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Abstract

Background. Single-cell RNA-Seq is a new technique that can measure gene ex-
pression levels in individual cells. We would like to use single-cell RNA-seq data to
learn genetic regulatory networks. This is a natural task for causal-model structure-
learning algorithms, which aim to learn the causal relationships between the measured
variables. Causal algorithms perform poorly in high dimensions unless the data are
Gaussian, and single-cell RNA-Seq data are non-Gaussian. However, the “nonpara-
normal SKEPTIC” method extends causal algorithms to high-dimensional Gaussian
copula distributions, which may better approximate single-cell RNA-Seq data.
Aim. To learn a genetic regulatory network by applying the SKEPTIC to real single-
cell gene expression data, validating against known regulatory interactions.
Data. 24,175 gene expression levels in 934 mouse embryonic stem cells were measured
using inDrop single-cell RNA-seq. 500 high-variance genes, including 120 transcrip-
tion factors, were selected for network recovery.
Method. The covariance matrix over the single-cell RNA-Seq data was estimated
using the SKEPTIC, and input to causal algorithms, producing a graph over all mea-
sured genes. The performance was evaluated on (a) a set of known transcription factor
binding relationships from ChIP-Seq studies, and (b) regulatory effects learned from
loss-of-function/gain-of-function experiments.
Results. Previous studies did no better than chance at identifying adjacencies for
eukaryotic organisms. Applying the SKEPTIC to single-cell data and using FGS for
structure learning, we identified adjacencies with 22.5% precision, a 14× improvement
over chance (p < 10−45).
Conclusion. Single-cell RNA-Seq data may be used for automatic, accurate recovery
of the genetic regulatory network. These networks help to organize everything from
embryonic development to cancer progression. Thus, these methods can be applied
in both developmental genetics and personalized cancer medicine.
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1 Introduction

Genetic regulatory networks govern cellular replication, differentiation, and much of
cellular response to stimuli. They encode causal relationships between variables, not
just predictive relationships. Causal relationships tell us about the consequences of
intervening in the system. If Gene A regulates Gene B, then if we perform an exper-
iment to knock out or overexpress Gene A, we should see a change in the expression
of Gene B. Predictive information only licenses inferences about data drawn from
the same distribution as our training data, whereas causal information allows us to
make inferences about different distributions: distributions after intervention.

Experiments are the ideal way to learn causal relationships, but they are expen-
sive. To learn an entire genetic regulatory network would require experimenting on
all combinations of genes. This is infeasible: even E. coli has ∼4,300 genes. It would
be helpful to have a method for learning causal relationships from observational data,
or prioritizing the experiments most likely to be informative.

Learning causal relationships from observational data has been an active area of
research in machine learning since the late 1980s (Spirtes et al., 1989, 2000; Pearl
et al., 1991; Pearl, 2009). In the context of genetic regulation, there are many
challenges to inferring causal relationships:

1. Cyclic causal structure (e.g. A may regulate B, and B regulate A)
2. Many unobserved confounding variables, both exogenous (e.g. environmental

features) and endogenous (e.g. post-transcriptional regulation)
3. Small sample sizes
4. High-dimensional variable sets
5. Measurement noise
6. Aggregated data (microarrays can only measure the average expression level

of each gene across thousands of cells)

Aggregated data is particularly problematic. Chu et al. (2003) argued that there
is no reason to think that we can learn causal structure from microarray data us-
ing standard causal inference methods. Conditional independence relationships that
hold in the distribution over individual cells are not guaranteed to hold in the dis-
tribution over aggregates of cells if the dependencies between variables are nonlinear
(as they are for many genetic regulatory mechanisms). Conditional independences
are crucial to inferring causal structure.

Happily, a new technique produces non-aggregated measurements. Single-cell
RNA-seq uses quantitative seqencing technology to measure the number of mRNA
transcripts of each gene within an individual cell (Klein et al., 2015). Measuring
gene expression at the single cell level allows us to observe inter-cell variation that
would otherwise be obscured (Wills et al., 2013). Also, measuring individual cells
makes it relatively cheap to increase the sample size, an important bonus in this
high-dimensional learning problem.
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Algorithms for learning causal relationships between variables (henceforth “causal
search algorithms”) have been scaled to high-dimensional problems (Maathuis et al.,
2009; Colombo and Maathuis, 2012) under the assumption of multivariate Gaus-
sianity. However, single-cell RNA-seq data are non-Gaussian. They may be better
modeled by Gaussian copula or “nonparanormal” distributions. Liu et al. (2012)
have developed the SKEPTIC, an efficient method for learning nonparanormal dis-
tributions. Harris and Drton (2013) showed that the SKEPTIC allows us to learn
causal relationships from nonparanormal data.

Evaluating causal network reconstruction is more difficult than evaluating pre-
dictive algorithms, because we are trying to learn the effects of performing inter-
ventions, which would change the distribution of the data. It is not possible to use
within-sample risk to estimate out-of-sample risk. Because the true genetic regu-
latory network is unknown, we must use a “silver standard” – a subset of the true
causal relationships, learned from experiments – and evaluate how well the algorithm
recovers those relationships.

2 Problem and Approach

We aim to set a benchmark for genetic regulatory network construction from single-
cell RNA-seq data. We will perform a rigorous evaluation against known regulatory
relationships from ChIP-chip/seq and Loss Or Gain Of Function (LOGOF) experi-
ments, and compare our results to those of related studies. We will also test whether
using the nonparanormal SKEPTIC improves performance.

3 Background & Related Work

3.1 Causal modeling

We use directed graphs to represent causal relationships between variables – e.g.
“A causally influences B” is represented as A → B. Readers unfamiliar with the
causal graphical modeling literature may refer to the Appendix, Section 13 for a
short summary of key results and terminology. We use the following notation:

Notation and definitions. A directed graph G = (V,E) consists of a vertex set,
V , and an edge set E. The edges 〈v1, v2〉 ∈ E are ordered pairs of vertices. We
usually work with directed acyclic graphs (DAGs), which contain no directed cycles.

The vertices or “nodes” represent random variables. The set of nodes adjacent
to a node v in G are called neighbors(v). Of the neighbors, those with edges into
v are called parents(v), and those with edges out are called children(v). If there is
a directed path of any length A → · · · → B, then A is an ancestor of B and B is a
descendant of A. A V-structure or “unshielded collider” is a triple of nodes A,B,C
such that A is a parent of C and B is a parent of C, but A and C are not adjacent.
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In a causal graphical model, an edge A → B represents the statement that
manipulating A will change the distribution of B, all else equal. That is to say,
there are at least two values, a 6= a′, two distributions, p(B) 6= p′(B), and some set
of values of the variables V \{A,B} = v, such that if one were to intervene on A and
set its value to either a or a′, while holding all other variables V \ {A,B} constant
at v, the distribution of B would be p(B) or p′(B), respectively.

In DAGs, the d-separation criterion (see Section 13.2) gives a complete list of the
independences implied by the Causal Markov Assumption (see Section 13.1).1 The
set of DAGs that entail the same conditional independences as a DAG G is called
the Markov Equivalence Class (MEC) of G. The MEC of a DAG can be represented
by a Complete Partially Directed Acyclic Graph (CPDAG). If we marginalize some
nodes in a causal DAG, we can represent the causal relationships among the remain-
ing nodes using a Maximal Ancestral Graph (MAG). The MEC of a MAG can be
represented by a Partial Ancestral Graph (PAG) (see Section 13.4).

Causal search algorithms. This study will compare four causal search algorithms:
PC-stable, FGS, FCI, and GFCI. Table 1 summarizes the differences between them.

Assumes: PC-stable FGS FCI GFCI
Allows latent
variables?

No; returns
CPDAG

No; returns
CPDAG

Yes; returns
PAG

Yes; returns
PAG

Particular
distributions?

Nonparametric Gaussian or
multinomial

Nonparametric Gaussian or
multinomial

Faithfulness? Yes Weaker2 Yes Yes

Table 1: Different assumptions made by four causal search algorithms

PC-stable (Colombo and Maathuis, 2012) is a variant of the PC3 algorithm (Spirtes
et al., 2000). PC has two phases: Fast Adjacency Search (FAS) and Orientation.

FAS begins with a complete undirected graph and performs a series of conditional
independence tests. When nodes Xi and Xj are found conditionally independent
given some set S, the edge between Xi and Xj is removed. The trick is the order of
tests: unconditional independences are tested first, then first-order conditional inde-
pendences, etc. The sets S are chosen from subsets of neighbors(Xi) ∪ neighbors(Xj),
because by the Causal Markov Condition (Section 13.1), a node’s parents screen it
off from its non-descendants. As edges are removed, the set of valid conditioning
sets shrinks, reducing the number of future tests. This introduces order-dependence:
the results of earlier tests determine the valid conditioning sets of later tests. Unlike

1 ↑This is not true in general for cyclic directed graphs, except in the special case where the
models are linear-Gaussian and the data are from the equilibrium distribution (Richardson, 1996).

2 ↑FGS assumes that the graph with the highest score is correct. This is weaker than faithfulness
but more restrictive than minimality.

3 ↑‘PC’ just stands for ‘Peter and Clark’, after Peter Spirtes and Clark Glymour.
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PC, PC-Stable only removes edges after all tests of a given conditioning set size have
been completed, reducing the order-dependence.

Both PC and PC-stable then orient edges by identifying V-structures, and ori-
enting all the other edges that cannot be flipped without creating additional V-
structures. In the limit, both PC and PC-stable return the true CPDAG, but in
practice PC-stable performs much better in high-dimensional problems. PC is non-
parametric as it can be used with any conditional independence test. However,
no efficient, accurate, high-dimensional nonparametric independence tests exist, so
parametric tests are required for high dimensional problems.

FGS. Fast Greedy Search (FGS) is a variant of Greedy Equivalence Search (GES)
(Chickering, 2002; Chickering and Meek, 2002). GES has two phases: forward and
backward. The forward phase starts with an empty graph, and proceeds by adding
whichever edge most improves the BIC score. After each addition, the Markov
Equivalence Class of the model is computed, then the next highest-scoring edge is
added. GES thus moves through a space of MECs, optimizing the BIC. Once the
forward phase reaches an optimum, the backward phase starts removing edges. Some
edges added in the forward phase may be redundant, and removing them improves
the score because BIC penalizes complexity. Two phases suffice: in the limit, GES
finds the correct CPDAG. FGS is a variant of GES that achieves dramatic increases
in speed via some modifications to the data structures (Ramsey, 2015).

FCI. Fast Causal Inference (FCI) is a constraint-based search similar to PC, but
relaxing the assumption that there are no latent variables (more precisely, the as-
sumption of “Causal Sufficiency” – see Section 13.1) so it outputs a PAG instead of
a CPDAG. Like PC, FCI begins with the Fast Adjacency Search, but has a more
complex orientation phase. For full details regarding FCI, see Spirtes et al. (2000).

GFCI. Greedy Fast Causal Inference (GFCI) is a hybrid search combining FGS
with FCI. It begins by running FGS, then uses FCI as a post-processor on the
output of FGS. FCI performs tests which may cause it to remove some edges and
reorient others, turning the CPDAG produced by FGS into a PAG. GFCI is a new
algorithm; details are currently documented in unpublished work by Peter Spirtes.

3.2 The nonparanormal distribution

Liu et al. (2009) have extended methods for learning Gaussian graphical models to
nonparanormal distributions. The nonparanormal includes distributions that can
be transformed to multivariate normal distribution over X by applying a set of
monotone functions g to X. Liu et al. (2012, definition 2.1, page 4) define it:

Definition 3.1 (Nonparanormal). Let g = g1, · · · , gd be a set of monotone uni-
variate functions and let Σ ∈ Rd×d be a positive-definite correlation matrix with
diag(Σ) = 1. A d-dimensional random variable X = (X1, · · · , Xd)

T has a nonpara-
normal distribution X ∼ NPNd(g,Σ) if g(X) := (g1(X1), · · · , gd(Xd))

T ∼ Nd(0,Σ).
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The nonparanormal family is more flexible than the Gaussian, encompassing
bimodal and skewed distributions, etc. However, like the Gaussian, the dependence
structure among the variables is linear, making it efficient to learn in high dimensions.
We can learn graphical models from nonparanormal data without explicitly learning
the set of functions g, by applying the nonparanormal SKEPTIC.

The SKEPTIC. Liu et al. (2012) developed the “nonparanormal SKEPTIC”.4 The
SKEPTIC estimates Σ, using nonparametric estimators of correlation (see Section
5). PC, FGS, FCI and GFCI all operate directly on Σ̂, so we can learn the causal
structure without learning ĝv(X). Harris and Drton (2013) used the SKEPTIC as
the input to PC, and showed that it allowed for accurate causal search on synthetic
nonparanormal data. We follow the same approach: we estimate Σ̂ using the SKEP-
TIC, and use that as the input to PC, FGS, FCI and GFCI. We also compare this
to using the Pearson correlation matrix.

In reality, transcriptional regulatory networks do not follow a nonparanormal
distribution. Interactions between transcription factors are frequently combinatorial
rather than additive (Garber et al., 2012). However, the nonparanormal distribution
may still be a better approximation than the Gaussian, allowing us to learn some of
the regulatory structure while scaling well to high dimensions.

3.3 Genetic regulatory networks

When a gene is expressed, it is first transcribed onto mRNA, which may then be
translated into protein. Gene expression is regulated at the level of transcription,
translation, and post-translational modifications of the proteins. Due to the ease of
measuring mRNA, we focus on transcriptional regulation. Transcription is regulated
by proteins called Transcription Factors (TFs) and chromatin modifiers. TFs bind to
DNA at particular locations and either activate or repress transcription. Chromatin
modifications can make DNA more or less accessible to TFs and the transcriptional
machinery. We use the following sources of information to validate our models:

ChIP-chip/seq. Chromatin Immuno-Precipitation (ChIP)-chip/seq experiments
identify physical interactions between proteins and DNA. If TF A binds to the pro-
moter region of Gene B, we infer that A regulates transcription of B. ChIP-chip/seq
experiments are the best method for learning direct regulatory relationships, and
have been used for network construction (Boyer et al., 2005; Chen et al., 2008; Han-
nah et al., 2011; Gerstein et al., 2012; Beck et al., 2013; Xu et al., 2014) as well as for
validation. However, ChIP-chip/seq results are extremely sensitive to context and
cell type, because transcriptional regulation is likewise sensitive to context and cell
type (Neph et al., 2012). We expect both false positives and false negatives: the TF
may bind to DNA in vitro which is normally not open for binding in vivo, or vice
versa (Ernst and Kellis, 2013); the TF may never detach from a site, so there is no

4 ↑‘Spearman/Kendall Estimates Pre-empt Transformations to Infer Correlation’
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regulatory variation in vivo; or the TF binding may be redundant. This makes the
interpretation of ChIP-chip/seq studies challenging (DeVilbiss et al., 2014).

LOGOF experiments. ‘Loss Or Gain Of Function’ (LOGOF) experiments in-
clude a variety of manipulations, from knocking out a gene entirely, to transiently
increasing its expression. LOGOF experiments are easier to interpret causally than
ChIP-chip/seq experiments. However, LOGOF methods do not allow for holding
the expression level of other genes constant. They can test whether the manipulated
gene is an ancestor of other genes, but not whether it is a direct parent. This makes
validation of the network non-local, a disadvantage compared to ChIP-chip/seq.

3.4 Large-scale evaluations of network construction methods

Constructing Genetic Regulatory Networks (GRNs) from data is an important prob-
lem, and many methods have been applied to it. For reviews, see Blais and Dynlacht
(2005); Cooke et al. (2009). For comparative evaluations of techniques on synthetic
data, see Bansal et al. (2007) and Marbach et al. (2010), and Marbach et al. (2012)
for evaluation on real data. Most studies on GRN construction either construct a
small network (∼5–30 genes; e.g. Hartemink et al. (2001, 2002)) or test only a few
hand-picked causal consequences of the model (e.g. Basso et al. (2005)). To our
knowledge, only four studies have attempted to learn a large GRN from expression
data and evaluated many causal consequences of the model. We would like to achieve
similar or better performance than these four studies. Unfortunately, none of them
allow for direct comparison for all algorithms, as described below.

Faith et al. (2007) constructed a regulatory network of E. coli using publicly
available microarray datasets. They developed the Context Likelihood of Relatedness
(CLR) algorithm, which puts an edge between two genes if the corrected pairwise
mutual information between those genes is above a threshold. CLR cannot orient
edges. Faith et al. (2007) constrained the network so that only TFs could be parents,
ruling out many adjacencies and orienting all edges except those between TFs.

Faith et al. (2007) validated their results against RegulonDB, a database of known
regulatory relationships in E. coli (Salgado et al., 2012). At a precision level of 60%,
CLR had ∼6% recall, whereas relevance networks (the next-best algorithm) only
had ∼5% recall. However, ‘60% precision’ is likely an overestimate. Precision was
only evaluated for edges between genes in RegulonDB. Genes in RegulonDB are
more likely to be involved in transcriptional regulation. CLR inferred 1079 edges,
but only 338 edges were between pairs of genes in RegulonDB; of those 338, ∼202
corresponded to known effects. The true precision could be as low as 202/1079 =
19% or as high as 943/1079 = 87%. Even using Faith et al. (2007)’s standard for
precision, increasing the recall to 10% made precision drop to ∼20%.5

5 ↑Because Faith et al. (2007) don’t report the number of edges estimated at other precision
levels, we cannot adjust these numbers to take into account the genes not included in RegulonDB.
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Marbach et al. (2012) tested many published GRN learning algorithms on data
from E. coli and S. cerevisiae. The gold standard for E. coli was RegulonDB,
and for S. cerevisiae it was a set of ChIP-chip/seq results and regulatory motifs.
Success varied dramatically between species. The Area Under the Precision Recall
curve (AUPR) was far above chance on E. coli data for most algorithms, but none
did much better than chance on S. cerevisiae. There are at least two plausible
explanations: (1) The mechanisms of transcriptional regulation are very different in
prokaryotes like E. coli than eukaryotes like S. cerevisiae; prokaryotic GRNs may
simply be easier to learn. (2) RegulonDB may be a better gold standard than the
ChIP and motif data used for S. cerevisiae.

We cannot directly compare our results to Marbach et al. (2012)’s AUPR scores,
because our algorithms output a single graph, corresponding to a point on the PR
curve. PC, FGS, FCI and GFCI do include parameters that influence the density
of the output network. However, altering these parameters leads PC, FGS, FCI and
GFCI to add and remove edges in unpredictable ways. So while we can recover
something like a PR curve, the interpretation of the “AUPR” is more difficult.

Figure 1: Fig S1 C from Cahan et al. (2014).
Original caption: “Combined AUPR based on
using the 54 ChIP-ChIP/ChIP-seq transcrip-
tion factor binding sites in mouse embryonic
stem cells from the Escape database as a gold
standard.”

Cahan et al. (2014) used CLR (Faith et al., 2007) to con-
struct GRNs, which they then used to evaluate cellular repro-
gramming and directed differentiation protocols. Like Faith
et al. (2007) they only allowed edges out of TFs. The GRN
construction stage was evaluated on real data from mouse
cells, including mESCs, using the ESCAPE database (Xu
et al., 2013) as one of the gold standards. We also used this
cell type and gold standard. Unfortunately, their results are
hard to interpret and are not directly comparable to ours.

Cahan et al. (2014) reported CLR’s improvement over
chance performance at different corrected Z-score thresholds.
As a combined measure of precision and recall, they calcu-
lated the area of a rectangle A×(B−C), where A = precision
of CLR when Z = zi, B = recall of CLR when Z = zi, and
C = recall of CLR when Z = zi+1. They called this rect-
angle the “AUPR”, departing from the literature.6 This area combines an absolute
measure of precision with a relative measure of recall: how much the recall for zi
improved over the recall for zi+1. To estimate performance under chance, Cahan
et al. (2014) repeatedly sampled random graphs with same number of targets per
TF as the CLR graph when Z = zi. For each sampling run r and each zi, they
calculated “AUPR fold improvement over chance”, or A×(B−C)

Ar×(Br−Cr)
. Boxplots of these

scores were the final measure of success. Their results on the ESCAPE DB gold
standard are reproduced in Fig. 1. It is unclear how to interpret these scores. We
present a more natural and principled metric in Section 7.

6 ↑Personal communication, Patrick Cahan, 4/22/2016.
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Maathuis et al. (2010) scored the recovery of ancestral relationships in yeast.
They estimated the size of the causal effects from the observational data by first
learning a GRN structure, then fitting the model. However, PC-Stable returns a
Markov equivalence class of models, leading to multiple estimates of the causal effect.
Maathuis et al. (2010) used the IDA algorithm (Maathuis et al., 2009) to compute
bounds on each causal effect, and ranked all effects according to their lower bounds.

Maathuis et al. (2010) used LOGOF data as the gold standard (Hughes et al.,
2000). Ancestral relationships may be weak; Maathuis et al. (2010) considered the
largest 10% of effects in the gold standard as the ‘true positives’. They reasoned
that the chief use of the ranking would be to help biologists prioritize experiments,
so they only evaluated performance on the top 5,000 ranked effects (0.4% of effects
covered by the gold standard). Results on this subset of effects were very impressive.
Precision is greater than 50% for the top 1000 predicted effects.

The IDA algorithm works for CPDAGs but not PAGs, so we perform a similar
evaluation for PC-stable and FGS, but not FCI nor GFCI.

4 Approach

Methods. We compare four causal search algorithms: (1) PC-stable, (2) FGS, (3)
FCI, and (4) GFCI. We compare two methods of covariance matrix recovery as inputs
to these algorithms: (1) Pearson correlation and (2) the nonparanormal SKEPTIC.

Data. We evaluate the methods on single-cell RNA-seq data from mouse em-
bryonic stem cells (mESCs). We incorporate the constraint that only genes known
to be transcription factors can be parents. For each algorithm, we run it once with
this constraint (“with knowledge”) and once without the constraint (“agnostic”).

Evaluation. We validate the learned networks against two gold standards: (1)
TF-gene interactions from ChIP-x studies, and (2) ancestral relationships from LO-
GOF studies. We treat the known TF-gene interactions as the true GRN, and
evaluate the precision and recall for adjacencies. For orientations, we cannot take
the Markov Equivalence Class of the true network because it is cyclic, so we compare
the learned orientations against the actual orientations in the gold standard network.
We consider the known ancestral relationships to be a set of true effects, and treat
their identification as a classification problem. We use IDA (Maathuis et al., 2009)
to assign a lower bound on each possible causal effect, then use those bounds to
calculate a precision-recall curve for the known ancestral effects.

5 Method

Covariance matrix recovery with the SKEPTIC. We used Pearson correla-
tion and the nonparanormal SKEPTIC to produce two estimates of the covariance
matrix. Liu et al. (2012, page 6) describe how the SKEPTIC can use either of two
nonparametric estimators of correlation, Spearman’s ρ and Kendall’s τ . We use the
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default implementation of the SKEPTIC in the R package huge, which uses Spear-
man’s ρ. Letting rij be the rank of xij among x1j , · · · , xnj and r̄j = 1

n

∑n
i=1 r

i
j = n+1

2 ,
the estimator is:

(Spearman’s rho) ρ̂jk =

∑n
i=1(r

i
j − r̄j)(rik − r̄k)√∑n

i=1(r
i
j − r̄j)2 ·

∑n
i=1(r

i
k − r̄k)2

Liu et al. (2012, page 7) connect Spearman’s rho and Kendall’s tau to Σ using a
lemma from (Kendall, 1948) and (Kruskal, 1958):

Lemma 5.1. Assuming X ∼ NPNd(f,Σ), we have Σjk = 2 sin(π6ρjk) = sin(π2 τjk).

Liu et al. (2012) then use ρ to estimate Σ: Σ̂ρ
jk = 2 sin(π6 ρ̂jk) when j 6= k and Σ̂ρ

jk = 1
when j = k.

Causal network recovery. For all causal search algorithms, we use the most recent
implementation in the Tetrad software package (Ramsey et al., 2015). Tetrad source
code and compiled jars are available from the project’s Git repository. We used the
algorithms PC-Stable, FGS, FCI and GFCI. For PC-Stable, FCI and GFCI, we set
the maximum conditioning set size (the ‘depth’) to 3, and for FCI and GFCI we
constrained the length of the longest inducing path used to orient edges (the ‘max-
PathLength’) to 3 to reduce runtime. We tried several values of the penalty discount
for FGS and GFCI, and the α value for PC and FCI, and chose penaltyDiscount =
15 and α = 10−5 as these produced sparse graphs with decent precision.

To make our results comparable to Faith et al. (2007) and Cahan et al. (2014)’s,
we compared search without background knowledge (‘agnostic’) to search constrained
such that edges were only allowed out of TFs.

6 Data

6.1 Data for network learning

Figure 2: Bivariate plots of genes
Atp6v0e, Hspb1, Stmn2, and Tyw1.

We used a dataset of gene expression levels from 934
mouse embryonic stem cells. Klein et al. (2015) originally
collected this dataset to demonstrate their microfluidics-
based single-cell RNA-seq procedure, ‘inDrop’. Most
single-cell RNA-seq protocols are extremely noisy, be-
cause they measure tiny samples of RNA, which undergo
successive rounds of exponential amplification. InDrop re-
duces noise two ways: (1) linear amplification in the first
round, and (2) by attaching a unique molecular identifier
(UMI) to each mRNA transcript in the first round. Klein
et al. (2015) filtered out amplified noise by counting the distinct UMIs for each tran-
script rather than the total number of transcripts. The large sample size and low
noise make Klein et al. (2015)’s dataset ideal for network reconstruction.

9
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Of the 24,175 measured genes, Klein et al. (2015) identified 2047 genes with
significant variance, using a false discovery rate cutoff of 0.10. To reduce runtime,
we limited network reconstruction to the 465 highest variance genes, plus another
35 genes within the top 2047 that code for transcription factors. This gave us a final
variable set of 500 genes, 120 of which were TFs or chromatin modifiers.

Figure 2 shows bivariate plots of four randomly selected genes. It shows that
gene expression is (a) heteroskedastic, and (b) integer valued and non-negative, cor-
responding to counts of transcripts. Heteroskedasticity indicates that the nonpara-
normal is more appropriate than the Gaussian. Integer values, however, imply that
the data are not nonparanormal. The nonparanormal is only an approximation.

One might worry that the non-negativity would bias estimates of correlation
(Regier and Hamdan, 1971). We checked this, using Nie et al. (2008)’s method to
correct Kendall’s τ for truncation bias. We ran each graph-learning algorithm on
three correlation matrices: Pearson correlation, the SKEPTIC (using Spearman’s ρ),
and the truncation-corrected SKEPTIC (using Kendall’s τ). Truncation-correction
did not improve performance in any condition.

6.2 Data for evaluation

Our knowledge of the true network is incomplete, so apparent ‘false positives’ may
in fact be novel results. Furthermore, regulatory relationships are highly context-
dependent. The ideal gold standard data would be collected in exactly the same
cell type under the same conditions as our observational data. Because we did not
collect our own data, we settled for close matches.

ChIP-chip/seq data for direct edge evaluation came from two sources:
• Xu et al. (2013)’s ESCAPE database contains 107,980 non-redundant TF-gene

interactions learned from ChIP-chip/seq experiments in mouse embryonic stem
cells. 1,921 of these interactions were between genes in our 500 genes of interest.
• TF-gene interactions compiled by Neph et al. (2012) and Stergachis et al.

(2014) were downloaded from http://www.regulatorynetworks.org/. 7 Com-
bined, these lists included 42,486 non-redundant interactions, of which 177 were
between genes in our set of 500.

The union of the two gold standards included 2,098 known TF-gene interactions.

Mutation & expression manipulation for path evaluation. Our gold standard
data on ancestral relationships likewise came from multiple sources:
• Xu et al. (2013)’s ESCAPE database contains 101,673 non-redundant regula-

tory relationships learned from LOGOF experiments in mESCs, of which 1,778
interactions were between genes in our top 500.

7 ↑The lists of interactions were drawn from three files with mouse ZhBTc4 embryonic stem cells
(control, +6 hours doxycycline, +24 hours doxycycline), and one with mouse mCj7 embryonic stem
cells (via 129S1/SVImJ mice).
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• Correa-Cerro et al. (2011) engineered a set of mESC cell lines for inducible
expression of particular TFs. They learned 140,157 non-redundant regulatory
relationships, of which 892 were between genes in our top 500.
• Nishiyama et al. (2013) used shRNAs to systematically repress the expression of

several TFs in mESCs. They learned 10,223 relationships causing a significant
change in expression. Of these, 275 were between genes in our top 500.

Due to overlap, the union of the LOGOF gold standards included 1,767 regulatory
relationships. (Self-regulatory relationships were excluded.)

6.3 Background knowledge

Any genes listed as being parents or ancestors of other genes in any of our gold stan-
dards were considered TFs. We used the Gene Ontology (Carbon et al., 2009) to iden-
tify additional TFs and chromatin modifiers. Genes annotated with ‘GO:0016568 :
chromatin modification’ or ‘GO:0006355 : regulation of transcription, DNA-templated’
were considered TFs. Of our 500 genes of interest, 120 genes were in the list of TFs.

7 Results

Figure 3 shows results on the ChIP-chip/seq gold standard. Using heavy penalties
on search (α = 10−5 for PC-stable and FCI, and penalty = 15 for FGS and GFCI) we
produced sparse graphs (Fig. 3c) with very low recall (Fig. 3a) and only moderate
precision (Fig. 3b) for adjacencies. However, all algorithms performed highly signif-
icantly better than chance, according to a hypergeometric test (Fig. 3d).8 Using the
SKEPTIC with background knowledge, FGS and GFCI identified 53 true adjacen-
cies out of 235 estimated edges, a 14-fold improvement over the number of successes
expected under chance (p < 10−45). This 22.6% precision may be high enough to
help prioritize experiments, in combination with other sources of knowledge.

FGS and GFCI have slightly better recall of adjacencies and much better preci-
sion than PC-stable and FCI, indicating that score-based algorithms perform better
than constraint-based algorithms on these data. FGS and GFCI perform equally
well, as do PC-stable and FCI; relaxing the assumption of no latent variables does
not improve performance. Background knowledge improves performance in every
condition. Using the SKEPTIC covariance matrix instead of the Pearson matrix im-
proves precision and recall of adjacencies when background knowledge is available,
but has only a slight effect without background knowledge.

Because the ChIP-chip/seq gold standard graph is cyclic, we cannot use its
Markov equivalence class to evaluate orientations. Instead we compare estimated

8 ↑By ‘chance’ we mean choosing a random graph of equal density to the estimated graph. That
is, drawing k adjacencies without replacement, where k is the number of edges in the estimated
graph, out of a set of N edges (the number of possible adjacencies) that includes n successes (the
number of true adjacencies in the gold standard). The hypergeometric is the null distribution.
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(a) Recall: #correct adjacencies
#true adjacencies in gold standard (b) Precision: #correct adjacencies

#estimated adjacencies

(c) # Estimated adjacencies. (d) Log p-value of hypergeometric test.

(e) Normalized orientation confusion matrices: #edges w/ that est’d & true orientation
#estimated edges

(the denominator includes false positives, i.e. cases where ‘True Orientation = No
edge’, although this column is not shown). Ideally all edges would be in the top
left, where estimated orientation matches the truth.

Figure 3: Results on the ChIP-chip/seq gold standard: precision and recall for adjacencies, con-
fusion matrix for orientations. 12
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orientations to the actual directed edges from the gold standard. The orientation
confusion matrix (Fig. 3e) also shows FGS and GFCI outperforming PC-stable and
FCI. However, when background knowledge is available, the SKEPTIC hurts FGS
and GFCI’s performance: it produces lots of undirected edges, whereas the Pearson
matrix produces mostly directed edges and has the best precision for orientations.

Figure 4: Partial AUC in top 10%
of ROC curve for IDA using FGS,
the SKEPTIC matrix, and back-
ground knowledge, compared to the
LOGOF gold standard.

Results on the LOGOF gold standard were less impressive.9

Maathuis et al. (2010) looked at the top 0.4% of their ROC
curve; our gold standard is much smaller, so we look at the
top 10%. FGS with background knowledge and the SKEP-
TIC achieved the best result, a partial AUC of 51.7% (Fig.
4). By comparison, PC-Stable using the Pearson matrix and
background knowledge achieved a pAUC of 51.1% (Fig. 5; PC-
Stable performed worse with the SKEPTIC).

Using PC-stable on yeast microarray data, Colombo and
Maathuis (2012) achieved ∼50% precision in the top 1000 ef-
fects. Using the same algorithm plus background knowledge,
our precision in the top 1000 effects was 12%. It seems that this
dataset and gold standard are not as favorable as those used by
Maathuis et al. (2010) and Colombo and Maathuis (2012).

8 Discussion

Our absolute performance cannot be compared to any previous
study. Performance varies dramatically either by species, or by
gold standard, as demonstrated by Marbach et al. (2012) and
again by the comparison of Colombo and Maathuis (2012)’s
results with our results using IDA and PC-Stable. Only Cahan
et al. (2014) used the same species and gold standard as us, and
they used a non-standard evaluation metric.

Figure 5: Partial AUC in top
10% of ROC curve for IDA us-
ing PC-stable, the Pearson matrix,
and background knowledge, com-
pared to the LOGOF gold standard.

Most previous results are reported as AUPR values, which
our algorithms cannot generate. We can compare our results to
a point on the precision-recall curve published by Faith et al.
(2007). Our best result was 2.7% recall and 22.6% precision,
which is strictly dominated by Faith et al. (2007)’s 6% recall and
60% precision. However, it is unclear whether this difference is
due to our algorithms’ inferiority. Marbach et al. (2012) showed
that CLR performed much worse on S. cerevisiae than E. coli,
so we may have simply used a more challenging species or a less
reliable gold standard. By limiting evaluation to pairs of genes in RegulonDB, Faith
et al. (2007) may have overestimated precision, as described in Section 3.4.

9 ↑Note that FCI and GFCI cannot be evaluated by this standard because IDA has not yet been
extended to work with PAGs, so results are only evaluated for FGS and PC-Stable.
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We confirmed our hypothesis that the SKEPTIC could improve performance: in
the presence of background knowledge it improved precision for adjacencies, although
it hurt for orientations. However, to our surprise, allowing the presence of latent
variables (by using FCI or GFCI) did not improve performance.

This study sets the first benchmark for learning GRNs from single-cell RNA-seq
data. The hypergeometric test is a natural and interpretable test of success. It shows
that all our algorithms perform unambiguously better than chance at identifying
adjacencies (see Fig. 3d; for FGS with the SKEPTIC and background knowledge, p <
10−45). This is the first time a large-scale network construction algorithm has been
shown to be unabiguously better than chance at detecting adjacencies in a eukaryotic
GRN, without incorporating additional data from intervention distributions.

The results for learning ancestral relationships, evaluated by the intervention gold
standard, are less impressive than those demonstrated by Maathuis et al. (2010) and
Colombo and Maathuis (2012). Even using the same algorithm as Colombo and
Maathuis (2012), we achieved little elevation at the start of the ROC curve. This
may be because our interventional gold standard was too small or low quality.

9 Limitations

Learning eukaryotic GRNs from observational data is an extremely difficult problem.
This study has promising results but suffers from a number of limitations.

Our results are not comparable to the results of previous studies, for two reasons:
(1) In order to explore the potential of single-cell RNA-seq data, we used a new
dataset, necessitating the use of a different gold standard; we did not reimplement
the methods from similar studies, so any differences may be due to the new methods
or the new data. (2) Marbach et al. (2012) performed a comprehensive evaluation of
methods, but reported only the AUPR for each method; our methods do not produce
a precision-recall curve for adjacencies (although IDA can produce such a curve for
ancestral relationships).

Our observational data and gold standard data were collected under different
conditions; the gold standards were collected by multiple labs. Gene regulation is
highly context sensitive, so these differences matter. Furthermore, ChIP-chip/seq
results are not perfect indicators of causal relationships; even in ideal conditions this
“gold standard” includes both false positives and false negatives.

Single-cell RNA-seq has low sampling efficiency, leading to low estimates of tran-
script abundance. This is particularly problematic for TFs, which typically exist in
low concentrations.

The nonparanormal distribution is an imperfect approximation to the distribu-
tion of mRNA counts. It can only model linear dependencies between variables.
There is evidence that transcriptional regulation is non-linear, with multiple tran-
scription factors interacting to turn expression on or off.

14
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10 Conclusions

Using the SKEPTIC with FGS or GFCI produced the best results for learning adja-
cencies, whereas the Pearson correlation produced the best results for orientations.
Researchers may find a combined approach most useful. Score-based algorithms out-
performed constraint-based algorithms. Allowing the presence of latent variables did
not improve performance, but restricting search so that edges were only allowed out
of TFs improved performance for all algorithms.

Causal search algorithms identified adjacencies 14× times better than chance
when using real single-cell RNA-seq data from mouse embryonic stem cells. This
is a promising result, and sets a benchmark for future studies attempting network
reconstruction from single-cell RNA-seq data. We identified adjacencies with a pre-
cision of 22.6%, which may help researchers prioritize experiments.

11 Future research

There are several ways future research could build upon this result. Modeling gene
expression as a Poisson process would capture the fact that the measurements are
counts. Incorporating intervention data, using the techniques developed by Mordelet
and Vert (2008), Qin et al. (2014) and Shojaie et al. (2013), could improve perfor-
mance substantially. Collaborating with wet lab to produce gold standard data and
observational data collected in the same cell type, under the same conditions, would
dramatically reduce the noise in evaluation. Reimplementing previously published
algorithms and applying them to this dataset, and evaluating with this gold stan-
dard, would help determine whether our promising results are due to using single-cell
data, or different algorithms. Extending our current methods so that they produce
a PR curve would allow us to compare with the AUPRs in previous publications.
We hope to see future studies taking up these challenges.
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13 Appendix: Background on Causation

13.1 Causal Markov Assumption

The Causal Markov Assumption (CMA) links the graphical structure to the inde-
pendence structure of the probability distribution over X. By the CMA,

Definition 13.1 (Causal Markov Assumption). A variable Xi is independent of its
non-descendants given its direct parents.

The CMA allows us to read off the independence relationships between variables
from the structure of the graph. However, the CMA is only a reasonable assumption
when Causal Sufficiency holds:
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Definition 13.2 (Causal Sufficiency). A set of variables V is ‘causally sufficient’ iff
for every variable k such that k is a parent of two distinct variables v, v′ ∈ V , then
k ∈ V .

For causal sufficiency to hold, no confounding variables can be omitted from the
causal graph. One important consequence of the CMA is the factorization theorem:

Theorem 13.1 (Factorization Theorem). Given a DAG G and a corresponding
probability distribution PG, if PG satisfies the Causal Markov Assumption relative to
G, then PG factors into

∏
v(Xv|Pa(Xv)), where Pa(Xv) are the parents of v in G.

However, we may want to know about independences conditional on some other set
of variables. In acyclic directed graphs, a complete characterization of conditional
independences implied by the model is given by d-separation.

13.2 d-separation

The full set of conditional independences implied by a DAG are characterized by
d-separation. If PG satisfies the CMA relative to G, then Xi ⊥⊥ Xj |S if Xi is
d-separated from Xj conditional on S.

Definition 13.3 (d-separation). Xi is d-separated from Xj conditional on S iff there
is no active path between Xi and Xj in G conditional on S. A path is active iff
every node on it is active. A node v is active on a path p if either:

1. v is a non-collider on p, and v /∈ S, or
2. v is a collider on p, and either v ∈ S, or there is some descendant q ∈
Descendants(v) such that q ∈ S

where a collider on a path p is a non-endpoint node k such that the two edges in p
that include k are both oriented into k.

13.3 Faithfulness

The Causal Markov Condition implies that if two variables are dependent in the
probability distribution, they must be d-connected in the causal graph. However, it
does not tell us which variables should be d-separated in the graph. We could always
satisfy Markov by returning a complete graph. In order to learn sparse models from
data, we must make an additional assumption about the relationship between the
distribution and the graph.

Definition 13.4 (Faithfulness). A distribution P is faithful to a graph G if: for
every pair of variables Xi 6= Xj and set S, if Xi and Xj are d-connected given S in
G, then Xi is dependent on Xj conditional on S in P .
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Faithfulness means that every d-connection in the graph gives rise to a proba-
bilistic dependence; so every independence in the distribution must correspond to a
d-separation in the graph. When we see a conditional independence in the data, we
can infer a separation in the graph. Faithfulness is a strong assumption. Some causal
search algorithms rely on weaker assumptions of minimality or triangle-faithfulness
– see Spirtes et al. (2000); Zhang and Spirtes (2008) for more details. Faithfulness
can also be strengthened to provide guarantees of uniform consistency for causal
learning (Zhang and Spirtes, 2003).

13.4 DAGs vs. CPDAGs vs. MAGs vs. PAGs

We use different kinds of graphs to represent the causal system vs. what we can
learn about the causal system. Table 2 summarizes the relationships between these
models.

Individual model Markov equivalence class of models
Causally sufficient DAG CPDAG
Causally insufficient MAG PAG

Table 2: Relationships between DAGs, CPDAGs, MAGs and PAGs

Observed dependences and independences sometimes allow us to distinguish be-
tween causal models. For example, if the graph G has V = {A,B}, and we observe
that A ⊥/⊥ B, this rules out the model in which A is d-separated from B, by the
Causal Markov Assumption. However, we cannot distinguish between the models
A→ B and A← B.

The set of models that entail the same conditional independences as G are called
the Markov Equivalence Class (MEC) of G. For multivariate Gaussian and multi-
nomial data, one can only distinguish between causal models using conditional in-
dependences (Geiger and Pearl, 1988; Meek, 1995).10 As a result, when we evaluate
causal search algorithms, we evaluate how well they recover the MEC of the true
model.

The MEC of a DAG can be represented by a Completed Partially Directed Acyclic
Graph or CPDAG. All members of the MEC have the same adjacencies and the same
V-structures. A CPDAG therefore has the same adjacencies as the member graphs
it represents. If an edge is oriented the same way in every member of the MEC, it
is directed in the CPDAG; otherwise it is undirected.

We may wish to relax the assumption of causal sufficiency. We can make a weaker
assumption that there exists some causally sufficient graph with respect to which our

10 ↑Most other distributions include additional information (Shimizu et al., 2006; Peters et al.,
2014), allowing us to further distinguish within the Markov equivalence class. However, algorithms
leveraging this information are computationally intense, do not scale well to high dimensions, and
do not perform well if we relax the assumption of causal sufficiency.
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distribution is Markov. In that case, we can still represent the ancestral relationships
between the observed variables, using a Maximal Ancestral Graph (MAG). A MAG
allows that there may be additional unobserved confounders. Each edge in a MAG
corresponds to two causal statements, one for each endpoint of the edge. A tail
endpoint denotes “is an ancestor of” wherease an arrow denotes “is not an ancestor
of”, so the edge A↔ B represents the statement that neither A nor B is the ancestor
of the other; and because they are connected, we can infer that they must both be
children of an unobserved confounder.

Just like DAGs, there are Markov equivalence classes of MAGs: sets that cannot
be distinguished by conditional independences alone. We can represent the MEC of
a MAG using a Partial Ancestral Graph or PAG. The PAG represents everything
we can learn about the causal structure from conditional independences. For more
on the interpretation of MAGs and PAGs, see Zhang (2008).
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