
Data Analysis Project Machine Learning Department, Carnegie Mellon University

BATCH POLICY GRADIENT METHODS FOR
IMPROVING SEQ2SEQ CONVERSATION MODELS

Kirthevasan Kandasamy
kandasamy@cs.cmu.edu
November 2016

ABSTRACT

We study reinforcement learning of chat-bots with recurrent neural network ar-
chitectures when the rewards are noisy and expensive to obtain. For instance,
a chat-bot used in automated customer service support can be scored by quality
assurance agents, but this process can be expensive, time consuming and noisy.
Previous reinforcement learning work for natural language processing uses on-
policy updates and/or is designed for on-line learning settings. We demonstrate
empirically that such strategies are not appropriate for this setting and develop
an off-policy batch policy gradient method (BPG). We demonstrate the efficacy
of our method via a series of synthetic experiments and an Amazon Mechanical
Turk experiment on a restaurant recommendations dataset.

1 INTRODUCTION

Chat-bots are one of the classical applications of artificial intelligence and are now ubiquitous in
technology, business and everyday life. Many corporate entities are now increasingly using chat-
bots to either replace or assist humans in customer service contexts. For example, Microsoft is
currently actively building a chat bot to optimise and streamline its technical support service.

In these scenarios, there is usually an abundance of historical data since past conversations between
customers and human customer service agents are usually recorded by organisations. An apparently
straightforward solution would be to train chat-bots to reproduce the responses by human agents
using standard techniques such as maximum likelihood. While this seems natural, it is far from
desirable for several reasons. It has been observed that such procedures have a tendency to produce
very generic responses (Sordoni et al., 2015). For instance, when we trained chat-bots via maximum
likelihood on a restaurant recommendations dataset, they repeatedly output responses to the effect
of How large is your group?, What is your budget? etc. Further, they also produce responses
such as Let me look that up. or Give me a second. which, although permissible for a human
agent to say, are not appropriate for a chat-bot. Although there are ways to increase the diversity
of responses (Li et al., 2015), our focus is on encouraging the bot to meaningfully advance the
conversation. One way to address this problem is to provide some form of weak supervision for
responses generated by a chat-bot. For example, a human labeller, such as a quality assurance agent,
could score each response generated by a chat-bot in a conversation with a customer. This brings us
to the reinforcement learning (RL) paradigm where these rewards (scores) are to be used to train a
good chat-bot. In this paper we will use the terms score, label, and reward interchangeably. Labelled
data will mean conversations which have been assigned a reward of some form as explained above.

Nonetheless, there are some important differences in the above scenario when compared to the more
popular approaches for RL.

• Noisy and expensive rewards: Obtaining labels for each conversation can be time consuming
and economically expensive. As a result, there is a limited amount of labelled data available.
Moreover, labels produced by humans are invariably noisy due to human error and subjectivity.
• Off-line evaluations: Unlike conventional RL settings, such as games, where we try to find

the optimal policy while interacting with the system, the rewards here are not immediately
available. Previous conversations are collected, labelled by human experts, and then given to
an algorithm which has to manage with the data it has.

1



Data Analysis Project Machine Learning Department, Carnegie Mellon University

• Unlabelled Data: While labelled data is limited, a large amount of unlabelled data is available.

If labelled data is in short supply, reinforcement learning could be hopeless. However, if unlabelled
data can be used to train a decent initial bot, say via maximum likelihood, we can use policy iteration
techniques to refine this bot by making local improvements using the labelled data (Bellman, 1956).
Besides chat-bots, this framework also finds applications in tasks such as question answering (Fer-
rucci et al., 2010; Hermann et al., 2015; Sachan et al., 2016), generating image descriptions (Karpa-
thy & Fei-Fei, 2015) and machine translations (Bahdanau et al., 2014) where a human labeller can
provide weak supervision in the form of a score to a sentence generated by a bot.

To contextualise the work in this paper, we make two important distinctions in policy iteration
methods in reinforcement learning. The first is on-policy vs off-policy. In on-policy settings, the goal
is to improve the current policy on the fly while exploring the space. On-policy methods are used
in applications where it is necessary to be competitive (achieve high rewards) while simultaneously
exploring the environment. In off-policy, the environment is explored using a behaviour policy, but
the goal is to improve a different target policy. The second distinction is on-line vs batch (off-line).
In on-line settings one can interact with the environment. In batch methods, which is the setting for
this work, one is given past exploration data from possibly several behaviour policies and the goal
is to improve a target policy using this data. On-line methods can be either on-policy or off-policy
whereas batch methods are necessarily off-policy.

In this paper, we study reinforcement learning in batch settings, for improving chat bots with
Seq2Seq recurrent neural network (RNN) architectures. One of the challenges when compared
to on-line learning is that we do not have interactive control over the environment. We can only
hope to do as well as our data permits us to. On the other hand, the batch setting affords us some
luxuries. We can reuse existing data and use standard techniques for hyper-parameter tuning based
on cross validation. Further, in on-line policy updates, we have to be able to “guess” how an episode
will play out, i.e. actions the behaviour/target policies would take in the future and corresponding
rewards. However, in batch learning, the future actions and rewards are directly available in the data.
This enables us to make more informed choices when updating our policy.

RELATED WORK

Recently there has been a surge of interest in deep learning approaches to reinforcement learning,
many of them adopting Q-learning, e.g. (He et al., 2015; Mnih et al., 2013; Narasimhan et al., 2015).
In Q-learning, the goal is to estimate the optimal action value function Q∗. Then, when an agent
is at a given state, it chooses the best greedy action according to Q∗. While Q-learning has been
successful in several applications, it is challenging in the settings we consider since estimating Q∗
over large action and state spaces will require a vast number of samples. In this context, policy
iteration methods are more promising since we can start with an initial policy and make incremental
local improvements using the data we have. This is especially true given that we can use maximum
likelihood techniques to estimate a good initial bot using unlabelled data.

Policy gradient methods, which fall within the paradigm of policy iteration, make changes to the
parameters of a policy along the gradient of a desired objective (Sutton et al., 1999). Recently, the
natural language processing (NLP) literature has turned its attention to policy gradient methods for
improving language models. Ranzato et al. (2015) present a method based on the classical REIN-
FORCE algorithm (Williams, 1992) for improving machine translation after preliminary training
with maximum likelihood objectives. Bahdanau et al. (2016) present an actor-critic method also for
machine translation. In both cases, as the reward, the authors use the BLEU (bilingual evaluation
understudy) score of the output and the translation in the training dataset. This setting, where the
rewards are deterministic and cheaply computable, does not reflect difficulties inherent to training
chat-bots where labels are noisy and expensive. Li et al. (2016) develop a policy gradient method
bot for chat-bots. However, they use user defined rewards (based on some simple rules) which, once
again, are cheaply obtained and deterministic. Perhaps the closest to our work is that of Williams &
Zweig (2016) who use a REINFORCE based method for chat bots. We discuss the differences of
this and other methods in greater detail in Section 3. The crucial difference between all of the above
efforts and ours is that they use on-policy and/or on-line updates in their methods.

The remainder of this manuscript is organised as follows. In Section 2 we review Seq2Seq models
and Markov decision processes (MDP) and describe our framework for batch reinforcement learn-
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ing. Section 3 presents our method BPG and compares it with prior work in the RL and NLP
literature. Section 4 presents experiments on a synthetic task and a customer service dataset for
restaurant recommendations.

2 PRELIMINARIES

2.1 A REVIEW OF SEQ2SEQ MODELS

The goal of a Seq2Seq model in natural language processing is to produce an output sequence
y = [a1, a2, . . . , aT ] given an input sequence x (Cho et al., 2014; Kalchbrenner & Blunsom, 2013;
Sutskever et al., 2014). Here ai ∈ A where A is a vocabulary of words. For example, in machine
translation from French to English, x is the input sequence in French, and y is its translation in En-
glish. In customer service chat-bots, x is the conversation history until the customer’s last query and
y is the response by an agent/chat-bot. In a Seq2Seq model, we use an encoder network to represent
the input sequence as a euclidean vector and then a decoder network to convert this vector to an
output sequence. Typically, both the encoder and decoder networks are recurrent neural networks
(RNN) (Mikolov et al., 2010) where the recurrent unit processes each word in the input/output se-
quences one at a time. In this work, we will use the LSTM (long short term memory) (Hochreiter &
Schmidhuber, 1997) as our recurrent unit due to its empirical success in several applications.

In its most basic form, the decoder RNN can be interpreted as assigning a probability distribution
over A given the current “state”. At time t, the state st is the input sequence x and the words
yt−1 = [a1, . . . , at−1] produced by the decoder thus far, i.e. st = (x, yt−1). We sample the
next word at from this probability distribution π(·|st), then update our state st+1 = (x, yt) where
yt = [yt−1, at], and proceed in a similar fashion. The vocabulary A contains an end-of-statement
token <EOS>. If we sample <EOS> at time T + 1, we terminate the sequence and output yT .

2.2 A REVIEW OF MARKOV DECISION PROCESSES (MDP)

We present a formalism for MDPs simplified to our setting. In an MDP, an agent takes an action a
in a state s and transitions to a state s′. An episode refers to a sequence of transitions s1 → a1 →
s2 → a2 → · · · → aT → sT+1 until the agent reaches a terminal state sT+1. At a terminal state, the
agent receives a reward. Formally, an MDP is the triplet (S,A, R). Here, S is a set of states andA is
a set of actions. When we take an action a at state s we transition to a new state s′ = s′(s, a) which,
in this work, will be deterministic. A will be a finite but large discrete set and S will be discrete
but potentially infinite. R : S → R is the expected reward function such that when we receive a
reward r at state s ∈ S, E[r] = R(s). Let S0 ⊂ S be a set of terminal states. When we transition to
any s ∈ S0, the episode ends. In this work, we will assume that the rewards are received only at a
terminal state, i.e R(s) is nonzero only on S0.

A policy π is a rule to select an action at a given state. We will be focusing on stochastic policies
π : A×S → R+ where π(a|s) denotes the probability an agent will execute action a at state s. We
define the value function V π : S → R of policy π, where V (s) is the expected reward at the end of
the episode when we follow policy π from state s. For any terminal state s ∈ S0, V π(s) = R(s)
regardless of π. We will also find it useful to define the action-value function Qπ : S × A :→ R,
where Qπ(s, a) is the expected reward of taking action a at state s and then following policy π.
With deterministic state transitions this is simply Qπ(s, a) = V π(s′(s, a)). It can be verified that
V π(s) = Ea∼π(·|s) [Qπ(s, a)] (Sutton & Barto, 1998).

2.3 SET UP

We now frame our learning from labels scenario for RNN chat-bots as an MDP. The treatment has
similarities to some recent RL work in the NLP literature discussed above.

Let x be the input and yt−1 = [a1, . . . , at−1] be the words output by the decoder until time t. The
state of our MDP at time t of the current episode will be st = (x, yt−1). Therefore, the set of
states S will be all possible pairs of inputs and partial output sequences. The actions A will be the
vocabulary. The terminal states S0 will be (x, y) such that the last literal of y is <EOS>. The stochastic
policy π will be a Seq2Seq RNN which produces a distribution overA given state st. When we wish
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to make the dependence of the policy on the RNN parameters θ explicit, we will write πθ. When we
sample an action at ∼ π(·|st), we deterministically transition to state (x, [yt−1, at]). If we sample
aT+1 = <EOS> at time T + 1, the episode terminates and we observe a stochastic reward.

We are given a dataset of input-output-reward triples {(x(i), y(i), r(i))}ni=1 where y(i) =

(a
(i)
1 , . . . , a

(i)
Ti
, <EOS>) is the sequence of output words. This data was collected from possibly mul-

tiple behaviour policies which output y(i) for the given input x(i). In the above customer service
example, the behaviour policies could be chat-bots, or even humans, which were used for conver-
sations with a customer. The rewards ri are scores assigned by a human quality assurance agent to
each response of the chat-bot. Our goal is to use this data to improve a given target policy πθ. We
will use q to denote the distribution of the data. q(s) is the distribution of the states in the dataset,
q(a|s) is the conditional distribution of an action given a state, and q(s, a) = q(s)q(a|s) is the joint
distribution over states and actions. q will be determined by the initial distribution of the inputs x(i)
and the behaviour policies used to collect the training data. Our aim is to find a policy that does well
with respect to q. Specifically, we wish to maximise the following objective,

J(θ) =
∑
s∈S

q(s)V πθ (s). (1)

Here, the value function V πθ is not available to us but has to be estimated from the data. This is
similar to objectives used in on-line off-policy policy gradient literature where q is replaced by the
limiting distribution of the behaviour policy (Degris et al., 2012). In the derivation of our algorithm,
we will need to know q(a|s) to compute the gradient of our objective. In off-policy reinforcement
learning settings this is given by the behaviour policy which is readily available. If the behaviour
policy if available to us, then we can use this too. Otherwise, a simple alternative is to “learn” a be-
haviour policy. For example, in our experiments we used an RNN trained using the unlabelled data
to obtain values for q(a|s). As long as this learned policy can capture the semantics of natural lan-
guage (for example, the word apple is more likely than car when the current state is (x, I ate an)),
then it can be expected to do reasonably well. In the following section, we will derive a stochastic
gradient descent (SGD) procedure that will approximately minimise (1).

Before we proceed, we note that it is customary in the RL literature to assume stochastic transitions
between states and use rewards at all time steps instead of the terminal step. Further, the future
rewards are usually discounted by a discount factor γ < 1. While we use the above formalism to
simplify the exposition, the ideas presented here extend naturally to more conventional settings.

3 BATCH POLICY GRADIENT

Our derivation follows the blueprint in Degris et al. (2012) who derive an off-policy on-line actor
critic algorithm. Following standard policy gradient methods, we will aim to update the policy by
taking steps along the gradient of the objective∇J(θ).

∇J(θ) = ∇Es∼q
[∑
a∈A

πθ(a|s)Qπθ (s, a)

]
= Es∼q

[∑
a∈A
∇πθ(a|s)Qπθ (s, a) + πθ(a|s)∇Qπθ (s, a)

]
.

The latter term inside the above summation is difficult to work with, so the first step is to ignore
it and work with the approximate gradient g(θ) = Es∼q[

∑
a∈A∇πθ(a|s)Qπθ (s, a)] ≈ ∇J(θ).

Degris et al. (2012) provide theoretical justification for this approximation in off policy settings by
establishing that J(θ) ≤ J(θ + αg(θ)) for all small enough α. Expanding on g(θ), we obtain:

g(θ) = Es∼q

[∑
a∈A

πθ(a|s)
∇πθ(a|s)
πθ(a|s)

Qπθ (s, a)

]
= E s∼q

a∼q(·|s)

[
ρ(s, a)ψ(a, s)Qπθ (s, a)

]
= E(st,at)∼q(·,·) [ρ(st, at)ψ(at, st)(Q

πθ (st, at)− V πθ (st))] . (2)

Here ψ(a, s) = ∇πθ(a|s)
πθ(a|s) = ∇ log πθ(a|s) is the score function of the policy and ρ(s, a) =

πθ(a|s)/q(a|s) is the importance sampling coefficient. In the last step, we have used the fact that
E[π(a|s)ψ(a|s)h(s)] = 0 for any function h : S → R of the current state (Szepesvári, 2010). The
purpose of introducing the value function V πθ is to reduce the variance of the SGD updates – we

4



Data Analysis Project Machine Learning Department, Carnegie Mellon University

want to assess how good/bad action at is relative to how well πθ will do at state st in expectation. If
at is a good action (Qπθ (st, at) is large relative to V πθ (st)), the coefficient of the score function is
positive and it will change θ so as to assign a higher probability to action at at state st.

The Qπθ , V πθ functions are not available to us so we will replace them with estimates. For V πθ (st)
we will use an estimate V̂ (st) – we will discuss choices for this shortly. However, the action value
function is usually not estimated in RL policy gradient settings to avoid the high sample complexity.
A sensible stochastic approximation for Qπθ (st, at) is to use the sum of future rewards from the
current state (Sutton & Barto, 1998)1. If we receive reward r at the end of the episode, we can
then use Qπθ (st, at) ≈ r for all time steps t in the episode. However, since q(at|st) is different
from πθ(at|st) we will need to re-weight future rewards via importance sampling r

∏T
i=t ρ(si, ai).

This is to account for the fact that an action a given s may have been more likely under the policy
πθ(·|s) than it was under q(·|s) or vice versa. Instead of directly using the re-weighted rewards, we
will use the so called λ–return which is a convex combination of the re-weighted rewards and the
value function (Sutton, 1988; 1984). In our setting, they are defined recursively from the end of the
episode t = T + 1 to t = 1 as follows. For λ ∈ (0, 1],

r̃λT+1 = r, r̃λt = (1− λ)V πθ (st+1) + λρ(st, at)r̃
λ
t+1 for t = T, . . . , 1. (3)

The purpose of introducing λ is to reduce the variance of using the future rewards alone as an esti-
mate for Qπθ (st, at). This is primarily useful when rewards are noisy. If the rewards are determin-
istic, λ = 1 which ignores the value function is the best choice. In noisy settings, it is recommended
to use λ < 1 (see Sec 3.1 of (Szepesvári, 2010)). In our algorithm, we will replace r̃λt with rλt where
V πθ is replaced with the estimate V̂ . Putting it all together, and letting α denote the step size, we
have the following update rule for the parameters θ of our policy:

θ ← θ + αρ(st, at)ψ(st, at)(r
λ
t − V̂ (st)).

In Algorithm 1, we have summarised the procedure where the updates are performed after an entire
pass through the dataset. In practice, we perform the updates in mini-batches.

An Estimator for the Value Function: All that is left to do is to specify an estimator V̂ for the value
function. We first need to acknowledge that this is a difficult problem: S is quite large and for typical
applications for this work there might not be enough data since labels are expensive. That said, the
purpose of V̂ in (2), (3) is to reduce the variance of our SGD updates and speed up convergence
so it is not critical that this be precise – even a bad estimator will converge eventually. Secondly,
standard methods for estimating the value function based on minimising the projected Bellman er-
ror require the second derivatives, which might be intractable for highly nonlinear parametrisations
of V̂ (Maei, 2011). For these two statistical and computational reasons, we resort to simple esti-
mators for V πθ . We will study two options. The first is a simple heuristic used previously in the
RL literature, namely a constant estimator for V̂ which is equal to the mean of all rewards in the
dataset (Williams, 1992). The second uses the parametrisation V̂ (s) = σ(ξ>φ(s)) where σ is the
logistic function and φ(s) ∈ Rd is a Euclidean representation of the state. For V̂ (s) of the above
form, the Hessian ∇2

ξV̂ (s) can be computed in O(d) time. To estimate this value function, we use
the GTD(λ) estimator from Maei (2011). As φ(s) we will be using the hidden state of the LSTM.
The rationale for this is as follows. In an LSTM trained using maximum likelihood, the hidden
state contains useful information about the objective. If there is overlap between the maximum like-
lihood and reinforcement learning objectives, we can expect the hidden state to also carry useful
information about the RL objective. Therefore, we can use the hidden state to estimate the value
function whose expectation is the RL objective. We have described our implementation of GTD(λ)
in Appendix A and specified some implementation details in Section 4.

COMPARISON WITH OTHER RL APPROACHES IN NLP

Policy gradient methods have been studied extensively in on policy settings where the goal is to
improve the current policy on the fly (Amari, 1998; Williams, 1992). To our knowledge, all RL

1 Note Qπθ (st, at) = V πθ (st+1) for deterministic transitions. However, it is important not to interpret the
term in (2) as the difference in the value function between successive states. Conditioned on the current time
step, V πθ (st) is deterministic, while V πθ (st+1) is stochastic. In particular, while a crude estimate suffices for
the former, the latter is critical and should reflect the rewards received during the remainder of the episode.
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Algorithm 1 Batch Policy Gradient (BPG)
Given: Data {(xi, yi, ri)}ni=1, step size α, return coefficient λ, initial θ0.

– Set θ ← θ0.
– For each epoch k = 1, 2, . . .

I Set ∆θ ← 0

I For each episode i = 1, . . . , n

• rλT+1 ← ri

• ρt ← πθ(a
(i)
t |s

(i)
t )/q(a

(i)
t |s

(i)
t ) for t = 1, . . . , T (i).

• For each time step in reverse t = T (i), . . . , 1

(i) rλt ← (1− λ)V̂ (s
(i)
t+1) + λρtr

λ
t+1

(ii) ∆θ ← ∆θ + 1
T (i) ρtψ(s

(i)
t , a

(i)
t )(rλt − V̂ (s

(i)
t ))

(iii) Compute updates for the value function estimate V̂ .
I Update the policy θ ← θ + α∆θ

I Update the value function estimate V̂ .

approaches in Seq2Seq models have also adopted on-policy policy gradient updates (Bahdanau et al.,
2016; Li et al., 2016; Ranzato et al., 2015; Williams & Zweig, 2016). However, on policy methods
break down in off-policy settings, because any update must account for the probability of the action
under the target policy. For example, suppose the behaviour policy took action a at state s and
received a low reward. Then we should modify the target policy θ so as to reduce πθ(a|s). However,
if the target policy is already assigning low probability to a|s then we should not be as aggressive
when making the updates. The re-weighting ρ(s, a) via importance sampling does precisely this.

A second difference is that we study the batch setting. Standard on-line methods are designed for
settings where we have to continually improve the target while exploring using the behaviour policy.
A crucial component in these methods is a need to estimate the future rewards at the current state
and the future actions that will be taken by both the behaviour and target policies. In order to tackle
this, previous research either ignore future rewards altogether (Williams, 1992), resort to heuristics
to distribute a delayed reward to previous time steps (Bahdanau et al., 2016; Williams & Zweig,
2016), or make additional assumptions about the distribution of the states (Degris et al., 2012; Maei,
2011). However, when data is available in batch settings, the λ-return from a given time step can
be computed directly (3) since the future action and rewards are known. Access to this information
provides a crucial advantage over techniques designed for on-line settings.

4 EXPERIMENTS

Implementation Details: We implement our methods using Chainer (Tokui et al., 2015), and group
sentences of the same length together in the same batch to make use of GPU parallelisation. Since
different batches could be of different length, we do not normalise the gradients by the batch size
as we should take larger steps after seeing more data. However, we normalise by the length of the
output sequence to allocate equal weight to all sentences. We truncate all output sequences to length
64 and use a maximum batch size of 32. We found it necessary to use a very small step size (10−5),
otherwise the algorithm has a tendency to get stuck at bad parameter values. While importance re-
weighting is necessary in off-policy settings, it can increase the variance of the updates, especially
when q(at|st) is very small. A common technique to alleviate this problem is to clip the ρ(st, at)
value (Swaminathan & Joachims, 2015). In addition to single ρ(st, at) values, our procedure has a
product of ρ(st, at) values when computing the future rewards (3). The effect of large ρ values is a
large weight ρt(rλt −V̂ (st)) for the score function in step (ii) of Algorithm 1. In our implementation,
we clip this weight at 5 which controls the variance of the updates and ensures that a single example
does not disproportionately affect the gradient.

RNN Design: In both experiments we use deep LSTMs with two layers for the encoder and decoder
RNNs. The output of the bottom layer is fed to the top layer and in the decoder RNN, the output of
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LSTM LSTM LSTM

softmax softmax softmax
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LSTM LSTM

Encoder Decoder

Figure 1: Illustration of the encoder
and decoder RNNs used in our exper-
iments. In this example, the input to
the encoder is x = (..., A, B, <EOS>)
and the output of the decoder is y =
(U, V, W, . . . ). We use four different
LSTMs for the bottom and top layers
of the encoder and decoder networks.
In our RL algorithms, we only change
the top LSTM and the softmax layer
of the decoder RNN as shown in red
dashed lines.

the top layer is fed to a softmax layer of size |A|. When we implement GTD(λ) to estimate V πθ
we use the hidden state of the bottom LSTM as φ(s). When performing our policy updates, we only
change the parameters of the top LSTM and the softmax layer in our decoder RNN. If we were to
change the bottom LSTM too, then the state representation φ(s) would also change as the policy
changes. This violates the MDP framework. In other words, we treat the bottom layer as part of
the environment in our MDP. To facilitate a fair comparison, we only modify the top LSTM and
softmax layers in all methods. We have illustrated this set up in Fig. 1. We note that if one is content
with using the constant estimator, then one can change all parameters of the RNN.

4.1 SOME SYNTHETIC EXPERIMENTS ON THE EUROPARL DATASET

To convey the main intuitions of our method, we compare our methods against other baselines on
a synthetic task on the European parliament proceedings corpus (Koehn, 2005). We describe the
experimental set up briefly, deferring details to Appendix B.1. The input sequence to the RNN was
each sentence in the dataset. Given an input, the goal was to reproduce the words in the input without
repeating words in a list of forbidden words. The RL algorithm does not explicitly know either goal
of the objective but has to infer it from the stochastic rewards assigned to input output sequences in
the dataset. We used a training set of 500 input-output-reward triplets for the RL methods.

We initialised all methods by maximum likelihood training on 6000 input output sequences where
the output sequence was the reverse of the input sequence. The maximum likelihood objective
captures part of the RL objective. This set up reflects naturally occurring practical scenarios for the
algorithm where a large amount unlabelled data can be used to bootstrap a policy if the maximum
likelihood and reinforcement learning objectives are at least partially aligned. We trained the RL
algorithms for 200 epochs on the training set. At the end of each epoch, we generated outputs from
the policy on test set of 500 inputs and scored them according to our criterion. We plot the test set
error against the number of epochs for various methods in Fig. 2.

Fig. 2(a) compares 3 methods: BPG with and without maximum likelihood initialisation and a
version of BPG which does not use importance sampling. Clearly, bootstrapping an RL algorithm
with ML can be advantageous especially if data is abundantly available for ML training. Further,
without importance sampling, the algorithm is not as competitive for reasons described in Section 3.
In all 3 cases, we used a constant estimator for V̂ and λ = 0.5. The dashed line indicates the
performance of ML training alone. BPG-NIS is similar to the algorithms of Ranzato et al. (2015);
Williams & Zweig (2016) except that there, their methods implicitly use λ = 1.

Fig. 2(b) compares 4 methods: BPG and its on-line version OPG with constant (CONST) and
GTD(λ) estimators for V̂ . The on-line versions of the algorithms are a direct implementation of the
method in Degris et al. (2012) which do not use the future rewards as we do. The first observation
is that while GTD(λ) is slightly better in the early iterations, it performs roughly the same as using
a constant estimator in the long run. Second, BPG performs significantly better than OPG. This
should not be surprising – a close inspection of Degris et al. (2012) reveals that the algorithm sees
the reward only at the end of the episode. This is typical of many RL algorithms where the reward
appears in the update only at the time step it is realised. For the reward to get factored into policy
updates in earlier time steps, it has to percolate through updates for the estimate of the value function
V̂ . While this is reasonable in on-line settings where we can explore indefinitely to collect a large
number of samples and estimate V̂ , it is difficult when one only has a limited number of labelled
samples. Finally, we compare BPG with different choices for λ in Fig. 2(c). As noted previously,

7



Data Analysis Project Machine Learning Department, Carnegie Mellon University

Number of Epochs
50 100 150 200

A
v
er
a
g
e
R
ew

a
rd

0.3

0.35

0.4

0.45

0.5

0.55

0.6

ML (No RL)
BPG+ML
BPG-NIS+ML
BPG

(a)
Number of Epochs

50 100 150 200

A
v
er
a
g
e
R
ew

a
rd

0.35

0.4

0.45

0.5

0.55

0.6

BPG-CONST
BPG-GTD(λ)
OPG-CONST
OPG-GTD(λ)

(b)
Number of Epochs

50 100 150 200

A
v
er
a
g
e
R
ew

a
rd

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

λ = 0.1

λ = 0.5

λ = 0.8

λ = 1.0

(c)
Figure 2: Results for synthetic experiments. (a): Comparison of BPG with and without maximum likelihood
(ML) initialisation and BPG without importance sampling (BPG-NIS). The dotted line indicates performance
of ML alone. (b): Comparison of BPG with its online counterparts OPG. We compare both methods using
a constant estimator (CONST) for the value function and GTD(λ). (c): Comparison of BPG with different
values of λ. All curves were averaged over 10 experiments where the training set was picked randomly from a
pool. The test set was the same in all 10 experiments. The error bars indicate one standard error.

λ < 1 is useful with stochastic rewards, but choosing too small a value is detrimental. The optimal
λ value may depend on the problem.

4.2 RESTAURANT RECOMMENDATIONS

We use data from an on-line restaurant recommendation service. Customers log into the service
and chat with a human agent asking recommendations for restaurants. The agents ask a series of
questions such as food preferences, group size etc. before recommending a restaurant. This dataset
was obtained from Microsoft. The goal is to train a chat-bot (policy) which can replace or assist the
agent. For reasons explained in Section 1, maximum likelihood training alone will not be adequate.
By obtaining reward labels for responses produced by various other bots, we hope to improve on a
bot initialised using maximum likelihood.

Data Collection: We collected data for RL as follows. We trained five different RNN chat-bots
with different LSTM parameters via maximum likelihood on a dataset of 6000 conversations from
this dataset. The bots were trained to reproduce what the human agent said (output y) given the past
conversation history (input x). Then, we generated responses from these bots on 1216 separate con-
versations and had them scored by workers on Amazon Mechanical Turk (AMT). For each response
by the bots in each conversation, the workers were shown the history before the particular response
and asked to score (label) each response on a scale of 0 − 1 − 2. We collected scores from three
different workers for each response and used the mean as the reward in our RL framework.

Policies and RL Application: Next, we initialised 2 bots via maximum likelihood and then used
BPG to improve them using the labels collected from AMT. For the 2 bots we used the following
LSTM hidden state size H , word embedding size E and BPG parameters. These parameters were
chosen arbitrarily and are different from those of the bots used in data collection described above.

• Bot-1: H = 512, E = 256. BPG: λ = 0.5, GTD(λ) estimator for V̂ .

• Bot-2: H = 400, E = 400. BPG: λ = 0.5, constant estimator for V̂ .

Testing: We used a separate test set of 500 conversations which had a total of more than 3500 input-
output (conversation history - response) pairs. For each Bot-1 and Bot-2 we generated responses
before and after applying BPG, totalling 4 responses per input. We then had them scored by workers
on AMT using the same set up described above. The same worker labels the before-BPG and after-
BPG responses from the same bot. This controls spurious noise effects and allows us to conduct a
paired test. We collected 16, 808 before and after label pairs each for Bot-1 and Bot-2 and compare
them using a paired t-test and a Wilcoxon signed rank test.

Results: The results are shown in Table 1. The improvements on Bot-2 are statistically significant
at the 10% level on both tests, while Bot-1 is significant on the Wilcoxon test. The large p-values for
Bot-1 are due to the noisy nature of AMT experiments and we believe that we can attain significance
if we collect more labels which will reduce the standard error in both tests. Nonetheless, it appears
that the improvements are small as evidenced by the mean values. Exploring methods to improve
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Mean (ML) Mean (BPG+ML) Paired t-test Wilcoxon Better / Worse

Bot-1 0.8951± 0.0070 0.9052± 0.0069 0.10296 0.07930 3916 / 2620
Bot-2 0.7009± 0.0066 0.7317± 0.0066 0.00007 0.00017 4167 / 2867

Table 1: The results on the Mechanical Turk experiments using the restaurant dataset. The first two columns
are the mean labels of all responses before and after applying BPG on the bots initialised via maximum likeli-
hood. The last two columns are the p-values using a paired t-test and a paired Wilcoxon signed rank test. The
last column shows the number of responses in with the BPG–bot had better and worse scores than the ML–bot.
For both Bot-1 and Bot-2, we obtained 16,808 before and after responses scored by the same worker. Bot-2 is
statistically significant at the 10% level on both tests while Bot-1 is significant on the Wilcoxon test.

these results further will be a pursuit for future work. In Appendix B.2 we present some examples
of responses generated by the bots before and after applying BPG. We qualitatively discuss specific
kinds of issues that we were able to overcome via reinforcement learning.

5 CONCLUSION

We presented a policy gradient method for batch reinforcement learning to train chat-bots. The data
to this algorithm are input-output sequences generated using other chat-bots/humans and stochastic
rewards for each output in the dataset. This setting arises in many applications, such as customer
service systems, where there is usually an abundance of unlabelled data, but labels (rewards) are
expensive to obtain and can be noisy. Our algorithm is able to efficiently use minimal labelled data
to improve chat-bots previously trained through maximum likelihood on unlabelled data. While our
method draws its ideas from previous policy gradient work in the RL and NLP literature, there are
some important distinctions that contribute to its success in the settings of interest for this work.
Via importance sampling we ensure that the probability of an action is properly accounted for in
off-policy updates. By explicitly working in the batch setting, we are able to use knowledge of
future actions and rewards to converge faster to the optimum. Further, we use the unlabelled data
to initialise our method and also learn a reasonable behaviour policy. Our method outperforms
baselines on a series of synthetic and real experiments.

The ideas presented in this work extend beyond chat-bots. They can be used in applications such
as question answering, generating image descriptions and machine translation where an output sen-
tence generated by a policy is scored by a human labeller to provide a weak supervision signal.
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Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence and
machine learning, 4(1):1–103, 2010.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open source framework
for deep learning. In Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Twenty-
ninth Annual Conference on Neural Information Processing Systems (NIPS), 2015.

Jason D Williams and Geoffrey Zweig. End-to-end lstm-based dialog control optimized with supervised and
reinforcement learning. arXiv preprint arXiv:1606.01269, 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

10



Data Analysis Project Machine Learning Department, Carnegie Mellon University

APPENDIX

A IMPLEMENTATION OF GTD(λ)

We present the details of the GTD(λ) algorithm (Maei, 2011) to estimate a value function in Al-
gorithm 2. However, while Maei (2011) give an on-line version we present the batch version
here where the future rewards of an episode are known. We use a parametrisation of the form
V̂ (s) = V̂ξ(s) = σ(ξ>φ(s)) where ξ ∈ Rd is the parameter to be estimated. σ(z) = 1/(1 + e−z) is
the logistic function.

The algorithm requires two step sizes α′, α′′ below for the updates to ξ and the ancillary parameter
w. Following the recommendations in Borkar (1997), we use α′′ � α. In our implementations,
we used α′ = 10−5 and α′′ = 10−6. When we run BPG, we perform steps (a)-(f) of Algorithm 2
in step (iii) of Algorithm 1 and the last two update steps of Algorithm 2 in the last update step of
Algorithm 1.

The gradient and Hessian of V̂ξ have the following forms,

∇ξV̂ξ(s) = V̂ξ(s)(1− V̂ξ(s))φ(s), ∇2
ξV̂ξ(s) = V̂ξ(s)(1− V̂ξ(s))(1− 2V̂ξ(s))φ(s)φ(s)>.

The Hessian product in step (d) of Algorithm 2 can be computed in O(d) time via,

∇2
ξV̂ξ(s) · w =

[
V̂ξ(s)(1− V̂ξ(s))(1− 2V̂ξ(s))(φ(s)>w)

]
φ(s).

Algorithm 2 GTD(λ)
Given: Data {(xi, yi, ri)}ni=1, step sizes α′, α′′, return coefficient λ, initial ξ0.

– Set ξ ← ξ0, w ← 0.
– For each epoch k = 1, 2, . . .

I Set ∆ξ ← 0, ∆w ← 0.
I For each episode i = 1, . . . , n

• Set rλT+1 ← ri, gλT+1 ← 0, qλT+1 ← 0

• ρt ← πθ(a
(i)
t |s

(i)
t )/q(a

(i)
t |s

(i)
t ) for t = 1, . . . , T (i).

• For each time step in reverse t = T (i), . . . , 1:

(a) gλt ← ρt

(
(1− λ)V̂ξ(s

(i)
t+1) + λρtr

λ
t+1

)
(b) qλt ← ρt

(
(1− λ)∇ξV̂ξ(s(i)t+1) + λqλt+1

)
(c) δt ← gλt − V̂ξ(s

(i)
t )

(d) ht ←
(
δt − w>∇ξV̂ξ(s(i)t )

)
∇2
ξV̂ξ(s

(i)
t ) · w

(e) ∆w ← ∆w + 1
T (i)

(
δt − w>∇ξV̂ξ(s(i)t )

)
∇ξV̂ξ(s(i)t )

(f) ∆ξ ← ∆ξ + 1
T (i)

(
δt∇ξV̂ξ(s(i)t )− qλt w>∇ξV̂ξ(s

(i)
t )− ht

)
I w ← w + α′′∆w.
I ξ ← ξ + α′∆ξ.

B ADDENDUM TO EXPERIMENTS

B.1 DETAILS OF THE SYNTHETIC EXPERIMENT SET UP

Given an input and output sequence, we used the average of five Bernoulli rewards Bern(r), where
the parameter r was r = 0.75 × rr + 0.25 × rf. Here rr was the fraction of common words in the
input and output sequences while rf = 0.01pf where pf is the fraction of forbidden words in the
dataset. As the forbidden words, we used the 50 most common words in the dataset. So if an input
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had 10 words of which 2 were forbidden, an output sequence repeating 7 of the allowed words and
1 forbidden word would receive an expected score of 0.75× (8/10) + 0.25× 0.01(1/8) = 0.7406.

The training and testing set for reinforcement learning were obtained as follows. We trained
4 bots using maximum likelihood on 6000 input output sequences as indicated in Section 4.1.
The LSTM hidden state size H and word embedding size E for the 4 bots were, (H,E) =
(256, 128), (128, 64), (64, 32), (32, 16). The vocabulary size was |A| = 12000. We used these bots
to generate outputs for 500 different input sequences each. This collection of input and output pairs
was scored stochastically as described above to produce a pool of 2000 input-output-score triplets.
From this pool we use a fixed set of 500 triplets for testing across all our experiments. From the
remaining 1500 data points, we randomly select 500 for training for each execution of an algorithm.
For all RL algorithms, we used an LSTM with 16 layers and 16 dimensional word embeddings.

B.2 ADDENDUM TO THE AMT RESTAURANT RECOMMENDATIONS EXPERIMENT

MORE DETAILS ON THE EXPERIMENTAL SET UP

We collected the initial batch of training data for RL as follows: We trained, via maximum likelihood
on 6000 conversations, five RNN bots whose LSTM hidden sizeH and word embedding sizeE were
(H,E) = (512, 512), (256, 256), (128, 128), (512, 256), (256, 64). The inputs x were all words
from the history of the conversation truncated at length 64, i.e. the most recent 64 words in the
conversation history. The outputs were the actual responses of the agent which were truncated to
length 64. As the vocabulary we use the |A| = 4000 most commonly occurring words in the dataset
and replace the rest with an <UNK> token.

Using the bots trained this way we generate responses on 1216 separate conversations. This data
was sent to AMT workers who were asked to label the conversations on the following scale.

• 2: The response is coherent and appropriate given the history and advances the conversation
forward.

• 1: The response has some minor flaws but is discernible and appropriate.
• 0: The response is either completely incoherent or inappropriate and fails to advance the

conversation forward.

SOME QUALITATIVE RESULTS

In Tables 2 and 3 we have presented some examples. The text in black/grey shows the conversation
history, the response in blue is by the bot trained via maximum likelihood (ML) alone and in red is
the bot after improvement using our BPG reinforcement learning algorithm.

The first two examples of Table 2 present examples where the ML algorithm repeated generic ques-
tions (on budget, group size etc.) even though they had already been answered previously. After
applying BPG, we are able to correct such issues, even though there are some grammatical errors.
In the second, third and fourth example, we see that the ML+BPG bot is able to take context into
consideration well when responding. For example, the customer asks for oriental/Mexican/Italian
food. While the ML bot doesn’t take this into consideration, the ML+BPG bot is able to provide
relevant answers. However, in the third example, the name of the restaurant suggests that the food
might be Indian and not Mexican. In the final example of Table 2 the customer asks a direct ques-
tion about smoking. The ML bot provides an irrelevant answer where as the ML+BPG bot directly
responds to the question.

In some examples, the ML bot had a tendency to produce sentences that were grammatically correct
but nonsensical, sensible but grammatically incorrect, or just complete gibberish. The first three
examples of Table 3 present such cases. Occasionally the opposite happened. The last example of
Table 3 is one such instance.
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Customer: Hi there, I’m looking for a restaurant recommendation.
Agent: How many in your party?
Customer: 5, including children.

ML: How many people will be joining you? [0]
ML+BPG: That is a fun size, and what is your budget joining you? [1.5]

...
Customer: Hey... Sorry, it’s the anniversary of my wife’s death. I always do
oriental tonight.
Agent: I’m sorry to hear that. I will do my best to find just what you need.
Customer: Thank you very much.
Agent: What kind of budget are you looking at?
Customer: Doesn’t matter... $100 sounds like a good number.
Agent: Will it be just you, or are others going to join you?
Customer: It’s just me tonight, but if you are off soon I wouldn’t mind a
friendly ear. No pressure.

ML: What type of budget are you looking to stay within? [0.33]
ML+BPG: How about: Café Hungry <UNK> ? They serve sea American to oriental
on site such? [1.33]

Customer: I would love to find a great Mexican restaurant!
Agent: Great, and will anybody be joining you?
Customer: There will be a total of 3 of us.
...
Customer: Could you find me a place with outdoor seating?
Agent: How about: The Painted Burrito. They serve Mexican food.
Customer: Eh, I’ve heard that one isn’t great. Can you please suggest another?

ML: How about: The Hungry .w seafood restaurant? they serve sea and
American food. [0.33]
ML+BPG: I am happy to, one moment. How about: Diva Indian Bistro Boston
bar? They serve Mexican food. [1.67]

Customer: Hello, I’m looking for a restaurant.
Agent: I can help! Please tell me what kind of foods you most enjoy. I see
you are in the Cambridge area.
Customer: I would like a restaurant that serves Italian food.
Agent: Are you looking for something a little less expensive or are you
looking for a high end restaurant?
Customer: I am within a budget, 20 to 50 dollars.
Agent: I highly recommend The Redhouse Restaurant. It serves ...
Customer: Is there another restaurant? the restaurant would also need to host a
party size of 5 people.

ML: How about: Amuse? They serve French and American food. [0]
ML+BPG: How about: Ocean prime - Boston Seaport? They serve sea, American
and Italian food. [2]

...
Agent: How about Cafe at Taj Boston?
Customer: Oh, I just ate there last night. Anything else?
Agent: Try Mela Restaurant at 578 Tremont St. Anything else I can help you
with today?
Customer: That sounds nice. Do they allow smoking?

ML: This sure is within your budget for all. [0.5]
ML+BPG: No. [1.5]

Table 2: Some qualitative results on the AMT experiment using restaurant data. In each cell, the text in
black/grey show the history of a conversation between the customer and a human agent. The dots . . . mean
that the part of the conversation history is hidden. The blue response is by the bot trained using maximum
likelihood (ML) alone. The red response is by the bot improved with BPG after ML. The numbers on the right
of the blue/red responses are the average scores each response received from 2-3 AMT workers.
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Agent: How may I help you?
Customer: I’d like to find a French restaurant.
Agent: Do you have a budget in mind?
Customer: Between $50 and $75.
Agent: How many will be in your party?
Customer: Just me.

ML: And how will you be dining? [0]
ML+BPG: How will you be traveling to the restaurant? [2]

Agent: Hello, how may I help you?
Customer: We are kinda hungry, any suggestion in mind?
Agent: What type of cuisine do you like?
Customer: I want them Americano food.

ML: Very evening. Will you be dining alone? [1]
ML+BPG: Excellent choice. How many people will be in your party? [2]

Customer: I’d like to find a good local restaurant.
Agent: What type of cuisine would you like?
Customer: I have a hankering for Indian curry.
...
Agent: Will you be needing parking?
Customer: We’ll be driving altogether, so yes.

ML: Thank you for 1. How about: T. w your curry this place should be
dining? [0]
ML+BPG: How about: The Maharaja? They serve Indian and American food. [2]

Agent: How can I help you today?
Customer: I would like a restaurant recommendation.
Agent: Okay what type of resturant?
Customer: Chinese would be great.
Agent: Who will be dining, how will you be travelling?
Customer: Just me and by bus.

ML: Okay, thanks. Do you have a budget in mind? [2]
ML+BPG: Do you want a wonderful place evening, or whats your party adults,
and a place. [0]

Table 3: Qualitative results on the AMT experiment using restaurant data, continued. See caption under
Table 2 for more details.
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