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Abstract

Tachycardia is a faster than normal heart rate at rest. In general, a resting heart rate
over 100 beats per minute is accepted as tachycardia in adults [1]. While hospital-
ized patients can develop tachycardia from various benign clinical settings, some
tachycardia events in the intensive care unit (ICU) could lead to cardiorespiratory
instabilities such as shock and multi-organ hypoperfusion (lack of oxygenated
blood flow) resulting in significant morbidity and mortality [2]]. It is one of the
most common types of instability in intensive care that happens before hypotension
or organ failure. It is also one of the initial compensatory mechanisms to hypoxia
and is one of the first measurable compensatory mechanism to shock. While most
of ICUs are well-equipped to manage tachycardia, the event is not easily managed
in majority of patients in a timely manner. This project aims to design and apply
machine learning models that predict whether tachycardia will occur based on
continuous bed-side monitoring data. It is intended to issue early warnings to
enable earlier intervention and potentially prevent catastrophic events. The ultimate
benefit will be increased survival rate among ICU patients.

1 Introduction

Tachycardia is a clinical phenomenon referring to a faster heart rate above the normal upper limit. In
normal adult at rest, it is usually defined as heart rate greater than 100 beats per minute [1]]. While
hospitalized patients can develop tachycardia from various benign clinical settings, some tachycardia
events in the intensive care unit (ICU) could lead to cardiorespiratory instabilities such as shock and
multi-organ hypoperfusion (lack of oxygenated blood flow) resulting in significant morbidity and
mortality [2]. Notably, tachycardia associated with shock and cardiorespiratory instability events has
following characteristics, such as:

e one of the most commonly recognized findings in ICU patients;

e one of the initial compensatory mechanisms for intravascular volume depletion;

e one of the first measurable compensatory mechanisms to hypoxia or organ deficiency.
Critically ill patients with underlying cardiorespiratory comorbidities could have low reservoir in

managing acute volume or pressure changes in their system with impaired elastance and contractility,
and prone to develop tachycardia. In some cases, neurohormonal and metabolic triggers along with
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vulnerable neural conduction system in myocardium can result in tachyarrhythmias (tachycardia with
irregular ventricular response) that can be deleterious within a few minutes if untreated promptly [3].

Given the high risk of subsequent instability following tachycardia among critically ill patients, the
development of prediction algorithm and associated risk score for tachycardia would enable timely
identification and preemptive management of the high risk group, and enable better overall outcomes.

While most of ICUs are well-equipped to manage tachycardia, the event is not easily managed in
majority of patients in a timely manner. This project aims to design and apply machine learning
models that predict whether and how soon tachycardia will occur based on continuous bed-side
monitoring data. It is intended to issue early warnings to enable earlier intervention and potentially
prevent catastrophic events. There has been previous work on predicting atrial fibrillation [4][S[][6],
but no significant results have been achieved on the task of tachycardia detection and prediction.

The paper is organized in the following way: Section [2| gives details about the database used for
training and testing the model, describes how controls and cases were selected and also what features
were extracted for the prediction; Sections [3and [ talk about the experiments and analysis of the
results; Section [5 gives an outline of possible future works to pursue along the path.

2 Methods

In this project, the main task is to identify records of time series that include signs of tachycardia and
records that do not show these signs, and then perform classification based on these time series. Once
we have trained a model that can classify time series with a reasonable accuracy, we would be able
to apply the model on records of vital sign measurements and predict if tachycardia will occur in
monitored patients. The data sets, labels and features used for the classification task, and the setup of
the experiments are described below.

2.1 Datasets

The MIMIC II (Multiparameter Intelligent Monitoring in Intensive Care) Databases contain physio-
logic signals and vital signs time series captured from patient monitors, and comprehensive clinical
data obtained from hospital medical information systems for Intensive Care Unit (ICU) patients. Data
were collected between 2001 and 2008 from a variety of ICUs in a single tertiary teaching hospital [7].
The database contains the MIMIC II Clinical Database and the MIMIC II Waveform Database, and
all databases are thoroughly de-identified (all personally identifiable information has been removed
and all dates have been changed).

Records in the MIMIC II Clinical Database are clinical data recorded from bedside workstations as
well as hospital archives [7]], which are relatively discrete. The MIMIC II Waveform Database on the
other hand, contains numeric time series of physiologic data, and hence can potentially carry timely
information useful for the task of prediction. Records of continuous high-resolution physiologic
waveforms and minute-by-minute numeric time series of physiologic measurements from the database
are the major source of data used for this tachycardia prediction project.

2.2 Features
2.2.1 Feature Name Conversion

The temporal features extracted from the raw data are heart rate (HR), blood pressure (ABPSys,
ABPDias, ABPMean), respiratory rate (RR) and arterial oxygen saturation (SPO2), which are all
clinically significant features indicating the condition of a patient.

In the MIMIC II database, each record of time series has a slightly different naming convention. The
records were processed according to the schema in Table[I] so that the naming of these features are
consistent across all the time series used in our experiments.

Note that the use of symbols ABPs and NBPs are mixed together in some records, so the conversion
was based on the fact that the values always follow the order ABPSys > ABPMean > ABPDias.



Feature Name

raw data processed data

HR HR heart rate
PULSE

ABPSys, NBPSys ABPSys blood pressure

ABPDias, NBPDias ABPDias

ABPMean, NBPMean ABPMean

ABP.1, NBP.1

ABP.2, NBP.2

ABP.3, NBP.3

ABP, NBP

RESP RR respiratory rate
RR

SPO2 SPO2 arterial oxygen saturation
SAO2

Table 1: Schema for feature name conversion in raw data.

2.2.2 Feature Extraction

Based on the 6 raw vital sign measurements extracted from the records of time series, further feature
extraction step was performed. A set of the most common features used in time series classification
were selected for the task of prediction over a 30-minute time window. The choice of the length of
this time window will be explained later. The features are described in more details in Table[2]

2.3 Labels

There are a total of 2808 patients in the waveform data records, where each patient is associated with
multiple records of time series. Records in the database have different frequencies, where some of
them have recorded numerical values every 60 seconds, and some every 1 second. In order to keep
the time granularity consistent, we only used records with time interval of 1 second. The way we
defined controls and cases is described in the following sections.

2.3.1 Definitions

In each record of time series, a tachycardia event is defined as any time interval where the heart rate
is at least 130 times per minute and a tachycardia episode is defined as a set of tachycardia events
where every event is no more than 30 minutes apart, as shown in Figure[T]

Less than 30 minutes apart

 Em.

Event | Event 2 Event 3  Evént 4 time

| Episode |
(minEpT = 5 mins)

Figure 1: An example of a tachycardia episode.



Feature

Detail

Explanations

mean_spo2
mean_1r
mean_hr
mean_abpsys
mean_abpdias
mean_abpmean

mean values

sd_spo2
sd_rr
sd_hr

standard deviations

reg_spo2
reg_rr

reg_hr
reg_abpsys
reg_abpdias
reg_abpmean

coefficient of first-order regression

fft_spo2
fft_rr
fft_hr

fast Fourier transform

acs_spo2
acs_IT
acs_hr

autocorrelation

The correlation of a signal with
itself at different points in time.

aes_spo?2
aes_IT
aes_hr
ses_spo2
ses_1r
ses_hr

approximate entropy

sample entropy

aes reflects the likelihood that
similar patterns of observations will
not be followed by additional
similar observations.

density_spo2
density_rr
density_hr

density of the records

last_Smin_mean_spo2
last_Smin_mean_rr
last_Smin_mean_hr

mean values in the last 5 minutes

last_5min_reg_spo2
last_5min_reg_rr
last_Smin_reg_hr

coefficients of first-order
regression in the last 5 minutes

last_10min_mean_spo2
last_10min_mean_rr
last_10min_mean_hr

mean values in the last 10 minutes

last_10min_reg_spo2
last_10min_reg_rr
last_10min_reg_hr

coefficients of first-order
regression in the last 10 minutes

The conditions of the patient in the
last 5 minutes and last 10 minutes
can deteriorate quickly, so the mean
values and the coefficients of
first-order regression reflect how
fast the conditions worsen.

Table 2: Features used for prediction.

We also define the duty cycle of a tachycardia episode E as

duty cycle =

Y - event, c p duration of event;

total duration of F/

which defines a concept of the density of a tachycardia episode. A tachycardia episode with higher
duty cycle value therefore tends to consist of tachycardia events that are more persistent and/or closer

to each other.

For cases where the episode does not last long enough or tachycardia events are merely occasional,
these episodes are less significant as compared to cases where the episode persists for a long period
of time. In our experiments, the former cases were omitted. We use a duty cycle of at least 0.1 and 5
minutes as the minimum duration of an episode to select tachycardia episodes for prediction.



2.3.2 Experiemnt I

During patient stays in the ICUs, there can be multiple tachycardia episodes based on our definition.
One way to define the prediction problem is to select all tachycardia episodes as cases and any patient
stay without any tachycardia episode as controls.

Since every single tachycardia episode is potentially dangerous for a patient, we can treat each
episode as equally important when performing prediction. Using this definition of the experiment, we
hope to differentiate patients who will develop tachycardia during their stay in the ICUs from those
who will never have tachycardia. Following this definition, we selected 787 tachycardia episodes in
total from all the records as the positive group.

Right after the admission of patients into the ICUs, the conditions of a patient might be unstable.
Therefore, shorter stays would be less desirable to be included in the control group, in the sense that
they would contain less information about the stabilized conditions of patients. At the same time, to
keep the number of cases and controls roughly the same, setting a threshold on the minimum length
of the record is also helpful. After comparing different choices of the threshold, a minimum of 4
hours’ record is set as the threshold for selecting the controls, which gives us 707 records of control
time series in total.

2.3.3 Experiment I1

Another way to define the prediction problem is to select only the leading tachycardia episodes during
each patient stay as cases and any patient stay without tachycardia episode as controls.

Although each tachycardia episode can lead to instabilities in ICUs, a patient will have a higher
probability of developing subsequent tachycardia episode once the first episode occurs. So it will be
clinically more useful to predict the first tachycardia episode than to predict any of them. Based on
this definition, there were 240 tachycardia episodes found in all the time series as cases. Another 240
time series were randomly selected from the 707 records mentioned above as controls.

One observation is that the heart rate of a patient remains relatively higher than normal after the first
tachycardia episode, so predicting the first tachycardia episode during a patient stay is in general a
more difficult task as compared to predicting subsequent episodes. Therefore, models trained under
this setting should perform at least the same when used to predict all tachycardia episodes, if not
better.

2.3.4 Experiment II1

We can also select both controls and cases from time series that contain some tachycardia episodes.
But controls should be way ahead of any of those episodes and cases should be chosen just before the
onset of tachycardia episode.

This is a slightly different task from previous definitions. Patients who will develop tachycardia
might have abnormal heart rate during their entire stay in ICUs, so being able to predict how soon
tachycardia will occur based on records of time series would also be useful when we are performing
tachycardia prediction. In this way, it would be possible to give preemptive treatment to those patients
who we suspect that will develop tachycardia before its onset.

In order to make sure that the control time series do not contain information from cases and also to
have a reasonable amount of time series for our experiments, we required that the control part and
case part must be at least 15 minutes apart. A total of 450 time series were selected, where half of
them are cases and another half are controls.

2.4 Prediction Horizons

The records of time series span the whole stay of each patient in the ICU. In order to learn predictive
models from this data, we prefer using relatively short interval of time to produce inputs, so that
monitoring can begin shortly after admission. A 30-minute time window of the time series contains
enough information of a patient based on empirical evidence.

When we are training the model, this 30-minute time window can be set right before the onset of
tachycardia. But since tachycardia is just a faster heart rate than normal, heart rate in the 30-minute



time window right before the onset can be already higher. Models trained this way are very likely
to pick up less information apart from features related to heart rate. Also, a model that can predict
tachycardia long ahead of its onset would be more useful than a model that can only accurately make
the prediction right before it happens.

Therefore, we trained several models with different horizons of prediction n = 0, 1, ..., 30 minutes —
by setting this 30-minute time window n = 0, 1, ..., 30 minutes before the onset of tachycardia to
select a reasonable gap between time of prediction and tachycardia. All models were validated using
10-fold cross validation, which specifically avoided assigning data from the same patient stay to both
training and testing partitions in the same iteration.

2.5 Models

We used logistic regression with Lasso and random forest models to perform the task of classification.

2.5.1 Logistic Regression with Lasso

Logistic regression model is used here as baseline classifier to perform tachycardia prediction. With
Lasso (or ¢; regularization) [8]], it can be robust to over-fitting and include feature selection.

2.5.2 Random Forest

Random forest [9] has been applied in several previous clinical researches. The model tends to be
robust to over-fitting problems and do not expect linear features or even features that interact linearly
as compared to regression models. Since missing records are common in the numeric data, the
implementation of random forest model we used can handle missing values in the training data.

3 Results

3.1 Analysis

As shown in Figure 2 and Figure 3] the performance of random forest model systematically if not
significantly outperforms the baseline classifier, logistic regression with Lasso. Note that the bars in
the figures represent the confidence interval. Therefore, further analysis will focus on results given by
random forest models.

Observing Figure ] and Figure 5] with different choices of the parameter for horizon, we can observe
that the accuracy and Area Under the Receiver Operating Characteristic Curve (AUC) decrease, as
the horizon shifts away from the onset of tachycardia. Again the bars in the figures represent the
confidence interval. This trend holds for all three different settings of experiments. Hence there is a
tradeoff between high accuracy and making the prediction sooner.

The figures also confirm our intuition that predicting any tachycardia event is the easiest task, and the
other two experiments that aim to predict the first tachycardia event always achieve lower accuracies
and AUCs. By comparing the latter two experiments, it is obvious that the way we chose the control
group greatly affected the performance of the model. Using cases and controls from the same time
series is the most difficult one. But even with the last setting of the experiment, we still have a
reasonable 10-fold cross validation accuracy of 0.8667 and AUC of 0.7290, enabling clinically useful
forecasting of tachycardia even at early stages of ICU stays, which is very significant considering the
current practice alternative of not having such indication at all.

3.2 Feature Comparison

By observing the top 15 features of the trained random forests models in Table[3] it is easy to see that
as we moved the time window away from the tachycardia event, more features based on respiratory
rate (RR) and arterial oxygen saturation (SPO2) were ranked higher in prediction. This confirms our
intuition that the model would pick up less information apart from features related to heart rate if the
time of prediction is set too close to the onset of tachycardia.

Figure [6] and Figure [7] show the accuracies and AUCs on experiment I with different choices of
features. One set of models were trained using all 42 features, another set were trained using all
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Figure 2: Accuracy of logistic regression and random forest trained for different horizons.
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Figure 3: AUC score of logistic regression and random forest trained for different horizons.

features based on the heart rate raw features and the last set used all features except features based on
heart rate. The heart rate features are clearly the most important set of features in the prediction task,
and using this set of features ensures the performance of our model. Hence again, there is a tradeoff
between high accuracy and practically useful generalization of the model.

3.3 Risk Trajectory

We extracted the same set of features over a moving 30-minute time window for each time series
every 1 minute to form a time series of features. In each of the 10 cross validation folds, we used the



—f— allevents
—f— first event
0.9 same patient
0.8
=, 0.7
[=) =
E J
E 4
o
1= L
0.6
0.5
0.4
0.3 1 L L 1 )
-30 -25 -20 -15 -10 -5 v]

prediction horizon (minutes)

Figure 4: Accuracy of models trained for different experiments.
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Figure 5: AUC score of models trained for different experiments.

trained model to compute tachycardia risk scores for time series in the testing partition. This can be
viewed as estimating the likelihood of having tachycardia. We then separated the time series into two
disjoint sets for controls and cases respectively, and derived the mean tachycardia risk scores at each
time stamp for both sets to make comparisons. The risk trajectories are plotted in Figure 8] [0 and [I0]
(trained using all features), with the shaded areas representing the confidence interval. The x-axis
denotes the time away from the onset of tachycardia in minutes and y-axis shows the mean risk score
of having tachycardia.
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Figure 7: AUC score of models trained for different choice of features.

As we can see, for the first two settings of the experiment, the risk trajectories escalate as the time
approaches the onset of tachycardia for cases, but they remain relatively unchanged for the control
group. Also note that the curve for controls always lies below risk score of 0.5 and the curve for cases
is above 0.5. The trajectories for models trained for various prediction horizons are all capable of
showing this trend.

For the third setting of the experiment, since we selected controls to be long ahead of the cases, we
can not align the time before the onset of the tachycardia for controls and cases the same way we did
for the previous two settings. Hence we used the lift scores instead of the risk scores. Although score
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last_10min_reg_hr
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mean_hr

mean_rr

sd_hr

ses_hr

reg_hr
last_10min_mean_rr
fft_rr
last_10min_reg_spo2
last_Smin_mean_rr

last_Smin_mean_rr
mean_hr

mean_rr

sd_hr

ses_hr
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aes_hr
mean_abpmean
sd_spo2
last_10min_mean_rr

reg_hr

last_10min_mean_hr
last_10min_reg_hr
last_ Smin_mean_hr
last_Smin_mean_rr
mean_hr

sd_hr

ses_hr
mean_abpmean
reg_hr

mean_rr
last_Smin_reg_hr
last_10min_mean_rr

last_10min_mean_rr
last_5min_mean_hr
last_5min_mean_rr
mean_hr

sd_hr

ses_hr

ses_spo2

mean_rr

fft_rr

reg_rr
last_10min_reg_hr
last_Smin_reg_hr

0.5

risk score

0.4r

Table 3: Top 15 features with different horizons.
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Figure 8: Risk trajectory of experiment I with prediction horizon ahead of the onset of tachycardia.

is very close to 1 at the beginning, the distinction becomes rather significant at the very end, which
still leaves us about 15 minutes before the onset of tachycardia.

4 Conclusions

Based on the results, we can see that our models can identify who is going to have (the first episode of)
tachycardia with high confidence. It could lead to potential high utility in triage to inform monitoring
and health care resource allocation in the ICUs. Our models can confidently predict the incoming
occurrence of tachycardia a substantial amount of time ahead of its onset in those patients who are at
risk of developing it and could potentially trigger preemptive treatment.

Our results suggest a great potential impact in clinical settings, and can help improve quality of care
and patient outcomes while mitigating costs of managing health of patients in intensive care.
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Figure 9: Risk trajectory of experiment II with prediction horizon ahead of the onset of tachycardia.
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Figure 10: Risk trajectory of experiment III with prediction horizon ahead of the onset of tachycardia.

5 Future Work

In clinical research, some demographic features including age, gender or weight as well as medical
history are also important drivers of patients’ conditions. Given the fact the random forest model
is able to handle these mostly categorical features, we plan to include the available demographic
features into the model and compare the performance to the current models. They may potentially
boost the accuracy and AUC scores.
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Hypotension after tachycardia exposes patients to greater danger during their stay in the ICUs, so
we will revise the selecting criteria for controls and cases groups to further predict co-occurrence of
hypotension and tachycardia. This will be a valuable research topic related to tachycardia predication.
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