
Word Sense Disambiguation Using Semi-Supervised

Naive Bayes with Ontological Constraints

Jakob Bauer

Wednesday 23rd November, 2016

Abstract

Background. Word sense disambiguation (WSD) is the task of mapping an
ambiguous word to its correct sense given its context. As high-quality sense-
tagged data is scarce and expensive to obtain, attention has shifted from fully-
supervised to semi-supervised and knowledge-based approaches to WSD that
rely on a lexical knowledge base such as WordNet instead of large amounts of
hand-labeled data. What is currently missing is a method to effectively com-
bine elements of semi-supervised and knowledge-based approaches into a single
system.
Aim. Our goal is to improve the performance of semi-supervised and knowledge-
based lexical-sample WSD on a benchmark dataset by designing a system that
uses both automatically acquired examples and explicitly models ontological
constraints between senses in the classification stage.
Data. Our training data consists of automatically acquired examples unlabeled
from the ukWaC corpus, and glosses and example usages from WordNet. The
system is evaluated on twelve different target lemmas from the Koeling et al.
(2005) benchmark dataset.
Methods. We use a semi-supervised Naive Bayes classifier that is trained on
automatically acquired examples and that explicitly takes into account onto-
logical constraints between senses at the classification stage.
Results. We find that our method does not uniformly outperform state-of-the-
art baselines such as gloss vectors and personalized PageRank. Possible reasons
are semantic drift, deficiencies in how the ontological constraints are modeled,
and bad sense priors.
Conclusions. Although our current system is not able to outperform state-
of-the-art baselines, we believe that the error analysis provided in this paper
can help guide future research in effectively combining semi-supervised and
knowledge-based approaches to WSD.

Keywords: Word sense disambiguation, WSD

1 Introduction

Word sense disambiguation (WSD) is the task of mapping an ambiguous word to its
correct meaning given its context. For instance, we might want to disambiguate the
word “goal” in the sentence: “Italian striker Mario Balotelli scores a goal against
Monaco.” Among the different candidate senses for goal (see Figure 2 in the ap-
pendix), “a successful attempt at scoring” is the most appropriate one.

WSD is an important and challenging task: important because it is a stepping
stone to more advanced natural language processing tasks such as machine transla-
tion and question answering, and challenging because even after several decades of
research, it is still a largely unsolved problem.

The most successful approaches to WSD to date are fully supervised systems
that are trained on sense-tagged corpora (Navigli, 2009). Unfortunately, manually
tagging data is a slow and expensive process, which means that it is all but impos-
sible to generate sufficiently large hand-tagged corpora outside of a few particular
domains. As a result, supervised WSD is limited in its scope. The WSD community
has tried to work around this problem by shifting its attention to semi-supervised
and knowledge-based disambiguation methods that only require minimal supervision
in form of a lexical knowledge base such as WordNet (Miller, 1995).

One successful semi-supervised approach is based on monosemous relatives, i.e.,
unambiguous words that WordNet considers to be closely related to the target word.
After the monosemous relatives have been identified, they can be used to acquire
labeled training examples which in turn can be used to train a supervised classifier
(Martinez et al., 2008). An example of a successful knowledge-based approach is
the use of the personalized PageRank algorithm on a graph that uses WordNet
synsets as nodes and semantic relationships between synsets as edges. Probability
mass is injected into the graph according to the context of the word that is being
disambiguated (Agirre and Soroa, 2009).

Our approach tries to combine ideas from both semi-supervised and knowledge-
based WSD. In particular, we use a WordNet ontology built around all possible
senses of the target word to first automatically acquire labeled training examples.
We then combine these examples with unlabeled examples to train a semi-supervised
Naive Bayes classifier using the expectation maximization (EM) technique. During
the E-step of EM, the classifier also penalizes sense assignments that violate onto-
logical constraints between senses such as subset-of and mutex (Dalvi et al., 2015).

We believe that our approach could be of interest to the WSD community be-
cause it shows a new way in which elements from semi-supervised and knowledge-
based approaches can be combined into a single approach.

2

2 Problem and Approach

The problem is to uniformly increase macro-averaged recall in lexical-sample WSD
on selected lemmas of the Koeling et al. (2005) benchmark dataset using a semi-
supervised Naive Bayes classifier that explicitly takes into account ontological con-
straints between senses at the classification stage.

3 Background and Related Work

In this section, we will first review a hierarchical semi-supervised approach to an-
other task called gloss finding (Dalvi et al., 2015). Second, we will make the case
that this approach is promising for WSD. Third, we will discuss the necessary mod-
ifications to the approach with respect to the choice of classifier, automatic label
acquisition, and feature representation if it is to be used for WSD.

3.1 Ontological Constraints for Gloss Finding

To understand the gloss finding task, we have to define the terms “gloss” and “knowl-
edge base”. A gloss is a short natural language definition of a semantic category,
e.g., “Apple is a fruit from the apple tree.” A knowledge base is a directed acyclic
graph in which each node belongs to one of three types: (1) categories such as
“vegetable”, “fruit”, or “company”; (2) concrete instances of categories (so-called
entities) such as “banana”, “fruit:apple”, and “company:apple”; (3) lexical strings,
e.g., “apple”, “Apple”, and “Apple Inc.” The different node types can only appear
in certain places in the graph: the leaf nodes (and only the leaf nodes) are lexical
strings, the parents of each leaf nodes are entities, and the ancestors of the entities
are categories.

Note that the relationship between the entity and lexical string nodes is many-
to-many whereas the the category and entity nodes form a n-ary tree structure with
a unique root node (corresponding to the “Everything” category). In effect, this
tree can be seen as an ontology where parent-child relationship between a category
and an entity signifies an is-a relationship (“banana is-a fruit”), the parent-child
relationship between categories signifies a is-subcategory-of relationship (“fruit is-
subcategory-of food“) and categories that are not in a ancestral relationship to each
other can be seen as is-mutually-exclusive-with (“food is-mutually-exclusive-with
organization”). The gloss finding task consists in assigning glosses from a large set
to corresponding entities in the KB, e.g., “Apple is a fruit from the apple tree”
should be assigned to “fruit:apple.”

Dalvi et al. (2015) present GLOFIN, a hierarchical semi-supervised classification
approach to the gloss finding task, and use to assign definitional sentences from
Wikipedia to entities from the NELL KB. They assume that each gloss is identified
by a head noun (e.g., “Apple is a fruit from the apple tree“ is identified by “Apple”)

3

which makes it possible to associate it with a corresponding lexical string in the
KB. All the glosses that are associated with the lexical strings of a given entity are
candidate glosses for that entity. If a gloss is candidate for only a single entity, it
can be treated as unambiguous.

Using the unambiguous glosses as (noisy) labeled seeds and the remaining am-
biguous glosses as unlabeled data, Dalvi et al. train a classifier using the expectation
maximization technique. To take into account the ontological constraints between
categories, they extend the E-step as follows: after computing the membership
probabilities given the current estimates of the parameters (i.e., a soft assignment),
they solve a mixed integer program (MIP) for each gloss. This MIP maximizes the
probability score of the category membership of the gloss using indicator variables
for the category membership as the optimization variables (i.e., a hard assignment)
and treating the class membership probabilities and the ontological constraints as
parameters. The MIP favors category membership assignments that are consistent
with the ontology: if the gloss for “apple” is assigned to the “fruit:apple” entity,
it should also be a member of the “fruit” and “food” category since these are the
parent and grandparent of “fruit:apple”, respectively. In the M-step, the parameters
are re-estimated given the hard category assignments.

The results of Dalvi et al. show that GLOFIN works well for the gloss finding task
and that using ontological constraints during the classification stage consistently
provides an increase in performance compared to the flat version of the model. This
is good news for us because the gloss finding task is quite similar to WSD once we
replace the glosses with word contexts and the KB entities with WordNet senses.
Hence, it is promising to try this approach, mutatis mutandis, on the WSD task.

The first component that has to be adapted is the KB. We will be using WordNet
as the KB in our system.

3.2 WordNet

WordNet is a comprehensive lexical database for the English language (Miller, 1995).
In WordNet, a word is a tuple of the form (string, sense). For instance, the string
“goal” has four different senses (“goal#1”, “goal#2”, etc.) which means that there
are four words with the string “goal”. If there is only one sense associated with a
given string, then the word with that string is called monosemous. On the other
hand, if there are several senses associated with a given string, then the words with
that string are called polysemous.

WordNet groups words that belong to the same part of speech (i.e., nouns, verbs,
adjectives, and adverbs) and that share the same sense into sets. Each of these sets
of synonyms (synsets) has a short natural language definition (gloss) and up to four
example usages. For instance, the synset consisting of “goal#4”, has the gloss “a
successful attempt at scoring” and the example usage “the winning goal came with
less than a minute left to play” (cf. Figure 2 in the appendix).

Noun synsets are interlinked via the semantic relationship of hypernymy (is-a

4

relationship, e.g., goal is a type of sports equipment). Hypernymy is transitive and
thus induces a hierarchy onto the set of synsets. This hierarchy can be seen as an
ontology and can be represented as a directed graph with synsets as vertices and
hypernym relationships as directed edges.1

In our system, we will be using monosemous relatives of the target word to
automatically acquire training examples (this will be described in depth in the next
section). We will also extract a noun ontology from WordNet for each target lemma
that will provide us with the hierarchical constraints that are used during the E-step
of the classification.

3.3 Automatic Label Acquisition for WSD

One of the main difficulties of training a WSD system is the scarcity of high-quality
labeled data. The existence of this so-called knowledge acquisition bottleneck is well-
known fact and there have been efforts to find a way around by using techniques
such as bootstrapping, active learning, and parallel corpora (see Agirre and Soroa
(2009) for an overview).

Here, we focus our attention on the approach by Martinez et al. (2008) called
automatic example acquisition that leverages the target word’s monosemous rela-
tives in WordNet to acquire (noisy) labeled examples. Although quite simple, this
approach has been shown to be very effective in practice and it will be used in
adapted form in our system.

The first step of the approach consists in collecting all the monosemous lemmas
in WordNet. Then, each monosemous lemma is googled and the lines of text (so-
called snippets) that appear underneath the first 1000 search results are collected
into a corpus. At the end of the collection process, the corpus contains around 150
million examples.

Once the corpus has been constructed, it can be used to harvest labeled examples
for specific target lemmas. This works as follows: for each sense of the target lemma,
define a quota of examples and then collect the desired number of examples from
the corpus by simple string matching. All the returned examples are ordered by
their relationship to the target: synonyms are type 0, direct hyponyms are type
1, distant hyponyms have a type equal to their distance from the target, direct
hypernyms have type 2, and siblings have type 3. To fill the quota, first all the
examples of type 0 are selected, then all the examples from type 1 and so forth until
the desired number of examples is met. The examples can then be used to train a
supervised classifier.

One important question is how the quota for the different candidate senses should
be set (i.e., what the sense prior should be). Martinez et al. try different settings:
(1) uniform prior: equal number of examples per sense; (2) corpus prior: number

1Although the graph has a unique root (the “entity” synset), it is not a tree because some
synsets have multiple hypernyms. Since these cases are rare, however, the graph can be treated as
a tree for most practical purposes.

5

of examples per sense proportional to its frequency in the corpus; (3) automatic
ranking, a more advanced technique described in McCarthy et al. (2004); (4) sense-
tagged prior: number of examples proportional to its frequency in some hand-tagged
corpus such as Semcor. They show that choosing the right prior has a large influence
on the performance and that that priors that use supervision (i.e., sense-tagged
priors) work better.

The underlying assumptions of this approach are: (1) the context of a target
word should be similar to the context of its monosemous relatives; (2) the lower the
type of the relative the stronger the similarity of the contexts (and thus the higher
the reliability of the example). These assumptions seem to be justified given the
good results the approach achieves on several WSD benchmarks.

3.4 Semi-Supervised Naive Bayes for Text Classification

The gloss finding algorithm that was discussed in Section 3.1 works with a number
of different classifiers. For the WSD task, the most natural choice is the semi-
supervised Naive Bayes model presented in Nigam et al. (2000) which was initially
developed for semi-supervised text classification.

In this model, documents are represented as word-count vectors (i.e., as bags of
words). The model assumes the following generative model for documents. For each
document xi: (1) draw the document class cj from a categorical distribution over
M classes; (2) draw the document length |xi| from a suitable distribution; (3) draw
the word counts xi from a class-specific multinomial distribution. The categorical
distribution and the multinomial distributions are each given a symmetric Dirichlet
prior.

Training this model consists in estimating the maximum a posteriori (MAP). If
there is a class label for every document in the training set, then the posterior of
the model parameters factorizes and the MAP can be obtained by simply taking
smoothed ratios of empirical counts. By contrast, if the training set contains docu-
ments without a class label, there is coupling between the parameters which makes
it impossible to factorize the posterior. In this case, Nigam et al. suggest the use
of the EM technique. After building an initial classifier using only the labeled data,
the algorithm alternates between the E-step, during which class membership prob-
abilities for each unlabeled document are estimated given the current parameters,
and the M-step, during which the parameters are re-estimated given the current
membership probabilities. The algorithm terminates once the parameter estimates
and class assignments are stable.

Nigam et al. note that the use of unlabeled data can help reduce variance in the
estimation of parameters and thus increase classification accuracy in case there is
only little labeled data available. However, there are also cases in which the use of
unlabeled data leads to worse performance.

6

4 Data

We use the ukWaC corpus as the source of our unlabeled sentences. ukWaC is a
general purpose corpus of English with over two billion tokens. It was created by
crawling the UK top level domain (Ferraresi et al., 2008).

To be able to evaluate the performance of our system, we use a set of sense-
annotated gold standard sentences for each of several target lemmas. This gold
standard data has been made publicly available by Koeling et al. (2005). It contains
about 300 examples sentences for each of 41 nouns. The examples come from three
different sources: a balanced corpus (British National Corpus, BNC) and from two
domain-specific corpora (FINANCE and SPORTS). The sentences were annotated
by a group of two to four linguists who labeled the target word with either the gloss
of the correct target synset or, in case they were not sure about the correct sense, as
“unclear”. The inter-annotator agreement on the complete data set is reported as
being 65 percent (BNC: 60 percent, SPORTS: 65 percent, FINANCE: 69 percent).

5 Method

We will now present a semi-supervised model for WSD that is trained with auto-
matically acquired examples. First, we describe how we extract ontologies from
WordNet for each target word. Second, we show how we use these ontologies to
automatically acquire labeled examples that can then be used as seeds in our semi-
supervised model. Third, we show how we adapt the gloss finding algorithm to our
problem setting by using constraints obtained from our ontologies. Finally, we dis-
cuss related topics such as the choice of feature representation, preprocessing, and
the implementation of the model.

5.1 WordNet Ontologies

For each target word, we extract an ontology from WordNet according to a procedure
that will be described in detail below. The ontology serves a dual purpose: (1) as
a means to automatically acquire training examples; (2) to provide the constraints
that are used during the classification stage itself. Thus, the ontology is crucial to
our approach.

The extraction procedure can be described as follows. First, we add all the
target synsets and their siblings. In a second step, we consider the target synsets’
ancestors that lie on the shortest path between the target synset and the root. Of
those synsets, we add the immediate parent of the target synset, the root and the
three ancestors closest to the root (collectively called the toplevel) and discard the
rest. As a result, each ontology contains the following synsets:

• The “entity” synset. It is the root node of the ontology.

7

• The target synsets and all their sister synsets. They are the leaf nodes of the
ontology.

• The parent synset of each target synset that lies on the shortest path between
the target synset and the root node. If there are several such paths, one of
them is picked at random.

• The three ancestors of each parent synset that lie on the shortest path between
the parent synset and the root node and that are closest to the root node (i.e.,
a child, grandchild and grand-grandchild of the root node). This assumes that
the height of the parent synset is at least 4; if this is not the case, then as
many ancestors as possible are added.

Figure 3 in the appendix shows a simplified version of the ontology for the target
lemma “goal”.

Note that we also include monosemous children for the purpose of example ac-
quisition but not for classification (i.e., the classifier does not use any ontological
constraints between monosemous children and other synsets).

The reason for including the target synsets’ parent and sister synsets is to in-
crease the number of monosemous lemmas that are closely related to the target
synsets. The toplevel ancestors on the other hand are included because they repre-
sent general and distinct concepts such as “location”, “event” and “unit” that are
presumably helpful for disambiguation.

Early experiments have shown that including the midlevel ancestors (i.e., the
ones that lie between the parent synsets and the toplevel) leads to deep ontologies
(tens of levels) without improving performance. For this reason, we decided to not
include them in the ontology. This has the welcome side effect that now all the
target synsets lie on the same level (except in the rare cases in which the parent
synset itself is part of the toplevel).

Because we only consider one path from each target synset to the root, our
extraction method ensures that the resulting ontologies are trees (i.e., every synset
has only a single hypernym). Forward edges are rare in WordNet anyway which
means that enforcing a tree structure is an easy way to simplify the analysis of our
WSD system without losing much information.

5.2 Acquisition of Examples

Our approach to acquiring labeled examples is similar in spirit to the approach of
Martinez et al. (2008) that was described in Section 3.3. However, it differs from
this approach with respect to the corpus that is used, the types of sentences we
include, and the monosemous relatives we consider. Furthermore, since our model
is semi-supervised, it can also benefit from using unlabeled data.

8

Corpus While Martinez et al. (2008) use web snippets to create their corpus,
we use ukWaC, a large web corpus. Examples for a given head word are acquired
by doing a string search for sentences that match the head word. Note that this
means that example sentences always contain the monosemous relative which is not
necessarily the case for web snippets.

Monosemous Relatives Monosemous lemmas are unambiguous by definition.
Thus, if the head word of a sentence is a monosemous lemma, the sentence can always
be assigned to the correct synset. This allows our system to generate training data
from unlabeled sentences for all the synsets that contain at least one monosemous
lemma.

We set a target of 300 sentences per synset and then search the ukWaC corpus for
sentences that contain a monosemous lemma that belongs to the synset. The search
stops as soon as the desired number of sentences is reached or, in case there are not
sufficiently many sentences, when all of the ukWaC corpus has been searched.

We experimented with different numbers of examples and found that in general,
setting a maximum number of examples per synset gives better results than setting
a maximum number of examples per monosemous relative. The reason is that in the
former scheme, synsets with several monosemous lemmas will not dominate synsets
with only one or two monosemous relatives.

There are cases in which not enough examples from monosemous relatives could
be found, either because a target had too few monosemous relatives or because the
monosemous relatives were too rare in the corpus. In these cases, we substituted
“first sense lemmas”, i.e., lemmas of a synset that correspond to the first listed sense
in WordNet. This is justified by the fact that the first listed sense of a lemma in
WordNet is the most frequent sense in Semcor.

Column 6 of Table 1 shows the actual number of monosemous sentences for each
target lemma generated this way.

Sentence Types In addition to sentences from ukWaC that contain the monose-
mous relative, we also include the gloss and examples usages for each synset in the
ontology, regardless of whether the synset has a monosemous lemma or not. Since
each synset only has a single gloss and only between zero and four example usages,
however, the number of glosses and example usages is small compared to the number
of monosemous sentences.

Unlabeled Sentences Our method is semi-supervised and can potentially benefit
from unlabeled examples. For this reason, we added up to 300 sentences from ukWaC
for each (polysemous) lemma in the ontology to the training set. Note that since
the ontology only contains a small subset of all the WordNet synsets, there is no
guarantee that the correct sense associated with the head word of an unlabeled

9

sentence is present in the ontology. Hence, there is a risk of injecting noise into the
training process by adding unlabeled sentences.

5.3 Model

We use a semi-supervised Naive Bayes classifier as our underlying model. This
classifier is similar to the one described in Section 3.4. The only differences are: (1)
the classes are now given by the different senses that are present in the ontology;
(2) the data consists of sentences, not documents; (3) the maximum number of EM
iterations is fixed at three.

Using the technique presented in Dalvi et al. (2015) (cf. Section 3.1), we augment
the E-step of this algorithm as follows. After calculating soft sense assignments (the
usual E-step), we estimate a hard sense membership indicators yij for each sentence
i and sense j. This indicator variables takes value 1 if sentence xi has sense j and 0
otherwise. The membership vector of all the indicators for a given sentence i is given
by yi = [yi1, . . . , yiK]. Note that the membership vector is not a one-hot vector; any
number of memberships can be activated at the same time.

The membership indicators are found using a mixed integer program (MIP) for
each sentence. The program maximizes the probability score of the synset mem-
bership of the sentence using indicator variables for the synset membership as the
optimization variables and treating the synset membership probabilities and the on-
tological constraints as parameters. The two types of constraints we use are subset-of
and mutex. The subset-of relationship is between a synset and all of its ancestors
whereas mutex is between a synset and any other synset that is neither an ancestor
nor a descendant.

We experimented with a weighting schemes for the different sentence types.
Under this scheme, higher quality data was assigned a higher weight when computing
the empirical word counts, i.e., the empirical word counts of hand-labeled sentences
were multiplied with a factor of 10, the ones of automatically labeled sentences with
a factor of 3 and the ones of unlabeled sentences with a factor of 1. This did not
have a large impact on the results, however, which is why we decided to not use a
weighting scheme in the end.

Note that in this model, there no longer is a clear distinction between the training
and prediction phase: the validation data is fed into the model at the same time as
the training data and the classification is done at the same time.

5.4 Features

We use simple bag-of-words features: each sentence is represented by a term fre-
quency (TF) vector of its constituent terms. There are two reasons for this: (1) NB
is a generative model built on the assumption that the features are conditionally
independent; notwithstanding the fact that this assumption is usually violated in
practice, the problem of dependent features would be exacerbated by performing

10

more sophisticated feature extraction since these often introduce complex depen-
dencies among features; (2) the focus of this paper is on evaluating the effectiveness
of ontological constraints and not on investigating data representations.

5.5 Preprocessing

Before TF is calculated, sentences are sanitized as follows: (1) removal of non-ASCII
characters; (2) converting to lowercase; (3) tokenization; (4) stopword removal; (5)
lemmatization. The tokenizer used is the Treebank tokenizer since this is also what
is used for sentences in the ukWaC. For sentences from other sources, we use the
WordNet lemmatizer provided by the stem.wordnet module of Python’s Natural
Language Toolkit (nltk). For automatically labeled examples, we remove the target
word from the sentence.

5.6 Implementation

For the supervised and semi-supervised NB model, we use the implementation in
Python’s scikit-learn library2, version 0.17.1, by Pedregosa et al. (2011) and a
modified version of the EM-extension3 written by Mathieu Blondel, respectively.
The model with ontological constraints is based on a modified version of the gloss
finding code provided by Dalvi et al. (2015). This code uses the MIP solver provided
in the MOSEK optimization toolbox4 (version 7.0) to perform the optimization.

To query WordNet (version 3.0), we use the interface provided by Python’s
nltk library, version 3.2.1, by Bird et al. (2009). Pre- and postprocessing is done
in Python using standard third-party libraries including numpy, scipy, pandas,
matplotlib, seaborn, and ipython.

6 Experiment

6.1 Datasets

Training Table 1 contains basic statistics about the datasets for each of the twelve
lemmas.

Validation Our validation data comes from the Koeling et al. (2005) dataset. We
used the words goal and fan to develop our system and then added the following
10 randomly selected words to test performance: chip, competition, conversion,
division, fishing, level, manager, tie, top, transfer. We only include sentences for
which a majority of the experts agreed on the sense (i.e., at least 3 in the case of 4

2scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

(last visited on October 23, 2016).
3gist.github.com/mblondel/f0789b921c98d0fe6868 (last visited on October 23, 2016).
4www.mosek.com/products/mosek

11

#synsets #lemmas #sentences

target target total mono total mono glosses usages gold unlabeled

fan 3 175 149 282 20k 175 34 221 34k

goal 4 80 53 135 9k 80 45 296 23k

chip 9 74 73 146 10k 74 21 224 20k

competition 4 71 64 135 13k 71 34 278 20k

conversion 9 162 108 251 12k 162 63 261 39k

division 12 139 237 321 17k 139 33 233 24k

fishing 2 26 20 45 3k 26 7 206 7k

level 8 272 182 430 24k 272 135 202 67k

manager 2 15 23 35 4k 15 3 286 3k

tie 9 116 90 185 10k 116 28 231 25k

top 11 206 177 360 24k 206 99 179 50k

transfer 6 476 412 770 54k 476 163 236 91k

Table 1: Ontology and dataset statistics for all target lemmas

experts or at least 2 in the case of 2 or 3 experts) and for which the majority sense
was not labeled “unclear”. The number of validation sentences for each word can
be seen in Table 1 (column “gold”).

6.2 Baselines

We compare the performance of our model against two different kinds of baselines.
The first kind of baseline are flat versions of the model that do not use the ontology
during classification (i.e., fully-supervised and semi-supervised NB). Here, the idea
is to isolate the effect of adding unlabeled data and of using ontological constraints
at classification time. The second kind of baseline are state-of-the-art methods for
knowledge-based WSD on the Koeling dataset. In this case, the idea is to compare
the approach to unrelated but effective WSD methods.

Naive Bayes Our first baselines are the fully supervised and the semi-supervised
version of the Naive Bayes model, called NB and NB-EM, respectively. NB only
uses automatically labeled examples for the target lemma for training; NB-EM
also includes unlabeled examples of the lemmas associated with the target synsets.
The difference in performance between the two is an indicator of the usefulness
of unlabeled data for the WSD task and the difference in performance between
the semi-supervised NB model and our model shows the effectiveness of ontological
constraints. Both NB and NB-EM use the corpus prior, i.e., the class distribution is
estimated from the labeled training data using add-one smoothing. To get a better
understanding of the effect of the prior, we also train a fully-supervised Naive Bayes
classifier (NB-UNIF) that uses a uniform sense distribution.

12

Gloss Vectors Gloss vectors are a measure of semantic relatedness between Word-
Net synsets (Patwardhan and Pedersen, 2006). The vectors are constructed as
second-order context vectors as follows: (1) for each content word in a augmented
gloss, a first-order co-occurrence vector is created; (2) all the first-order co-occurrence
vectors are summed up to form a second-order context vector. The augmented
glosses themselves are constructed by concatenating the gloss of the target synset
with the glosses of synsets that are closely related to the original synset by some
relatedness measure such as the Leacock and Chodorow distance (Leacock and
Chodorow, 1998) or the Extended Gloss Overlap (Banerjee and Pedersen, 2003).

We compare our results against the two gloss vector baselines that are reported
in Pritsker (2014). The first baseline (GV) uses gloss vectors as features for a
Naive Bayes classifier. The second baseline (GV-LCS) uses a modified version that
only considers gloss vectors of the top-k most predictive features (so-called learned
context selection model, see Pritsker et al. (2015)).

Personalized PageRank Personalized PageRank is a method to rank the nodes
of a graph by their structural relevance. It can be applied to WSD as follows: (1)
model the WordNet noun hierarchy as a mixed graph in which the synsets and
lemmas are nodes, the semantic relationships between synsets are undirected edges,
and there is a directed edge from each lemma to all its synsets; (2) distribute the
initial probability mass equally over all the words in the context of the target; (3)
run PageRank and select the target sense that has the highest score (Agirre and
Soroa, 2009).

We compare our results against the two personalized PageRank baselines that
are reported in Pritsker (2014): PPR, which is the standard version, and PPR-LCS
which uses the learned context selection extension (Pritsker et al., 2015).

6.3 Evaluation Metric

We use macro-averaged recall as our evaluation metric. For a given class k, recall
is defined as the number of correctly labeled sentences divided by the sum-total of
sentences assigned to that class, i.e., Rk = tpk/ (tpk + fnk), where tp and fn stand
for true positive and false negative, respectively. To compute the macro-average, we
simply compute the average recall over classes, i.e., K−1

∑K
k=1 Rk.

7 Results

Figure 1 and Table 2 show the main results of the experiment.

13

0 20 40 60 80 100

PPRLCS

0

20

40

60

80

100
G

LO
F

IN

chip

competitionconversion

division

fan

fishing
goal

level

manager

tie

top
transfer

recall (macroaveraged)

(a) GLOFIN vs. PPR-LCS

0 20 40 60 80 100

PPRLCS

0

20

40

60

80

100

N
B

chip
competition

conversion

division
fan

fishing

goal

level

manager

tie

top

transfer

recall (macroaveraged)

(b) NB vs. PPR-LCS

0 20 40 60 80 100

PPRLCS

0

20

40

60

80

100

N
B

E
M chip

competition

conversion
division

fan

fishing

goal

level

manager

tie

top

transfer

recall (macroaveraged)

(c) NB-EM vs. PPR-LCS

0 20 40 60 80 100

NBUNIF

0

20

40

60

80

100

N
B

chip
competition

conversion

division
fan

fishing

goal

level

manager

tie

top

transfer

recall (macroaveraged)

(d) NB vs. NB-UNIF

Figure 1: Performance comparisons for GLOFIN (a), NB (b), and NB-EM (c)
against PPR-LCS baseline; for lemmas above the diagonal, the method outper-
forms the baseline, for lemmas below the diagonal, the method underperforms the
baseline; (d) compares NB against NB-UNIF

14

Recall (macro-averaged)

lemma GV PPR GV-LCS PPR-LCS NB NB-UNIF NB-EM GLOFIN

fan 40.8 34.1 39.4 40.1 39.2 20.5 35.4 53.0

goal 53.7 54.6 54.7 55.9 56.4 66.0 60.1 66.6

chip 63.8 54.9 62.1 57.6 52.7 17.0 50.9 59.4

competition 43.2 47.1 40.6 51.1 57.0 37.0 34.8 27.1

conversion 33.7 51.7 39.8 51.0 42.5 26.1 17.4 26.8

division 34.9 37.7 25.9 34.2 33.9 20.8 22.9 8.2

fishing 46.6 72.3 47.8 73.8 46.1 48.0 47.1 61.2

level 45.5 50.5 42.6 54.0 10.4 27.7 41.0 48.5

manager 72.4 72.4 70.3 75.2 78.0 61.2 65.4 61.9

tie 23.5 66.1 27.0 73.0 55.7 15.7 17.4 31.7

top 33.0 48.0 32.4 45.8 38.5 5.0 9.5 7.8

transfer 31.4 47.9 36.0 57.2 26.7 57.0 64.7 13.1

average 43.5 53.1 43.2 55.7 44.8 33.5 38.9 38.8

Table 2: Main results (bold denotes best; fan and goal were used to develop and
tune the GLFOIN model)

8 Discussion

As can be seen from Table 2, there is no uniformly dominant method: six different
methods achieve the best result for at least one and at most three lemmas. Overall,
PPR-LCS is the strongest method since it has the highest average recall. GLOFIN
does well in the case of “fan” and “goal” (which is not surprising since these two lem-
mas were used to develop the system) but has very low performance for “division”,
“top”, and “transfer.”

Furthermore, we can observe a high high variance across methods. The variance
across lemmas seems to be higher for NB, NB-UNIF, NB-EM, and GLOFIN, than it
is for GV, PPR, GV-LCS, and PPR-LCS. In particular, the former all have lemmas
with single-digit or near single-digit recall which is something that does not happen
for the latter.

In the remainder of this section, we will try to analyze the effect of individual
model components and modeling choices separately to gain a better understanding
of overall performance.

Automatically Acquired Examples One possible explanation for the poor per-
formance of GLOFIN could be that we use an unsuitable method to automatically
acquire examples. If this were the case, we would expect all methods that use these

15

examples to perform badly. This, however, is not the case: NB, which is the simplest
method that makes use of the examples, achieves a performance that is reasonably
competitive for most lemmas and achieves the best performance for two lemmas (see
Figure 1b).

A notable exception is the lemma “level” for which NB has the worst performance
of all methods by far. A closer inspection reveals that automatic labeling fails in
this case because the most prevalent sense of “level” in the validation data (“degree,
grade, level”) only has a single monosemous relative (a hyponym) which is “sun
protection factor, SPF.” Not surprisingly, this very specific monosemous relative
fails to produce good training examples for the “degree, grade, level” sense of “level”.

All in all, it seems unlikely that the poor performance of GLOFIN can be at-
tributed to the way we automatically acquire examples.

Unlabeled Data A second reason why GLOFIN performs poorly could be the
use of unlabeled data during the classification. As Nigam et al. (2000) have pointed
out when they studied the effect of adding unlabeled examples for text classification,
the results are highly domain-dependent. In particular, in cases where the genera-
tive model cannot capture important text properties, there is no clear correlation
between classification accuracy and model likelihood and the addition of unlabeled
data can actually hurt performance.

To isolate the effect of adding unlabeled data, we can study the performance
of NB-EM which is the simplest version of our model that makes use of unlabeled
data. What we get is a somewhat mixed picture: although NB-EM has a competitive
performance for some lemmas (e.g., “goal” and “transfer”), it also has a clear below-
average performance in a number of cases (“conversion”, “tie”, “top”; see Figure 1c).
The bad performance could be due to the introduction of unrelated terms that are
introduced when unlabeled sentences are added to the training process (so-called
semantic drift, see Curran et al. (2007)).

Possible evidence for this hypothesis comes from looking at the words that
achieve the highest probability score for a given class and the evolution of these
words over iterations. For instance, the set of most predictive words for the “top
side, upper side, upside” sense of “top” changes drastically after a complete itera-
tion of EM when unlabeled sentences are added and the final classifier uses many
seemingly non-discriminative terms such as “say”, “good”, “use”, and “down.” This
might explain why the algorithm shows a strong and unwarranted bias towards this
sense of “top”.

Thus, it seems at least probable that the use of unlabeled sentences leads to
worse performance in some cases.

Ontological Constraints Another reason for the bad performance of GLOFIN
might be the use of ontological constraints during the classification. This would be
somewhat surprising given that Dalvi et al. (2015) report that in their experiments,

16

ontological constraints always provided an increase in performance.
It is possible, however, that the WSD and the gloss finding task are less similar

than they appear. While we do not have access to the detailed results of the gloss
finding experiment, it is possible that the WordNet ontologies we use for WSD are
unsuitable for this approach. In particular, there are lemmas for which some of the
target synsets have a very large number of siblings. For instance, the “transferee”
sense of “transfer” has 401 siblings whereas the other senses only have between
6 and 24 siblings each. The confusion matrix for “transfer” shows that GLOFIN
indeed assigns 124 out of 236 (over 52 percent) of all examples to the sense “trans-
feree” even though the true number of “transferee” examples is only 10 (less than
5 percent). This might be due to the fact that the parent of “transferee” which is
“person, individual, someone, somebody mortal, soul” gets undue importance due
to the number of its children which in turn encourages the model to assign many
examples to the “transferee” sense. This is also supported by the fact that the con-
fusion matrix of “transfer” for NB and NB-EM do not show the same bias for the
“transferee” sense.

Sense Prior As Martinez et al. (2008) have shown, the sense prior is crucial to
get good performance when using automatically acquired examples. It is natural to
suspect that the prior also has a lot of influence on performance in our case. One
experiment that shows the importance of the prior is to compare the results of NB
which uses the corpus prior to the results of NB-UNIF which uses a uniform prior
(see Figure 1d). As we can see, there are large differences in performance between
the two methods for most of the lemmas; indeed, only in the case of “fishing” are
the results remotely similar. The results of the corpus prior are good in the cases
where the dominant sense is also the dominant sense in the Koeling dataset.

As discussed in Section 3.3, Martinez et al. show that in their experiments, using
supervised priors obtained from hand-tagged corpora such as Semcor and Senseval-
2 greatly increased the performance of their system. While it would be possible
to use the same strategy for GLOFIN, it is doubtful whether this approach would
yield better results. The reason is that the Koeling dataset is highly skewed and
in all likelihood does not resemble either Semcor or Senseval-2 or any other tagged
corpus for that matter. While we did not try to run GLOFIN with a Semcor prior,
we nevertheless used the first sense in WordNet which corresponds to the most
frequent sense in Semcor (see Martinez et al. (2008)) as a baseline (not reported)
and only achieved subpar results for most lemmas.

Context Representation Finally, it might be the case that restricting our model
to use simple bag-of-words features is hurting performance. As we discussed in Sec-
tion 5.4, our decision to use a generative model discourages the use of more advanced
features because they would introduce complex dependencies. Nevertheless, we ex-
perimented with both TF-IDF features (which are known to work well with NB in

17

under some circumstances) and gloss vector features. This, however, did not provide
a better performance than simple bag-of-words features.

9 Conclusions and Future Work

We present a WSD system that combines elements from semi-supervised and knowledge-
based WSD. In particular, our system uses automatically acquired examples and ex-
plicitly models ontological constraints during the classification stage. Unfortunately,
our system is not able to outperform state-of-the-art knowledge-based baselines such
as personalized PageRank.

While the complex interactions between different model components (automati-
cally acquired examples, unlabeled data, ontological constraints, sense prior, context
representation) make it difficult to pin down the exact reason for the disappointing
performance, we can nevertheless study the effect of the individual components in
particular cases. We hypothesize that that the most likely culprits are: (1) semantic
drift stemming from the use of noisy unlabeled data; (2) highly unbalanced ontology
structures; (3) different sense distributions in the training and validation set.

In order to test our hypothesis and hopefully increase the performance of our
system, the next steps would be the following: (1) use a pruned version of the
ontology that limits the number of siblings of a target synset, for instance by only
considering siblings that are closely related to the target according to some similarity
metric; (2) investigate better ways to choose the sense prior; (3) reduce semantic
drift by only assigning unlabeled examples for which the model has reasonably high
confidence.

10 Acknowledgements

I would like to thank my advisor William Cohen and my co-advisor Einat Minkov
for their insight and expertise which greatly assisted this project. I am also very
grateful to Bhavana Dalvi for letting me use her gloss finding code and for helping
me to get started with the project.

References

Agirre, E. and Soroa, A. (2009). Personalizing pagerank for word sense disam-
biguation. In Proceedings of the 12th Conference of the European Chapter of the
Association for Computational Linguistics, pages 33–41. Association for Compu-
tational Linguistics.

Banerjee, S. and Pedersen, T. (2003). Extended gloss overlaps as a measure of
semantic relatedness. In Ijcai, volume 3, pages 805–810.

18

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python.
O’Reilly Media, Inc.

Curran, J. R., Murphy, T., and Scholz, B. (2007). Minimising semantic drift with
mutual exclusion bootstrapping. In Proceedings of the 10th Conference of the
Pacific Association for Computational Linguistics, volume 3.

Dalvi, B., Minkov, E., Talukdar, P. P., and Cohen, W. W. (2015). Automatic gloss
finding for a knowledge base using ontological constraints. In Proceedings of the
Eighth ACM International Conference on Web Search and Data Mining, pages
369–378. ACM.

Ferraresi, A., Zanchetta, E., Baroni, M., and Bernardini, S. (2008). Introducing and
evaluating ukwac, a very large web-derived corpus of english. In Proceedings of
the 4th Web as Corpus Workshop (WAC-4) Can we beat Google, pages 47–54.

Koeling, R., McCarthy, D., and Carroll, J. (2005). Domain-specific sense distri-
butions and predominant sense acquisition. In Proceedings of the conference on
Human Language Technology and Empirical Methods in Natural Language Pro-
cessing, pages 419–426. Association for Computational Linguistics.

Leacock, C. and Chodorow, M. (1998). Combining local context and wordnet sim-
ilarity for word sense identification. WordNet: An electronic lexical database,
49(2):265–283.

Martinez, D., De Lacalle, O. L., and Agirre, E. (2008). On the use of automati-
cally acquired examples for all-nouns word sense disambiguation. J. Artif. Intell.
Res.(JAIR), 33:79–107.

McCarthy, D., Koeling, R., Weeds, J., and Carroll, J. (2004). Finding predominant
word senses in untagged text. In Proceedings of the 42nd Annual Meeting on As-
sociation for Computational Linguistics, page 279. Association for Computational
Linguistics.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of
the ACM, 38(11):39–41.

Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computing Surveys
(CSUR), 41(2):10.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. (2000). Text classification
from labeled and unlabeled documents using em. Machine learning, 39(2-3):103–
134.

Patwardhan, S. and Pedersen, T. (2006). Using wordnet-based context vectors to
estimate the semantic relatedness of concepts. In Proceedings of the eacl 2006

19

workshop making sense of sense-bringing computational linguistics and psycholin-
guistics together, volume 1501, pages 1–8. Trento.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-
learn: Machine learning in python. Journal of Machine Learning Research,
12(Oct):2825–2830.

Pritsker, E. W. (2014). Learning Context Selection Models for Knowledge-based
WSD. Master’s thesis (unpublished).

Pritsker, E. W., Cohen, W. W., and Minkov, E. (2015). Learning to identify the
best contexts for knowledge-based wsd. In EMNLP, pages 1662–1667.

20

Appendix

Figure 2: WordNet online search interface; shown is the search result for “goal”:
bullet points 1-4 are the four goal synsets; bullet point 5 is a direct hyponym of the
last goal synsets; bullet point 6 is the direct hypernym of the last goal synset

1740:1
entity

1930:2
physical_entity

2137:3
abstraction

abstract_entity

2684:4
object

physical_object

23100:5
psychological_feature

3553:6
whole
unit

27167:7
location

23271:8
cognition

knowledge
noesis

29378:9
event

3414162:10
game_equipment

8566028:11
terminal

end

5809192:12
content

cognitive_content
mental_object

186634:13
score

2768226:14
backboard

basketball_backboard

2778669:15
ball

2882483:16
bowling_equipment

3117199:17
counter

3135788:18
crossbar

3413828:19
game

3442756:20
goal

3539546:21
horseshoe

3589313:22
jackstones

jack

3716327:23
piece
man

3820154:24
net

3875955:25
paintball_gun

3941417:26
pinball_machine

pin_table

3982430:27
snooker_table
billiard_table

pool_table

7683973:41
heel

8566554:42
end_point
terminus

termination
endpoint

8567877:43
destination

goal
finish

...

5979909:57
disbelief
unbelief

5980412:58
heresy

unorthodoxy

5980875:59
end
goal

...

187144:67
bull's_eye

187337:68
goal

187710:69
strike

ten-strike

...

Figure 3: The ontology for target lemma “goal”. Each synset is identified by a tuple
of the form: (wordnet offset:class label). Monosemous lemmas are printed in bold,
Some of the target synsets’ sister nodes have been removed for better legibility.

