1828.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith, Smooth sensitivity and sampling in private data
analysis, Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, ACM, 2007,
pp. 75-84.

Junier Oliva, Barnabds Pdczos, and Jeff Schneider, Distribution to distribution regression, Proceedings of The
30th International Conference on Machine Learning, 2013, pp. 1049-1057.

Sam Patterson and Yee Whye Teh, Stochastic gradient riemannian langevin dynamics on the probability
simplex, Advances in Neural Information Processing Systems, 2013.

Steven L. Scott, Alexander W. Blocker, and Fernando V. Bonassi, Bayes and big data: The consensus monte
carlo algorithm, Bayes 250, 2013.

Alexander Smola and Shravan Narayanamurthy, An architecture for parallel topic models, Proceedings of the
VLDB Endowment 3 (2010), no. 1-2, 703-710.

Max Welling and Yee W Teh, Bayesian learning via stochastic gradient Langevin dynamics, Proceedings of the
28th International Conference on Machine Learning, 2011, pp. 681-688.

Darren J Wilkinson, Parallel Bayesian computation, Statistics Textbooks and Monographs 184 (2006), 477.

Sinead Williamson, Avinava Dubey, and Eric P Xing, Parallel Markov chain Monte Carlo for nonparametric
mixture models, Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 98-106.

19



