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Abstract

Background. The amount of unorganized and unlabeled data, specifically images, is growing.
To extract knowledge or insights from the data, exploratory data analysis tools such as searching
and clustering have become the norm. The ability to search and cluster the data semantically
facilitates tasks like user browsing, studying medical images, content recommendation, and com-
putational advertisements among others. However, large image collections are plagued by lack
of a good representation in a relevant metric space, thus making organization and navigation
difficult. Moreover, the existing methods do not scale for basic operations like searching and
clustering.

Aim. To develop a fast and scalable search and clustering framework to enable discovery and
exploration of extremely large scale data, in particular images.

Data. To demonstrate the proposed method, we use two datasets of different nature. The first
dataset comprises of satellite images of seven urban areas from around the world of size 200GB.
The second dataset comprises of 100M images of size 40TB from Flickr, consisting of variety
of photographs from day to day life without any labels or sometimes with noisy tags (∼1% of
data).

Methods. The excellent ability of deep networks in learning general representation is exploited
to extract features from the images. An efficient hierarchical space partitioning data structure,
called cover trees, is utilized so as to reduce search and reuse computations.

Results. Using the visual search-by-example on satellite images runs in real-time on a single
machine and the task of clustering into 64k classes converges in a single day using just 16 com-
modity machines. Furthermore, the method is able to discover semantic concepts and “patterns
of interest” in an unsupervised manner from Flickr images and unlabeled satellite imagery re-
spectively.

Conclusions. A new scalable search and clustering method to explore massive datasets has
been demonstrated on real-world datasets. Speed and scalability is guaranteed by a runtime
that is logarithmic in the number of data points & clusters and polynomial in the expansion rate
of the underlying parameter space per sample.

Keywords: Clustering, nearest neighbour search, deep networks, latent variable models, Gibbs
sampling
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1 Introduction

The digitally connected world of today involves potentially valuable data growing at a tremen-
dous pace, in various forms ranging from text to images & videos to detailed user activity logs
and shopping histories. The value generation is in transforming unstructured data into usable in-
formation, which is well organized, searchable and understandable, so as to enable visualization,
summarization, personalized recommendation (of articles to read, videos to watch, locations to visit,
restaurants to dine at, events to attend), fraud detection, medical image analysis, or more informed
decision making in general.

For converting data into useful information nearest-neighbour search and latent variable models
(LVM), such as clustering, have become the staple. More recently, the aforementioned algorithms in
conjunction with Bayesian nonparametrics and deep networks have gained a lot of popularity [1, 2].
They have become a popular tool for modelling, visualization, inference, and exploratory analysis of
multivariate data as they possess a desirable property of discovering the hidden thematic structure
of objects in an interpretable format unlike unparsable results from deep networks.

With terabytes and petabytes of data pouring in, brute-force search and traditional methods for
LVM inference are not up to the challenge. In the past decade, frameworks such as stochastic
gradient descent (SGD) [3] and map-reduce [4] have enabled deep learning algorithms to scale to
larger datasets. However, these frameworks are not always applicable to latent variable models
or Bayesian nonparametrics which typically involve rich statistical dependencies and intractable
gradients. Variational methods [5] and Markov chain Monte-Carlo (MCMC) [6] have thus become
the sine qua non to infer the posterior distribution in these models, but they are often sequential
and involve dense computation.

To deal with real life problems in industry, these inference procedures need to scale to massive
datasets in a reasonable time with modern computational resources which are racks of fast, cheap,
heavily multicored and unreliable machines. Fast nearest-neighbour search, given a metric space,
has become a mainstay of information retrieval [7, 8, 9]. Search engines are able to perform virtually
instantaneous lookup among sets containing billions of objects. In contrast, inference procedures
for clustering (Gibbs sampling, stochastic EM, or variational methods) are often problematic even
when dealing with thousands of distinct objects. This is largely because, for any inference method,
we potentially need to evaluate all probabilities whereas for search we only need to find the best
instance.

The problem is further exacerbated in case of images for which a general purpose representation and
similarity metric is not established. A lot of work has been done to encode images by a vector of
hand-crafted visual features [10]. Such hand-crafted feature vectors do not necessarily preserve the
accurate semantic similarities of image pairs, especially across multiple domains, e.g. satellite images
and photographs from day-to-day life. Deep networks and Bayesian models with rich hierarchies
easily extract useful information for downstream tasks like classification or other predictions [11].
Often these learnt representations by the aforementioned algorithms exhibit generality for tasks
outside of the task it was trained for, thereby enabling transfer learning and domain adaption. Well
known examples include word embedding such as word2vec [12], learned from large, unstructured
corpora have been shown to be surprisingly effective at capturing semantic regularities in language,
or image features extracted from deep convnets such as resnet [13] or inception [14]. We want to
utilize the ability of deep networks to learn representations along with L2 Euclidean metric for
performing search and clustering. An important point to note though is that such representations
learnt from deep networks are high dimensional dense vectors. So operating on these vectors put a
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lot of pressure on CPU-RAM and network bandwidth, hindering scalability.

Problem being solved. We propose an algorithm to speed-up inference on LVM, thereby bridging
the gap between meeting the need for speed and understanding the data in a very generalized setting.
In particular, for this project, we want to focus on the following two problems:

• Search: Implement a visual search-by-example system capable of returning similar images in
real time using a single machine
• Clustering: Design and implement image clustering system capable of handling 100M-1B

images within reasonable time and with reasonable use of resources.

Outline of the approach. The images are embedded into an Euclidean space using the learned
representation of a deep network trained for a classification task on the noisy tags available for
a subset of the data. Next, the space is partitioned using a hierarchical data structure, called
Cover Trees [7]. The advantages of this partitioning are two fold. Firstly, it allows fast look-up by
reducing the search-space as we descend the hierarchy. Secondly, for clustering it allows flexibility
for visualizing the data points in terms of varying degrees of granularity during the inference. (For
example, exact calculations must be carried out for the few clusters near to point in consideration
but approximations can be made for many clusters that are far away, reducing computational costs.)

Figure 1: Canopy is accurate but much faster as
compared to other methods like EM or ESCA [15].
The bar graph shows time per iteration while line
plots the likelihood on held-out test set. Results
shown are for inference of Gaussian mixture model
with 32 million points having 4096 clusters at 1024
dimensions.

In particular, for the first problem of search
we simply implement cover tree based near-
est neighbor search on the feature vectors ob-
tained by the deep networks and launch a real-
time service called “Terrapattern” http://www.

terrapattern.com. But for the second prob-
lem of clustering, as mentioned earlier, no scal-
able solution exists. We aim to address this by
marrying the fast lookup structure, i.e., cover
trees which is used for nearest neighbor search,
with an adaptive rejection sampler. This leads
to a surprisingly simple design, which we term
as “Canopy”, for a variety of sampling-based
inference algorithms. Moreover, we can obtain
runtime guarantees for the sampler that depend
only on the inherent dimensionality of the data
distributions. The expected depth for lookups
is never worse than logarithmic in the number of ‘clusters’, and the characteristic length scale at
which models can be sufficiently well distinguished. Furthermore, it has been shown that in hierar-
chical Bayesian models, the Gibbs update step can be carried out in parallel as a stochastic cellular
automata (ESCA) while still ensuring convergence [15]. This work combines the stochastic cellular
automata idea leading to an extremely scalable and efficient system design. For example, in the
case of Gaussian mixture models, the proposed method, Canopy, is much faster than EM or ESCA
while achieving same accuracy as shown in Fig. 1.

2 Related Works

There has been some work on speeding-up clustering using different approaches.
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Using nearest neighbour search: Among the first works [16, 17] on accelerating inference on
graphical models (like mixture models) employs nearest neighbour search like KD-trees for guiding
the inference. But, KD-trees are not scalable with respect to dimensionality of the data points.
This is because KD-trees could be very deep, even for datasets having small fractal dimensions.
Also KD-trees do not provide any advantage and do not have special properties like covering.

Using coresets: Another line of work [18] to speed up mixture models and clustering involves
finding a weighted subset of the data, called coreset. A coreset [19] is a weighted subset of the data
such that the quality of any clustering instance evaluated on the coreset closely approximates the
quality on the full data set. Models trained on the coreset are provably competitive with models
trained on the original data set. Such an approach will reduce the effective number of samples,
but then perform traditional inference on the coreset. However, the construction time of coreset
is atleast Ω(nm), where n is the number of points in the dataset and m is the number of clusters,
which is very expensive.

Commercial packages: Commercial frameworks like Spark [20] offer large scale clustering func-
tionality as well.

In Table 1 we list the size of largest dataset reported to be used by each method listed above along
with the size of the problem we are targeting in this work. We would like to mention that it is hard
to compare the quality of clustering an algorithm achieves unless tested on the same dataset. As
each of the reported work used a different dataset, we cannot provide a quality metric.

Paper Dimension Number of Points Number of Clusters

Moore 1999 [16] 3 1,600,000 1,000
Spark 2015 [21] 10 2,000,000 -
Bachem 2015 [22] 57 11,620,300 2,000
Lucic 2016 [18] 74 145,751 50
This work 2048 100,000,000 64,000

Table 1: Comparison of the size of the largest dataset used by various works on clustering.

3 Background

In this section we provide a brief discussion about the cover tree data structure, upon which both of
our systems are based, i.e. fast nearest neighbor search and clustering. Furthermore, the proposed
technique for speeding up inference on latent variables depends crucially on a reformulation of the
conditional probabilities, with which we begin our discussions.

3.1 Latent Variable Models

Most latent variable models, e.g. Gaussian mixture models, latent Dirichlet allocation [23], hidden
Markov models, Dirichlet process clustering [24], or hierarchical generative models [25], have the
structure of the form:

p(x) =
∑
z

p(z)p(x|θz) (1)
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where x, z and θz denote observed variables, latent variables, and parameters of the conditional
distribution respectively. Often the conditional distribution p(x|θz) belongs to the exponential
family, which we assume to be the case in this work as well. Inference procedures for estimating z
and θz on these models involving Gibbs sampling or stochastic variation methods or ESCA would
require to draw z ∼ p(z|x) repeatedly. Näıvely producing these draws would be expensive, especially
when the number of latent classes is huge. We aim to bring the per-iteration cost down from O(mn)
to Õ(m+ n)1, where m is the number of latent classes and n is the number of data points.

The key motivation for this work is to make inference in mixtures of exponential families more
efficient. The reasons for limiting to exponential families are two fold. First, most of the mixture
models used in practice belongs to this class. Second, for speeding up one would require more
structure which we obtain by assuming the form of distribution, i.e. exponential family. We
make the following assumptions on p(x|θz) and p(z). First, we assume that updates to p(z) can
be carried out by modifying O(1) values at any given time. For instance, for Dirichlet process
mixtures, the collapsed sampler uses p(zi = j|Z\ {zi}) = n−ij / (n+ α− 1). Here n is the total

number of observations, n−ij denotes the number of occurrences of zl = j when ignoring zi, and
alpha is the concentration parameter. Second, we assume that the conditional model p(x|θ) in (1)
is a member of the exponential family, i.e.,

p(x|θ) = exp(〈φ(x), θ〉 − g(θ)) (2)

Here φ(x) represents the sufficient statistics and g(θz) being the (normalizing) log-partition function.

Trying to find a metric data structure for fast retrieval is not necessarily trivial for the exponential
family. In fact [26] and [27] design Bregman divergence based methods. Unfortunately they are
more costly to maintain and have somewhat less efficient lookup properties. Finally, computing
and optimizing over Bregman divergences is less straightforward. For example, whenever we end up
on the boundary of the marginal polytope, as is common with natural parameters associated with
single observations, optimization becomes intractable. Fortunately this problem can be avoided
entirely by rewriting the exponential family model as

p(x|θ) = e〈(φ(x),−1),θ,g(θ)〉 = e〈φ̃(x),θ̃〉 (3)

where φ̃(x) := (φ(x),−1) and θ̃ := (θ, g(θ)).

In this case, being able to group similar θ̃ together allows us to assess their contributions efficiently

without having to inspect individual terms. Further, we assume that
∥∥∥φ̃(xi)

∥∥∥ ≤ R and
∥∥∥θ̃z∥∥∥ ≤ T

for all i and for all z ∈ Z respectively.

3.2 Cover Trees

Cover Trees [7] and their improved version [28] form a hierarchical data structure that allows fast
retrieval in logarithmic time. The key properties for the purpose of this paper are that it allows
for O(n log n) construction time, O(log n) retrieval, and that it only depends polynomially on the
expansion rate [29] of the underlying space, which we refer to as c. Moreover, the degree of all
internal nodes is well controlled, thus giving guarantees for retrieval (as exploited in [7]), and for
sampling (as we will be using in this paper).

The expansion rate of a set, due to [29] captures several key properties.

1It is a variant of big O notation that ignores logarithmic factors. f(n) ∈ Õ(g(n)) is shorthand for ∃k : f(n) ∈
O(g(n) logk g(n)).
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(a) Expansion rate (b) Separation property (c) Covering property

Figure 2: Illustration of various properties of covering tree.

Definition 1 (Expansion Rate) Denote by Bρ(r) a ball of radius of r centered at ρ. Then a set
S has a (l, c) expansion rate iff all r > 0 and ρ ∈ S satisfy

|Bρ(r) ∩ S| ≥ l =⇒ |Bρ(2r) ∩ S| ≤ c |Bρ(r) ∩ S| . (4)

In the following we set l = O(log |S|), thus referring to c simply as the expansion rate of S.

Cover trees are defined as an infinite succession of levels Si with i ∈ Z. Each level i contains (a
nested subset of) the data with the following properties:

• Nesting property: Si−1 ⊆ Si.
• Separation property: All x, x′ ∈ Si satisfy ‖x− x′‖ ≥ 2i.
• All x ∈ Si−1 have a parent in x′ ∈ Si, possibly with x = x′, with ‖x− x′‖ ≤ 2i.
• As a consequence, the subtree for any x ∈ Si has distance at most 2i from x.

Cleary we need to reperesent each x only once, namely in terms of Si with the largest i for which
x ∈ Si holds. This data structure has a number of highly desirable properties, as proved in [7]. We
list the most relevant ones below:

• The depth of the tree in terms of its explicit representation is at most O(c2 log n).

• The maximum degree of any node is O(c4).

• Insertion & removal take at most O(c6 log n) time.

• Retrieval of the nearest neighbor takes at most O(c12 log n) time.

• The time to construct the tree is O(c6n log n).

We will make one final assumption in terms of the distinguishability of parameters θz. This is
related to the issue that if we had many choices of θz that, a-priori, all looked quite relevant yet
distinct, we would have no efficient means of evaluating them short of testing all by brute force.
Note that this could be achieved, e.g. by using the fast hash approximation of a sampler in [30].
This is complementary to the present paper.

4 Approach

In this section, we explain the details of our approach. The first step in solving either of the two
problems of search and clustering is to embed the images into a metric space, i.e. feature extraction.
After extraction of features, for the task of nearest neighbor search, we directly employ the cover
tree based approach as described in [7, 28]. For the task of clustering, we explain details of our
approach when the number of clusters is (a) moderate (b) large, after describing feature extraction
and introducing some notation.
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Feature extraction: We use the state of the art deep convolutional neural network (DCNN),
based on the ResNet (”Residual Network”) architecture [13, 31]. ResNet consists of small building
blocks of layers which learn the residual functions with reference to the input. It is demonstrated
that ResNet is able to train networks that are substantially deeper without the problem of noisy
backpropagation gradient. The resnet is trained on a task of classification for a subset of images
for which we have labels. In the process, our network learned which high-level visual features
(and combinations of those features) are important for the classification of satellite imagery. After
training the model, we remove the final classification layer of the network and extract from the
next-to-last layer of the DCNN, as the representation of the input image which is of dimension
2048.

Notation: The number of data points and clusters are denoted with n and m respectively. The
function ch(x) returns children of a node x.

Data tree (TD): Cover tree built with levels S on all available data using the sufficient statistic
φ(x) for representation purposes. This costs at most O(c6n log n) time and it needs to be carried
out only once for our setup. In fact, we only need to construct the tree up to a fixed degree of
accuracy ̄ in case of moderate number of clusters. Once TD has been constructed, we obtain and
record prototypes x̄ for each data point x through nearest neighbor queries on TD, incurring a
one-time cost of O(c6n log n). A key observation is that multiple points can have a same prototype
x̄, making it a many-to-one map. This helps us amortize costs over points by re-using proposal
computed with x̄, for example, as described in Sec. 4.1. From the nesting property of cover trees,
we have ‖φ(x)− φ(x̄)‖ ≤ 2 for all points.

Cluster tree (TC): Cover tree generated with cluster parameters θ̃z. For simplicity we assume
here that the expansion rates of clusters and data are identical. Hence, construction of TC costs at
most O(c6m logm) time.

4.1 Canopy I: Moderate number of clusters

We introduce a variant of our sampler, Canopy I, when the number of clusters is relatively small
compared to the total number of observations. This addresses many cases where we want to obtain
a flat clustering on large datasets. For instance, it is conceivable that one might not want to infer
more than a thousand clusters for one million observations. Note that this algorithm will be used as
a subroutine to perform inference whenever the number of clusters is considerably large (Sec. 4.2).
In a nutshell, our approach for moderate number of clusters works as follows:

1. Construct TD and pick a level ̄ ∈ Z with accuracy 2̄ such that the average number of elements
per node in S̄ is O(m).

2. For each of the prototypes x̄, which are members of S̄, compute p(z|x̄) using the alias method
(see Appendix Sec. A.1) to draw from m components θz. By construction, this cost amortizes
O(1) per observation, i.e., a total cost of O(n log n).

3. For each observation x with prototype x̄, perform rejection sampling or Metropolis-Hastings
sampling using the draws from p(z|x̄) =: q(z) as proposal to obtain samples from p(z|x).

We can control the number of samples wasted by rejection sampling or convergence rate of the
Metropolis-Hastings sampler with the choice of accuracy level . Note that for both kind of sampling,
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the key quantity quantity controlling rejections or convergence is [32]:

π = min
z

p(z|x̄)

p(z|x)
≥ e−‖φ(x)−φ(x̄)‖‖θz‖ ≥ e−2̄+1L

for ‖θz‖ ≤ L. This follows from the Cauchy Schwartz inequality and property of cover tree that all
children of x̄ are no more than 2̄+1 apart from each other. Larger the π is faster we converge or
lesser is the number of the samples wasted [32]. Thus with choice of how much to descend the cover
tree, we can trade-off between approximation and speed.

4.2 Canopy II: Large number of clusters

The key difficulty in dealing with many clusters is that it forces us to truncate TD at a granularity in
x that is less precise than desirable in order to benefit from the alias sampler naively. In other words,
a larger m reduces our affordability in terms of granularity in x, for similar sampling complexity.
The problem arises because we are trying to distinguish clusters at a level of resolution that is too
fine. A solution is to apply cover trees not only to observations but also to the clusters themselves,
i.e., use both TD and TC . This allows us to decrease the minimum observation-group size at the
expense of having to deal with an aggregate of possible clusters.

Our method for large number of clusters operates in two phases: (a) Descend the hierarchy in
cover trees while sampling (Sec. 4.2.1) (b) Sample for a single observation x from a subset of
clusters arranged in TC (Sec. 4.2.2), when appropriate conditions are met in (a). We begin with
the following initialization and then elaborate each of these phases in detail.

Initialize 1: Construct TC and for each node θz, assign α(i, z) = p(z), where i is the highest level
Si such that z ∈ Si, else α(i, z) = 0. Then perform bottom-up aggregation via

β(i, z) = α(i, z) +
∑

z′∈ch(z)

β(i+ 1, z′) (5)

This creates m entries β(θz) as TC has exactly m nodes. Notice that aggregated value β(θz) captures
the probability of θz and its children in TC .

Initialize 2: Partition both the observations and the clusters at a resolution that allows for
efficient sampling and precomputation. More specifically, we choose accuracy levels ı̂ and ̂ to
truncate TD and TC , so that there are n′ and m′ nodes respectively after truncation. These serve
as partitions for data points and clusters such that n′ · m′ = O(m) is satisfied. The aggregate
approximation error

δ := 2ı̂L+ 2̂R+ 2ı̂+̂+1 (6)

due to quantizing observations and clusters is minimized over the split. Here ı̂ and ̂ are the accuracy
levels of TD and TC respectively. This partition can be done by search over the levels.

4.2.1 Descending TD and TC

Given the two cover trees TD and TC with accuracy levels ı̂ and ̂, we now iterate over the generated
hierarchy, as shown in Fig. 3. We recursively descend simultaneously in both trees until the number
of observations for a given cluster is too small. In that case, we simply default to sampling algorithm
described in Sec. 4.2.2 for each observation in a given cluster.
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The reason why it works is as follows: once we have the partitioning into levels ı̂, ̂ for data and
clusters respectively with n′ ·m′ = O(m), we draw from the proposal distribution

q(z̄|x) ∝ β(θz̄) exp (〈φ(x̄), θz̄〉 − g(θz̄)) (7)

for all the observations and clusters above the partitioned levels ı̂ and ̂ respectively. That is, we
draw from a distribution where both observations and clusters are grouped. Specifically, for each x
we sample from TD truncated at level ı̂. Here, β(θz̄) collects the prior cluster likelihood from z̄ and
all its children. As described earlier, we can use the alias method for sampling efficiently from (7).
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Figure 3: Hierarchical partitioning over both data
observations and clusters. The accuracy at a par-
ticular level is indicated by rows for observations
and columns for clusters. Once we sample clusters
at a coarser level, we descend the hierarchy and
sample at a finer level, until we have few number
of points per cluster. We then default to Sec. 4.2.1
for rejection sampler.

Within each group of observations, drawing
from (7) leads to a distribution over a (possi-
bly smaller) subset of cluster groups. Whenever
the number of observations per cluster group is
small, we default to the algorithm described in
Sec. 4.2.2 for each observation. On the other
hand, if we have a sizable number of observa-
tions for a given cluster, which should happen
whenever the clusters are highly discriminative
for observations (a desirable property for a good
statistical model), we repeat the strategy on the
subset to reduce the aggregate approximation
error (6). In other words, we descend the hier-
archy to yield a new pair (i′, j′) on the subset of
clusters/observations with i′ < ı̂ and j′ < ̂ and
repeat the procedure.

The process works in a depth-first fashion in
order to avoid using up too much memory. The
sampling probabilities according to (7) are multiplied out for the path over the various hierarchy
levels and used in a Metropolis-Hastings procedure. Each level of the hierarchy can be processed in
O(1) operations per instance, without access to the instance itself. Moreover, we are guaranteed to
descend by at least one step in the hierarchy of observations and clusters, hence the cost is at most
O(c2 min(log n, logm)).

Note that the move probabilities are always at least as high as the bounds derived in the previous
section since the errors on the paths are log-additive. An alternative would be to use a rejection
sampler. Details are omitted for the sake of brevity and since they mirror the single-observation
argument of the following section.

4.2.2 Sampling for a single observation x

Let x be the single observation for which we want to sample z from possibly a subset of clusters that
are arranged in TC . In this case, we hierarchically descend TC using each aggregate as a proposal for
the clusters below. As before, we can use MH sampling or alternatively use a rejection sampler. We
describe the latter approach in detail below, with its theoretical analysis being deferred to Appendix
Sec. B. If we are able to approximate p(x|θz) by some qz such that

e−εp(x|θz) ≤ qz ≤ eεp(x|θz) (8)
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then it follows that a sampler drawing z from

z ∼ qzp(z)∑
z′ qz′p(z

′)
(9)

and then accepting with probability e−εq−1
z p(x|θz) will draw from p(z|x) (see appendix for details).

Moreover, the acceptance probability is at least e−2ε. We will obtain such a bound by successively
approximating the set of θz via cover tree TC , as follows:

1. Choose an approximation level ı̂ and set e−ε = e−2ı̂‖φ̃(x)‖ as multiplier for the acceptance thresh-
old of the sampler.

2. Compute normalization at accuracy level ı̂

γ :=eε
∑
z∈Sı̂

β(̂ı, z) exp
〈
θ̃z, φ̃(x)

〉
(10)

3. Draw ξ ∼ U [0, 1].

4. Draw a child z ∈ Sı̂ with probability δz := e−εγ−1β(̂ı, z) exp
〈
θ̃z, φ̃(x)

〉
and restrict ξ to fall into

the interval [0, δz]. Denote this child by zı̂.

5. Accept θz (we bail out at the current level ı̂) with probability γ−1p(z) exp
〈
θ̃z, φ̃(x)

〉
and reduce

ξ by this amount if we do not accept, for recycling ξ again.
6. For i := ı̂− 1 to −∞ do

(a) Set e−ε = e−2i‖φ̃(x)‖ as the new accuracy level.

(b) Draw one of the children z of zi+1 with probability δz := εγ−1β(i, z) exp
〈
θ̃z, φ̃(x)

〉
and

restrict ξ to fall into the interval [0, δz], i.e. we recycle the random variable ξ. Exit if we do
not draw any of them (since

∑
z δz ≤ 1) and restart from step 3.

(c) Accept θz at the current level with γ−1p(z) exp
〈
θ̃z, φ̃(x)

〉
and reduce ξ by this amount if

we do not accept, for recycling ξ again. Do not include zi+1 in this setting since we may
only accept θz the first time we encounter it.

The above algorithm describes a rejection sampler that keeps on upper-bounding the probability of
accepting a particular cluster or any of its children. It is as aggressive as possible at retaining tight
lower bounds on the acceptance probability such that not too much effort is wasted in traversing
the cover tree to the bottom, i.e., we attempt to reject as quickly as possible.

For our experiments, we observe that the following simplification for single observation sampling in
Canopy II works well in practice. Instead of descending on the hierarchy of clusters, we perform
exact proposal computation for k closest clusters obtained through fast lookup from cover tree TC .
For the other clusters, we assign the uniform probability equivalent to least out of the clusters whose
posterior is computed exactly.

5 Experiments

5.1 Design

We now present some empirical studies for our fast sampling techniques. In order to illustrate the
effectiveness of the proposed method in terms of both space and time, we evaluate on Gaussian
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Mixture model (GMM), a widely used probabilistic model for clustering. However, the proposed
method can be applied effortlessly to any latent variable models like Topic Modeling through Gaus-
sian Latent Dirichlet allocation (Gaussian LDA) [2] or K-means. We picked GMMs due to its
wide-spread application in various fields spanning computer vision, natural language processing,
neurobiology, etc. For each of the setups, we compare two approaches (Canopy I, Section 4.1 and
Canopy II, Section 4.2) with both the traditional Expectation Maximization (EM) [33] and Stochas-
tic EM through ESCA (ESCA) [15] using execution time and likelihood on a held out TEST set. To
elaborate, for all the four models (Canopy I, Canopy II, EM, ESCA), parameters are learnt using
TRAIN set and Likelihood of the TEST set is used as evaluation.

5.2 Software & hardware

All the algorithms are implemented multithreaded in simple C++11 using a distributed setup.
Within a node parallelization is implemented using the work-stealing Fork/Join framework, and
the distribution across multiple nodes using the process binding to a socket over MPI. We run
our experiments on a small cluster of 16 Amazon EC2 c4.8xlarge nodes connected through 10Gb/s
Ethernet. Each node has 36 virtual threads per node and 60GB of memory. For running the deep
networks, we utilize a mix of nVidia 970 and 980 GPUs.

5.3 Data

Synthetic data: In order to demonstrate the correctness of our method and effects of varying
number of points or number of cluster, we generate many synthetic datasets. Here, the data points
are assumed to be generated from m Gaussian probability distributions parameterized by (µ∗i ,Σ

∗
i )

for i = 1, 2, · · · ,m, with mixing proportions given by π∗i .

Our experiments operate on three free parameters: (n,m, d) where n is the total number of points,
m is the number of distributions and d being the dimensionality. For a fixed (n,m, d), we randomly
generate a TRAIN set of n points as follows: (1) Randomly pick parameters (µ∗i ,Σ

∗
i ) along with

mixing proportions π∗i , for i = 1, 2, · · · ,m, (2) To generate each point, select a distribution based
on {π∗i } and sample from the corresponding d-dimensional Gaussian pdf. Additionally, we also
generate another set of points as TEST set using the same procedure.

Real world data: In order to demonstrate the effectiveness of our method on real world data,
we collected two datasets of very different nature. The first dataset is satellite-view images of
earth obtained from Google Maps API 2. We downloaded satellite images from Google Earth for
metropolitan areas of Pittsburgh, San Francisco, New York City, Detroit, Berlin, Miami, and Austin.
The satellite images are obtained as ‘tiles’ at various zoom levels. We collected the tiles at “level19”,
which represent patches about 58 meters across. Altogether more than geographical region spanning
more than 12700km2 is fully searchable.

We also download the crowdsourced labeled maps from the OpenStreetMap project 3, which has
generously categorized a few parts of the world with its Nominatim taxonomy 4 using 466 value
of the Nominatim categories (such as ”airport”, “marsh”, “gas station”, “prison”, “monument”,
“church”, etc.). The dataset consists of approximately 1,000 satellite images per category. This
small labeled data can help guide the larger unsupervised tasks.

2https://developers.google.com/maps/documentation/javascript/maptypes
3https://www.openstreetmap.org/
4http://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN
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The second dataset is a large collection of images representing wide concepts in real word. To begin
with we use Wordnet 5 which has an ordered sets of cognitive synonyms (synsets), each expressing
a distinct concept. Each meaningful concept in WordNet, possibly described by multiple words
or word phrases, is called a ”synonym set” or ”synset”. There are more than 100,000 synsets in
WordNet, majority of them are nouns (80,000+). For each synset, we take top three words and for
each of these three words we search the large image hosting website Flickr API6. The API returns
unique IDs of the result images with rank for each keyword. Union of these results are taken and
the top 5000 are downloaded in JPEG format along with metadata (e.g. tags, comments). This
way, we ended up with 100+ million images with weak labels occupying 40TB. (Note: We have
only 100+ million images and not 400 million because for some synsets less than 5000 images are
returned by Flickr).

The images collected this way form a non-trivial dataset. Some images maybe repeated as well
under different synsets. The search results are also far from being perfect. For example, searching
for alpha, yields many images of cats. Also due to polysemous nature of many English words,
images returned by Flickr search would not be grouped nicely according to sense of the synset. For
example searching “apache”, results in some helicopters, some native tribes of America and some
images related to Apache software foundation.

Finally for both datasets, images are reshaped such that the shorter dimension is 256 and the center
patch of size 224 by 224 is taken to feed into the ResNet model.

5.4 Results

Figure 4: Terrapattern is an open-source tool
for discovering patterns in unlabeled satellite im-
agery. A prototype for exploring the unmapped,
and the unmappable. Here it identified some of
Pittsburgh’s finest school bus depots.

Nearest Neighbor Search: Quantitative
study of nearest neighbor search using cover
trees have been extensively studied in [7, 28].
This method was used in terrapattern, which is
a prototype for helping people quickly scan ex-
tremely large geographical areas for specific vi-
sual features. We are particularly keen to help
people identify, characterize, and track indica-
tors which have not been detected or measured
previously, and which have sociological, human-
itarian, scientific, or cultural significance. An
example finding all school bus depots in Pitts-
burgh, PA is shown in Figure 4. It is available
for realtime use at http://www.terrapattern.
com.

For feature extraction, we trained a 34-layer DCNN using hundreds of thousands of satellite images
labeled in OpenStreetMap, teaching the neural network to predict the category of a place from a
satellite photo. Our resulting model, which took 5 days to compute on an nVidia 980 GPU, has a
top-5 error rate of 25.4% over 466 classes. In the appendix, we share some discoveries of our own,
made with the Terrapattern system. It is important to point out that we did not trained on any of
the categories shown, but Terrapattern was able to recognize them because of their common visual
features. Thus showcasing the generalization power of the representation learnt by the ResNet.

5https://wordnet.princeton.edu/
6https://www.flickr.com/services/api/flickr.photos.search.html
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(a) Increasing number of points n with fixed
(m, d) = (210, 210)

(b) Increasing number of clusters m with fixed
(n, d) = (210m, 210)

(c) Increasing number of clusters m with fixed
(n, d) = (210m, 210)

Method
time

(s/iter)
Log-

likelihood

EM 5209.1 -14409.74
SEM 935.4 -14409.74

Canopy I 48.5 -14409.77
Canopy II 35.7 -14409.74

Ground truth n/a -14295.76

(d) Explicit comparison of different methods for
the setting: (n,m, d) = (32mil, 4096, 1024)

Figure 5: Showing scalability of per-iteration runtime of different algorithms with increasing dataset
size. From Fig. 5a and Fig. 5b we see that our approaches take orders of magnitude less time
compared to the traditional EM and ESCA methods, while varying the number of points and clusters
respectively. Note that we trade off memory (data structure) for speed as seen from Fig. 5c. For
instance, with (n,m, d) = (32mil, 4096, 1024), we see that there is a speed-up of 150x for a mere 2x
memory overhead.

Gaussian Mixture Models - Synthetic Data: We begin with inference on Gaussian Mixture
Models. We run all algorithms for a fixed number of iterations and vary n,m, d individually to
further investigate the respective dependence on performance of our approach as shown in Figure. 5,
5d. It is in line with our claim that proposed method reduced the per iteration complexity from
O(nm) of EM/ESCA to Õ(n+m). Table 5d gives the comparison of running times for the setting:
n = 32 million, m = 4096, and d = 1024. However, there is no free lunch. The huge speed-up comes
at the cost of increased memory usage (for storing the data-structures). For example, regarding the
case reported in Table 5d for 2x increase in memory we get a speed up of 150x.
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Figure 6: Illustration of concepts captured by clustering images in the feature space extracted by
ResNet [13, 31]. Figure shows four closest images of three randomly selected clusters (one in each
row) possibly denoting the semantic concepts of ‘crowd’, ‘ocean rock scenery’ and ‘tricycle’. Few
of the concepts are discovered by clustering as Resnet received supervision only for 1000 categories
(does not include ‘crowd’).

Image Clustering: We extracted the image features with ResNet of 200 layers trained on Ima-
geNet 1000 classes data set7. It took 5 days with 20 nVidia 970 GPUs to extract these feature for
all the images. We then use Canopy II to cluster these images with m = 64, 000, taking a total
time of around 27 hours. The other methods, like EM or ESCA is too slow to complete within
reasonable time-frame and thus we cannot compare against them quantitatively.

For a qualitative assessment of our clustering procedure, we randomly picked four clusters and
showed four images closest to the means in Figure. 6 (each cluster in a row). We would like to
highlight two important observations: (a) Even though the underlying deep architecture used to
extract visual features, ResNet, is trained on 1,000 semantic classes, our clustering is able to discover
semantic concepts that go beyond. To illustrate, images from the first row indicate a semantic class
of crowd even though ResNet never received any supervision for such a concept. (b) These images
are associated with a variety of key words which do not semantically collate to the concepts in the
image. For example, images in the first row are associated with key words ‘heave’ ,‘makeshift’,
‘bloodbath’ and ‘fullfillment’ respectively. It is not too surprising as the relatedness of retrieved
images for a query key word generally decreases for lower ranked images. This suggests that pre-
processing images to obtain more meaningful semantic classes could potentially improve the quality
of labels used to learn models. Such a cleanup would definitely prove beneficial in learning deep
image classification models from weakly supervised data obtained from querying corresponding
labels as keywords.

Furthermore, the clusters close by are semantically related. For example, we found the clusters of
drummers and guitarists close to each other.

7https://github.com/facebook/fb.resnet.torch
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6 Analysis and Discussion

Initialization: Recall that speed and quality of MCMC methods or variational algorithms de-
pends on initialization of the random variables and parameters. Random initializations often lead to
poor results, and so many specific initialization schemes have been proposed, like KMeans++ [34],
K-MC2 [35]. However, these initializations can be costly, roughly O(mn). Our approach provides
a good initialization using cover trees free of cost. (As the construction of cover tree is at the
heart of our sampling approach, it has no extra cost.) Our proposed initialization scheme relies on
the observation that cover trees partition the space of points while preserving important invariants
based on its structure. They thus help in selecting initializations that span the entirity of space
occupied by the points, which is desired to avoid local minima. The crux of the approach is to
descend to a level l in TD such that there are no more than m points at level l. These points from
level l are included in set of initial points I. We then randomly pick a point from I such that it
belongs to level l, and replace it with its children from level l + 1 in I. This is repeated until we
finally have m elements in I. The chosen m elements are mapped to parameter space through the
inverse link function g−1(·) and used as initialization.

Reduction in Memory Bandwidth for Free: As a side-effect of the optimizations, we are
able to reduce memory consumption and bandwidth to a great extent. ESCA has a minimal
memory footprint because it stores only the data and the minimal sufficient statistics (by the very
definition of minimal sufficient statistics, the footprint cannot be further reduced). Thus, ESCA
substantially reduces memory costs, enabling larger datasets to fit in memory, and significantly
reducing communication costs in distributed setups. As compared to variational methods, which
require K memory accesses (one for each cluster) per data point, we only have a single access (for
the sampled luster) per data point. Such reduced pressure on the memory bandwidth can improve
performance significantly for highly parallel’ applications. Moreover, Cover tree partitions the space
so that we have to consider only a subset of the parameters thereby not requiring full memory access
and saving bandwidth.

Load balance: We used Ganglia [36] to monitor the entire clusters performance. Ganglia, as
a cluster-wide monitoring tool, can provide insight into overall cluster utilization and resource
bottlenecks. In the appendix we have a figure (Figure 8) that shows the clusters snapshot during
an iteration. In our algorithm, the dataset is partitioned evenly and work load is evenly distributed.
We can see the memory optimization clearly worked and we are not bandwidth-bound, even when
dealing with such dense vectors. A clustering implementation on spark [21] 8 also provides the
resource utilisation through ganglia, we are clearly utilizing the resources much more efficiently.

7 Limitations

First of all our method requires some amount of labeled data, albeit small for representation learning.
Next, we hope the learnt representations poses the desired property [11] of distinguishability of
parameters θz. This is related to the issue that if we had many choices of θz that, a-priori, all
looked quite relevant yet distinct, we would have no efficient means of evaluating them summarily
short of testing them all by brute force.

While the proposed method has tremendous potential for speeding up inference of a variety of
LVM, in some cases, its applicability is not clear, e.g. Ising model. Fortunately, in most cases we

8http://users.eecs.northwestern.edu/~cji970/pub/cjinBigDataService2015.pdf, figure 6(a) on page 7
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are interested in a model over a dataset in which the data is i.i.d. That is, we can fix our example
as follows. Rather than applying canopy on a single Ising model at the granularity of pixels (over a
single torus or grid), we instead attempt to speed up the Ising model at the granularity of the data
(over multiple tori, one for each image).

8 Future

In the future we plan to integrate our method with the following methods:

Coresets: Another line of work to speed up mixture models and clustering involves finding a
weighted subset of the data, called coreset. Models trained on the coreset are provably competitive
with models trained on the original data set. Such approach will reduce the number of samples
n, but then perform traditional inference on the coreset. Thus our approach can be combined and
used after finding the coreset.

Inner product acceleration: Using the Locality Sensitive Importance Sampling [30], we can
accelerate the inner product computation. Since the inner product is evaluated m times each
iteration, it becomes the bottleneck for large m. A solution to overcome this problem was proposed
in [30] by using binary hashing. This provides a good approximation and therefore a proposal
distribution that can be used in a Metropolis-Hastings scheme without an excessive rejection rate.

9 Conclusion

A new scalable search and clustering method to explore massive datasets has been demonstrated on
real-world datasets. In particular, we implemented a fast nearest neighbor search and we present
a novel and efficient sampler for mixture models over exponential families using cover trees. We
show that the use of cover trees over both data and clusters combined with Alias sampling can
significantly improve sampling time in this class of models with no effect on the quality of the final
clustering. Furthermore, speed and scalability is guaranteed by a runtime that is logarithmic in the
number of data points & clusters and polynomial in the expansion rate of the underlying parameter
space per sample. Thereby, becoming a prototype for exploring the unheard, the unmapped, and
the unmappable.
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A Background

A.1 Alias Sampler

A key component is the alias sampler of [37]. Given an arbitrary discrete probability distribution
on n outcomes, it allows for O(1) sampling once an O(n) preprocessing step has been performed.
Hence, drawing n observations a distribution over n outcomes costs an amortized O(1) per sample.
Given probabilities πi with π ∈ Pn the algorithm proceeds as follows:

• Decompose {1, . . . n} into sets L,H with i ∈ L if πi < n−1 and i ∈ H otherwise.
• For each i ∈ L pick some j ∈ H.

– Append the triple (i, j, πi) to an array A
– Set residual π′j := πj + πi − n−1

– If π′j > n−1 return π′j to H, otherwise to L.

Preprocessing takes O(n) computation and memory since we remove one element at a time from L.

• To sample from the array pick u ∼ U(0, 1) uniformly at random.
• Choose the tuple (i, j, πi) at position bunc.
• If u− n−1bunc < πi return i, else return j.

This step costs O(1) operations and it follows by construction that i is returned with probability
πi. Now we need a data structure that will allow us to sample many objects in bulk without the
need to inspect each item individually. Cover trees satisfy this requirement.

A.2 Rejection Sampling

The proof for the proposed rejection sampler in case of sampling a cluster for a single observation
x is as follows. If we approximate p(x|θz) by some qz such that

e−εp(x|θz) ≤ qz ≤ eεp(x|θz) (11)

then it follows that a sampler drawing z from

z ∼ qzp(z)∑
z′ qz′p(z

′)
(12)

and then accepting with probability e−εq−1
z p(x|θz) will draw from p(z|x). To prove this, we simply

compute the probability of this sampler r(z) to return a particular value z. The sample returns z
when it (a) samples and accepts z, or (b) samples any value, rejects it to proceed to next iteration of
sampling. Using γ =

∑
z′ qz′p(z

′) and γT =
∑

z′ p(x|θz′)p(z′) to denote normalization for proposal
and true posterior respectively, we have:

r(z) =
qzp(z)

γ
e−εq−1

z p(x|θz) +
∑
z′

(1− e−εq−1
z′ p(x|θz′))

qz′p(z
′)

γ
r(z) (13)

=
e−ε

γ
p(z)p(x|θz) +

r(z)

γ

∑
z′

qz′p(z
′)− r(z)e

−ε

γ

∑
z′

p(x|θz′)p(z′) (14)

=
e−ε

γ
p(z)p(x|θz) + r(z)− r(z)e

−ε

γ
γT (15)

r(z) =
p(z)p(x|θz)

γT
(16)
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Hence the procedure will draw from the true posterior p(z|x).

A.3 ResNet

Convolutional Neural Networks (CNNs) have achieved extraordinary performance in the visual do-
main, sometimes even surpassing human-level performance. Examples include image classification
(He et al. (2015)), face recognition (Taigman et al. (2014)), handwritten digit recognition, and rec-
ognizing traffic signs (Ciresan et al. (2012)). Lately, CNNs have been applied to speech recognition
using spectrogram features (Hannun et al. (2014)) and achieve state-of-the-art speech recognition
performance.

B Theoretical Analysis

The main concern is to derive a useful bound regarding the runtime required for drawing a sample.
Secondary concerns are those of generating the data structure. We address each of these components,
reporting all costs per data point.

Construction The data structure TD costs O(c6 log n) (per data-point) to construct and TD

costs O(c6 logm) (per data-point, as m < n) — all additional annotations cost negligible time and
space. This includes computing α and β, as discussed above.

Startup The first step is to draw from Sı̂. This costs O(|Sı̂|) for the first time to compute all
probabilities and to construct an alias table. Subsequent samples only cost 3 CPU cycles to draw
from the associated alias table. The acceptance probability at this step is ε. Hence the aggregate

cost for the top level is bounded by O
(
|Sı̂|+ e2ı̂‖φ̃(x)‖

)
Termination To terminate the sampler successfully we will need to traverse the TC cover tree at
least once to its leaf in the worst case. This costs O(c6 logm) if the leaf is at maximum depth.

Rejections The main effort of the analysis is to obtain useful guarantees for the amount of effort

wasted in drawing from the cover tree. A brute-force bound immediately would yieldO
(
e2ı̂‖φ̃(x)‖c6 logm

)
.

Here the first term is due to the upper bound on the acceptance probability, a term of c4 arises from
the maximum number of children per node and lastly the c2 log n term quantifies the maximum
depth. It is quite clear that this term would dominate all others. We now derive a more refined
(and tighter) bound.

Essentially we will exploit the fact that the deeper we descend into the tree, the less likely we will
have wasted computation later in the process. We use the following relations

ex − 1 ≤ xea for x ∈ [0, a] and

∞∑
l=1

2−l = 1. (17)

In expectation, the first step of the sampler requires ε−1 = e2ı̂‖φ̃(x)‖ steps until a sample is accepted.

Thus, ε−1−1 effort is wasted. At the next level below we waste at most e2ı̂−1‖φ̃(x)‖ effort. Note that
we are less likely to visit this level commensurate with the acceptance probability. These bounds
are conservative since any time we terminate above the very leaf levels of the tree we are done.
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Moreover, not all vertices have children at all levels, and we only need to revisit them whenever
they do. In summary, the wasted effort can be bounded from above by

c4
∞∑
i=1

[
e2ı̂−i‖φ̃(x)‖ − 1

]
≤ c4e2ı̂‖φ(x)‖

∞∑
i=1

2−i = c4e2ı̂‖φ(x)‖.

Here c4 was a consequence of the upper bound on the number of children of a vertex. Moreover,
note that the exponential upper bound is rather crude, since the inequality (17) is very loose for
large a. Nonetheless we see that the rejection sampler over the tree has computational overhead
independent of the tree size! This result is less surprising than it may seem. Effectively we pay for
lookup plus a modicum for the inherent top-level geometry of the set of parameters.

Theorem 2 The cover tree sampler incurs worst-case computational complexity per sample of

O
(
|Sı̂|+ c6 log n+ c6 logm+ c4e2ı̂‖φ̃(x)‖

)
(18)

Note that the only data-dependent terms are c, Sı̂, ı̂ and
∥∥∥φ̃(x)

∥∥∥ and that nowhere the particular

structure of p(z) entered the analysis. This means that our method will work equally well regardless
of the type of latent variable model we apply. (For example we can even apply the model to more
complicated latent variable models like Latent Dirichlet Allocation (LDA).) It is only the size that
matters. The aforementioned constants are all natural quantities inherent to the problems we

analyze. c quantifies the inherent dimensionality of the parameter space,
∥∥∥φ̃(x)

∥∥∥ measures the

dynamic range of the distribution, and Sı̂, ı̂ measure the “packing number” of the parameter space
at a minimum level of granularity.

C More Results

Terrapattern is ideal for discovering, locating and labeling typologies that aren’t customarily indi-
cated on maps. These might include ephemeral or temporally-contingent features (such as vehicles
or construction sites), or the sorts of banal infrastructure (like fracking wells or smokestacks) that
only appear on specialist blueprints, if they appear at all. In this section, we share some discoveries
of our own, made with the Terrapattern system. It is important to point out that the Terrapattern
system was not trained on any of the categories shown below, but instead recognizes them because
of their common visual features.

Here are some more interesting example searches that you can try in real-time at http://www.

terrapattern.com:

• transformer station click here.

• cracked tarmac click here.

• solar panels click here.

• cars click here.

• baseball diamonds click here.

• USAF bombers click here.

• bridges click here.
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http://www.terrapattern.com
http://www.terrapattern.com
http://pgh.terrapattern.com/?lat=40.465007&lng=-80.0471425&_ga=1.202099158.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.499492&lng=-80.23593&_ga=1.96190811.658784226.1477981107
http://nyc.terrapattern.com/?lat=40.7161993&lng=-74.1477104&_ga=1.202099158.658784226.1477981107
http://detroit.terrapattern.com/?lat=42.3902447&lng=-83.18058930000001&_ga=1.202099158.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.355282&lng=-80.14462550000002&_ga=1.193604330.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.4926995&lng=-80.21327550000001&_ga=1.238751303.658784226.1477981107
http://pgh.terrapattern.com/?lat=40.4874745&lng=-79.905037&_ga=1.167429497.658784226.1477981107
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(a) Golf course sand traps identified by our system in the Pittsburgh metro region click here.

(b) Purple tennis courts in the Bay Area, click here.

(c) Attractive runway markings from various New York ariports click here.

Figure 7: Some examples of interesting patterns found by our method.
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http://pgh.terrapattern.com/?lat=40.5261395&lng=-79.8810095&_ga=1.160238330.658784226.1477981107
http://sf.terrapattern.com/?lat=37.7791702&lng=-122.45761950000002&_ga=1.160238330.658784226.1477981107
http://nyc.terrapattern.com/?lat=40.6979118&lng=-74.16212689999998&_ga=1.196749035.658784226.1477981107
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D Resource utilization

Figure 8: Snapshot of resource utilization at during an iteration of clustering. This shows we are
not stalling or are bandwidth bound, c.f. [21, figure 6(a) on page 7] . (Note that machines named
“bros-0-0”, “bros-0-16” and “quad-750-0-0” are not part of the experiments.)
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