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1 Introduction

Knowledge can often be represented using entities connected by relations. For example, the fact
that tennis ball is round can be represented as “TennisBall HasShape Round”, where a “TennisBall”
is one entity, “HasShape” is a relation and “Round” is another entity. A knowledge base is a way
to store such structured information, a knowledge base stores triples of the “an entity-relation-an
entity” form, and a real world knowledge base often has millions or billions of such triples. There
are several well-known knowledge bases including FreeBase [1], WordNet [2], YAGO [3], etc. They
are important in fields like reasoning and question answering; for instance if one asks “what is the
shape of a tennis ball”, we can search the knowledge base for the triple as “TennisBall HasShape
Round” and output “round” as the answer.

This approach to search for the exact triple in the knowledge base requires that triple to exist in the
knowledge base. However it is often the case that a triple is missing due to the huge number of
combinations between different entities and relations and the limited amount of information stored
in the knowledge base. This is indeed one major problem with the real world knowledge bases, that
their coverage is incomplete despite the fact that there are an enormous number of entries stored
these knowledge bases. Such incompleteness is because for some entities in the knowledge base,
we have part of their information but not all. Yet intuitively, we can still get some information from
some similar triples that are in the knowledge base. For instance, “TennisBall HasShape Round”
and “Ping-pongBall IsSimilarTo TennisBall” are both in the knowledge base, then intuitively, this
implies that it is likely that ping-pong ball also has shape round. Another example would be that
given “Water HasForm Liquid”, “Water IsContained InABottle” and “OliveOil HasForm Liquid”,
we want to conclude that olive oil is also contained in a bottle, and then add this information to the
knowledge base.

Another form of incompleteness is that some entities only appear in the knowledge base infrequently
or not at all, and such sparsity in the knowledge base is actually very common. New products and
some recent events are such examples. In these cases, we have little or no information of the entities,
but we still want to do some kind of reasoning on them based on the information we have (usually
the name of the entity). For example, if we have never heard of “iBottle” but we know that “Bottle”
can be used to contain water, then maybe we can also use “iBottle” to do that. Here the motivation
is that the name of an entity is often informative, and it would be helpful to somehow exploit this
fact.

Knowledge base completion is the task of inferring the missing triples from existing triples in the
knowledge base. In general, this task requires a good modeling of the multi-relational data. One
example of such a model is the exact triples in the knowledge base, which suffers from the incom-
pleteness issue as we have mentioned. The main difference between modeling multi-relational data
and single-relational data is that one can easily compute a good representation for single-relational
data in an ad-hoc fashion since there is only one relation being considered, while computing a repre-
sentation for an entity such that the representation is good for all the relations is hard. The fact that
people want to perform complicated reasoning over the knowledge base makes this task even more
challenging. A similar task is collaborative filtering, where one tries to predict whether a user is
interested in an item or not, which is to predict this particular relation. The difference between col-
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laborative filtering and knowledge base completion is that knowledge base completion often deals
with lots of relations instead of just one.

There are three major approaches to build a model for multi-relational data according to [4]: using
a probabilistic graphical model as in [5], using a random walk to compute scores for different paths
as in [6], or using embeddings to model the structures in the knowledge base. Recently, researchers
have mainly focused on embedding based methods for knowledge base completion. Such methods
map each entity to a vector in a low dimensional real space, and treat relations as transformations
between entities. The main difference between these works is the way they represent the entities and
relations. [7] uses existing word vectors to compute vectors of entities by computing the average
among the word vectors, while [8] computes embeddings for both entities and relations directly.
These methods differ in various aspects including the objective and the way to connect entities with
relations, but they share a general framework: one entity can be approximately computed based on
the relation and the other entity, so knowledge base completion can be done by choosing the entity
that is closest to the entity vector, computed based on the similarity metric defined.

In this paper, we experiment with embedding models for knowledge base completion and propose
a new embedding model to solve the entity sparsity problem. More specifically, we experiment
with TransE [8] on both the FB15k data set and the prescription data set (which we will discuss in
detail later), then describe our new model, which is based on a bi-directional GRU recurrent neural
network and entity embedding. We compare these two models via an asymmetric knowledge base
completion task on the prescription data set. The result shows that our proposed model outperforms
the TransE model when there are some sparsity in the data.

2 Related Work

2.1 Word Embeddings

In 2006, Bengio et al. proposed a model for word representation in [9]. Prior to this work, peo-
ple generally use the n-gram representation in statistical language models, which suffers from the
curse of dimensionality because the number of such n-grams is approximately V n where V is the
vocabulary size. In Bengio et al.’s model, words are represented as vectors in a real vector space,
and the distance between vectors representing different words measures their similarity. In this way,
one sentence from the training data could provide much more information than the n-gram model
since it also informs the model about similar sentences due to the continuity in the real vector space.
Specifically they use a V × D matrix for the word vectors and use a neural network with a soft
max layer to compute the probability of a fixed length sub-sentence. They train the model using
gradient descent on both the word vectors and the neural network parameters with log-likelihood as
the objective function and their model has a significantly better performance than the n-grams model
in terms of perplexity. Such methods that represent words using real vectors are often called word
embedding.

In 2013, Mikolov et al. introduced two novel architectures for computing real vector word repre-
sentations using neural networks in [10], aiming at reducing the computational cost when training
the model so it can handle much larger data set in a reasonable amount of time. The most expen-
sive computation in the previous neural network language model is the non-linear hidden layer in
the network. In their models, they remove this hidden layer from the neural network and share
the projection layer between all inputs. The first architecture is called the continuous bag-of-word
model, which predicts a word directly from its context within certain range. The second architecture
does the opposite, predicting the context of a given word. They constructed a Semantic-Syntactic
Word Relationship test set and ran their model on the test set. The result shows that their model
outperforms the previous models both in accuracy and efficiency.

Later in [11], Mikolov et al. further improved the continuous Skip-gram model (which allows one
to skip some words in between when constructing n grams) with two techniques, subsampling the
frequent words and hierarchical softmax (or negative sampling). Using subsampling for the frequent
words in the corpus, they significantly speed up the training process without compromising the
quality of the model too much, since the frequent words are not carrying much information after
they have appeared enough times. The second method to increase the training efficiency is to reduce
the time to compute the full softmax function. One way to do this is to use a hierarchical softmax
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function, which builds a binary tree on the probabilities over all the words. This will reduce the time
for computing a probability from linear in the vocabulary size to log of the vocabulary size. Another
way is to use negative sampling to replace the softmax function completely, that is to use some
sample words to compute the loss function and optimize a surrogate objective function iteratively.

2.2 Knowledge Base Completion with Embeddings

To improve the result of performing complex inferences on a large scale knowledge base, Lao et al.
proposed in [6] a path ranking algorithm [12] based learning procedure that can determine whether
two entities are connected by a relation in the knowledge base. The path ranking algorithm computes
a probability for a path that we will go from one end of the path to the other end following the same
type of path (relation). Then to make a prediction on a knowledge base of whether one entity is
connected by a relation (or relation chain) to another entity, the algorithm will run path ranking on a
large set of proposed paths which are of bounded lengths, and are constructed with certain types of
relations. These proposed paths can be treated as a set of experts, then once we have a score for each
of them, the algorithm uses a logistic regression on these scores to decide whether the relation is
valid or not. They run the new algorithm on the knowledge base extracted by NELL [13] and shows
that the new algorithm outperforms the Horn-clause learning method and significantly improve the
precision at rank 100.

In 2011, Bordes proposed a method to model multi-relational semantics in [14]. Inspired by word
embeddings, Bordes et al. introduced TransE in [8], which is a method to model the relations
between different entities in a knowledge base as translations in a low dimensional embedding space.
Instead of using complex models with greater expressiveness, they model both the entities and the
relations in the knowledge base as real vectors in the same embedding space, and represent the
relations as translations from an entity to another. More specifically, for a triple (e1, r, e2) in the
knowledge base, they treat it as e1 + r = e2. Then to train the model, they minimize the loss
function defined as the sum of error on each triple (e1, r, e2) from the knowledge base which is
d(e1 +r, e2) minus the error of some randomly generated triples d(e′1 +r′, e′2). The intuition behind
the loss function is that they want the correct right hand side entity to be close to the translation from
the left hand side entity and relation while the random noise right hand side entity to be far away
from the translation of a random left hand side entity. Their model achieves a higher accuracy on
both the WordNet and the FreeBase data set than the other previous models.

2.3 Recurrent Neural Networks

Cho et al. proposed a gated recursive convolutional neural network model [15] for neural machine
translation in 2014. The new model differs from the vanilla recursive neural network in the way it
computes the transition on the hidden units between different steps. In a vanilla RNN, let h(t) be
the hidden unit at time t and let xt be the t-th element in the input, then h(t) = f(h(t−1), xt), where
f is the activation function often chosen to be tanh. It is widely known that a vanilla RNN cannot
keep long term memories due to the vanishing gradient issue (or exploding). In the new model, they
add multiple gates to the computation of the new hidden states, which they call a gated recurrent unit
(GRU). Now the j-th hidden unit is computed by h(t)j = ωch̃

(t)
j + ωlh

(t−1)
j−1 + ωrh

(t−1)
j , where h̃(t)j

is the usual value of hidden unit after activation. Here these three values are gated by ωc, ωl, ωr, and
this structure enables the model to learn more complex functions over different input data without
having the gradient issue, since the additive component in the hidden unit update can serve as a short
cut for back propagating the gradient. They compare this model with the RNN Encoder-Decoder
model [16] and evaluate both models on translation tasks between English and French. The result
shows that the new model outperforms the RNN Encoder-Decoder model and has a much lower
error rate on long sentences.

Chung et al. compared the GRU RNN presented in [15] and the LSTM RNN in [17] with the vanilla
RNN model with tanh, and experimented with all three models on sequence modeling tasks includ-
ing music modeling and speech signal modeling. The result shows that all three models have similar
performance on the music modeling task while the first two models (gated RNN) outperform the
vanilla RNN on the speech signal modeling task in terms of both the accuracy and the convergence
rate. In the speech modeling task, the GRU RNN sometimes performs better than the LSTM RNN
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and sometimes worse, which implies that the choice between LSTM and GRU depends on the actual
task and data set being used.

Dos Santos et al. proposed a deep neural network model to learn character-level word embeddings
in 2014 [18]. Their model exploits word morphology and outperforms existing models at part-of-
speech tagging tasks in both English (on the Penn Treebank WSJ corpus) and Portuguese (on the
Mac-Morpho corpus).

Inspired by the GRU and the character-level word embedding ideas, Dhingra et al. proposed a
character based bi-directional GRU RNN model for sentence classification in 2016 [19]. The idea
behind this work is that in most text data there will be many infrequent words, so if we model the
text by treating a word as the basic unit, then most information we have is about the frequent words.
Another concern is memory usage. Finally, we have to map some infrequent words to a single token
which is obviously undesirable: as a result, we wouldn’t know much about those infrequent words,
and we can hardly build a good model that generalizes. Yet recent work [20] has shown that LSTM
RNN on characters can produce informative word representation, and inspired by that, this work
builds a bi-directional GRU RNN on characters to classify text posted on Twitter. The model has
one forward GRU and one backward GRU, processing the input in opposite order. Then the output
of the last forward hidden unit and the output of the first backward hidden unit are combined by
a fully connected layer to compute the embedding for the tweet, followed by a softmax layer to
calculate the probability of belonging to certain class. Here they predict the hashtags of a post. They
compare the character level model with the word level model on the tweet classification task; the
result shows that the character level model has a slightly better performance on the full data set while
it has a much better performance on the rare word test set. This suggests that a character level model
is more favorable when the data is sparse.

In our work, we want to extend knowledge base embedding with character level embeddings and
make good predictions on sparse data.

3 Data & Problem Formulation

3.1 Data

3.1.1 FB15k Data Set

There are two data sets we used in our work, one is the FB15k data set1. It contains approximately
600,000 triples extracted from FreeBase [1]. There are around 15k unique entities in this data set,
and this is also why the data set is called FB15k. It is often used for knowledge base completion
tasks and this is the data set used with TransE [8]. Some statistics of the FB15k data set computed
by [21] are shown in Table 2:

3.1.2 Prescription Data Set

The second data set we used is a prescription data set obtained from DailyMed, where the detailed
information about a lot of common medicines is listed. Each webpage contains one medicine, so we
downloaded the XML file for every medicine. Common attributes of a medicine from the XML file
include the name, manufacturer, appearance (color, shape, size), package, flavor, dosage form, etc.

To retrieve useful information from the file, we use dom4j XPath2 to parse the XML tree and extract
the relevant tags. We generate a triple for each unique attribute of a medicine. The left hand side of
each triple will be the medicine name, and the relation and the right hand side will be determined
by the attribute of that medicine. For example, if there is a tag in the sample XML file saying that
medicine Tamsulosin Hydrochloride is consumed orally, then we will create the triple (Tamsulosin
Hydrochloride, Consumed in, Oral). Table 1 shows examples of triples we extract from the XML
files.

There are about 13,000 XML files in our data set, and after converting them into triple form, we have
360,000 such triples; but there are many duplicated triples and unrelated attributes. For example,

1https://everest.hds.utc.fr/doku.php?id=en:transe
2http://dom4j.sourceforge.net/dom4j-1.6.1
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Left Entity Relation Right Entity
Prescription data set extracted from structured XML file

Vesicare Contains Ingredient Solifenacin Succinate
Testopel Contains Ingredient Testosterone
Kristalose Contains Ingredient Lactulose
methysergide Maleate Consumed In Oral
Bexarotene Consumed In Topical
Pralidoxime Chloride Consumed In Intramuscular
Depen Dosage Form Tablet
Kristalose Dosage Form Powder
Topex Dosage Form Dentifrice
Benzo-jel Package Form Bottle
Testopel Package Form Ampule
Topex Package Form Jar

Unstructured data set extracted from DailyMed text
Misoprostol Side Effects Tremor
Hydroquinone Side Effects Exogenous Ochronosis
Prednisone Conditions To Prevent Corticoid Therapy
Ziprasidone Hcl Conditions To Prevent Mean Weight Gain
Amoxicillin Used To Treat Bacterial Infections
Insulin Aspart Used To Treat Upper Arm

Table 1: Examples for triples extracted form prescription data set and unstructured data set

one of the attributes is a unique identifier for that specific medicine, which is a random string, and
clearly it makes no sense to predict a unique identifier in an knowledge base completion task, nor
does modeling this attribute tell us anything about the medicine. Other unrelated attributes include
manufacturer, color, imprint, approval status, etc. After removing redundant data and keeping only
relevant relations (Ingredient, Package Form, Way of Consuming, Dosage Form), we end up with
around 54,000 unique triples, and we call this data set Prescription Unique.

Besides this, we also build another data set on the prescription data set called Prescription Frequent.
Here we take the Prescription Unique data set and remove rare right hand side entities (entities that
appear less than 5 times) along with triples containing these entities.

Table 2 shows some statistics of the FB15k data set and two prescription data sets, where PRUniq is
for Prescription Unique and PRFreq is for Prescription Frequent:

Name # Total Ent # LHS Ent # Relations # RHS Ent # Triples
FB15k 14,951 14,834 1,345 14,903 592,213
PRUniq 6,180 3,083 4 3,097 54,239
PRFreq 3,873 3,083 4 790 43,929

Table 2: Statistics of FB15k and Prescription Data Set

The prescription data set is quite different from the FB15k data set:

• Symmetry: entities in FB15k data set are symmetric, in the sense that most of the entities
appear both in the left hand side and right hand side in different triples. Yet entities in
prescription data set are asymmetric: all the left hand side entities are medicine names,
all the right hand side entities are attributes, and they don’t overlap, so this is actually a
bipartite graph. This difference also influences the way we do knowledge base completion:
we can predict both left hand side and right hand side for the FB15k data set, but we will
only make predictions on the right hand side of the prescription data set, which is to predict
the properties of a medicine.

• Density: the knowledge graph of FB15k data set is well connected. The average degree of
an entity in this data set is around 40. While the prescription data set is relatively sparse,
if we consider each medicine, it only appears on the left hand side with an average degree
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of 14 and there are many medicines with out degree no more than 5, meaning that these
medicines don’t appear very often in the data set. As a result, if we randomly partition the
data set into training set, validation set and test set, there might be some medicines that
never appear in the training set. Along with the bipartite property of the knowledge graph
from the prescription data set, we can see that there is much less information we can learn
for each entity in this data set than in the FB15k data set.

Besides the prescription data set, we also have another data set extracted from the text paragraphs
in DailyMed using the method proposed in [22], where Bing et al. improved the quality of distant
labeling using label propagation on graphs constructed entity mentions. Here each triple in the data
set is given a score between 0 and 1 indicating how confident we are about the quality of the triple, if
the score is high, say 0.95, then we are very confident that the two entities are connected by the given
relation. We keep only the high score triples (score ≥ 0.9) that have at least one entity appearing
in the prescription data set, meaning that we will discard a triple if it has a low score or none of
its entities appear in the prescription data set; this gives a data set with 940,735 triples. Since this
data set is extracted automatically from unstructured text corpus, we are only considering using it
to augment the prescription data set, and we call it the unstructured data set. See Table 1 for some
examples of triples from this data set.

Figure 1 is a visualization of the prescription frequent data set, where each node in the graph repre-
sents an entity and each edge between two entities represents a relation connecting them.

Figure 1: Knowledge Graph Visualization for the prescription data set, where the size of each node is
proportional to the degree of that node. The highlighted medicine Nitroglycerin has two attributes in
this example. One is that Nitroglycerin has package form box, and the other one is that Nitroglycerin
contains water as an ingredient.

3.2 Problem Formulation

The problem we are considering is knowledge base completion. Formally speaking, assume the data
set contains triples of the form (h, l, t), then given one entity h or t and the relation l, we want to
predict the other entity t or h. For the prescription data set, we will only predict the right hand side
entity t.
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4 Approach

4.1 TransE Model

The first model we consider is the TransE model proposed in [8], which maps each entity or relation
to a real valued vector in the low dimensional embedding space. TransE treats relations as trans-
lations between different entities in the embedding space. More specifically, given left hand side
entity h, right hand side entity t and relation l, such that (h, l, t) is a triple in the knowledge base,
the model tries to satisfy h + l ≈ t, where the boldface characters are the embedding vectors for
each entity or relation.

Following the idea above, the loss function of the TransE model is defined as

L =
∑

(h,l,t)∈S

∑
(h′,l,t′)∈S′

[
γ + d(h + l, t)− d(h′ + l, t′)

]
+

Where d(h + l, t) is the distance between h + l and t, usually taken to be the Euclidean distance.
Here S is the set of true triples from the knowledge base and S′ is the set of triples such that for
each triple (h, l, t) ∈ S, we replace either h or t with a random entity: so it is the set of triples of
the form (h′, l, t) and (h, l, t′) such that (h, l, t) ∈ S. The reason for adding the randomly sampled
triples to the loss function is that we want the distance function to have small values for true triples
and large values for random triples; otherwise setting everything to 0 will be a trivial solution to the
minimization problem.

4.2 Bi-GRU RNN Embedding Model

Motivated by Tweet2vec [19], we propose a new model to solve the sparsity problem in the canonical
embedding model. Our model incorporates the Bi-GRU RNN model into the entity embedding
framework, with the embedding look up table for the left hand side entities replaced with a Bi-GRU
recurrent neural network, which aims to exploit the regularity of medicine names in the character
level and generate reasonably good embedding for rare or previously unseen entities.

LHS entity Relation RHS entity

Character sequence

Character embedding table

Backward

Forward

Character level 
Bi-GRU RNN

LHS embedding vector

Relation embedding 
lookup table

RHS entity embedding 
lookup table

Relation embedding vector RHS embedding vector

Figure 2: Bi-GRU RNN Embedding model

Figure 2 shows the high level architecture of our RNN embedding model, which shares the general
framework as the TransE model [8]. The input triple is split into left hand side head h, relation l and
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right hand side tail t, where each of them is a word (or words concatenated by underscore), the head
entity h goes into the Bi-GRU recurrent neural network [19] and then converted into embedding
vector h which we will discuss in detail later.

The relation l and the tail entity t are converted into one-hot vectors ve ∈ {0, 1}|Ve|, e ∈ {l, t}
using dictionaries Vl, Vt built from training data, with only a single 1 in the vector indicating which
entity or relation it is. The embedding vectors for l and t are l = vTl El, t = vTt Et, where
Ee ∈ R|Ve|×D, e ∈ {l, t} are the embedding lookup tables for relations and right hand side en-
tities respectively, D is the dimension for the entity embedding space. The triple (h, l, t) is the
embedding vector triple for the input (h, l, t).

The left hand side entity l is split into a sequence of characters and converted to one-hot vectors
c1, · · · , cm ∈ {0, 1}|Vc|, with a single 1 in each vector indicating which character it represents,
where Vc is the character vocabulary. Note here we can build this vocabulary for all possible char-
acters if we are only considering English alphabets, numbers and some symbols (underscore or
comma), as opposed to the situation where we generally cannot build a vocabulary for each word in
a corpus. We obtain the character vector xi = cTi Ec by taking the corresponding component from
the character embedding matrix Ec ∈ R|Vc|×Dc . The sequence of character vectors {xi}mi=1 then
goes into the Bi-GRU recurrent neural network, with two layers of gated recurrent unit (GRU shown
in 4). One layer processes the sequence in the normal order and the other layer processes in the
reversed order, shown in 3.

Figure 3: Bi-directional RNN, figure from here Figure 4: GRU, figure from [16]

The forward GRU layer and backward GRU layer have the same structure and they start from the
same state h0 ∈ RDh when processing input sequence {xi}mi=1. On input xt, these two layers update
the hidden state h as follows [19]:

rt = σ(Wrxt + Urht−1)

zt = σ(Wzxt + Uzht−1)

h̃t = tanh(Whxt + Uh(rt � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t.

Here rt and zt are the gates controlling how much we want the values of ht−1 and h̃t to go into
the next state ht, and Wr,Wz,Wh ∈ RDh×Dc , Ur, Uz, Uh ∈ RDh×Dh are the parameters for the
GRU. After going through these two layers, we take the value of the hidden unit in the forward and
backward GRU layers h∗f , h

∗
b , and apply a linear transformation to get the final embedding vector h

for the input sequence.

h = Wfh
∗
f +Wbh

∗
b + c.

Here Wf ,Wb ∈ RDh×D, c ∈ RD. Now we have the left hand side entity embedding h from RNN,
relation l and right hand side entity t from lookup tables, and we define the loss function in a way
similar to TransE [8] as follows:
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L =
∑

(h,l,t)∈S

∑
(h′,l,t′)∈S′

[
γ + d(h + l, t)− d(h′ + l, t′)

]
+

+ λ
∥∥Θ
∥∥2.

Here we add a regularization term and Θ denotes all the parameters in the RNN. To make a prediction
on the right hand side entity t given the left hand side entity h and relation l, we will compute the
embeddings for both h and l, then output the prediction as

t = arg min
t∈Srhs

d(h + l, t)

.

We also propose a variant of this Bi-GRU RNN embedding model, called the hybrid model, which
combines the RNN embedding with a lookup table for the left hand side entities. More precisely, the
only difference from the RNN embedding model is that the hybrid model also keeps a lookup table
for the left hand side entities, and combines the output embedding vector hrnn from the RNN with
the embedding from the lookup table hemb by applying a linear transformation on the concatenation
of the two vectors to get h = Why(hT

rnn,h
T
emb)T + b, where Why ∈ RD×2D, b ∈ RD. The loss

function is the same as the RNN model.

5 Experiments & Results

5.1 TransE on Prescription Frequent Data Set

We firstly experiment with the public available TransE code 3 written in Python. We train TransE on
the FB15k data set and get the following result in Table 3:

Data Set Mean Rank Hits@10 Hits@1
FB15k 160.86706 45.088% 15.033%
PRFreq 45.14663 54.224% 16.003%

PRFreq+ 2449.66003 27.988% 7.212%

Table 3: TransE on FB15k and prescription data set

which matches the result shown in the paper [8]. Here mean rank is the average ranking of the true
right hand side entities according to the score computed and hit@k is the proportion of true right
hand side entities ranking in the top k in the score table.

When we experiment with TransE on the prescription data set, we randomly partition the triples into
training set, validation set and test set. For the test set, we remove only the right hand side of each
triple, since the left hand side is always the name of the medicine. Intuitively speaking, we want to
be able to answer questions concerning some properties of a medicine, such as the ingredients or
package information.

In our random partition, some entities from the test set never appear in the training set, thus if we
train TransE on the training set, the embeddings of these entities are undefined. This is mainly due
to the sparsity of the data we mentioned before, since some entities only appear once or twice in
the whole data set. So we use the Prescription Frequent data set here, which is the data set after
removing infrequent entities (appearing no more than 5 times in the data set).

We train the TransE model on the Prescription Frequent data set, and use the trained model to predict
the right hand side for each data point in the test set. Similar to the evaluation criteria in TransE [8],
for each test triple (h, l, t), we compute the embeddings for h and l, along with the scores for all
right hand side entities in the vocabulary, where the score is defined as sti = −d(h + l, ti). We
report the mean rank, hit@10 and hit@1 as the result.

We also tried to augment the Prescription Frequent data set using the unstructured data set extracted
from DailyMed text paragraphs mentioned earlier, to see if the unstructured data can serve as an

3https://github.com/glorotxa/SME
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additional source of information for building the embedding space. More precisely, we add high
score triples from the unstructured data set to the Prescription Frequent training set, train the TransE
model on the augmented data set, retrieving the embeddings only for the entities from the Prescrip-
tion Frequent data set, and test on the original test set using the new embeddings. The results are
listed in Table 3, where PRFreq stands for Prescription Frequent data set and PRFreq+ stands for
Prescription Frequent data set augmented by unstructured data set.

In both experiments, we are usingD = 50 as the embedding space dimension (we also experimented
with D = 25 on TransE for fair comparison since we want both models to have similar sizes), and
L2 distance as the distance metric. We set the margin γ = 0.5, the learning rate for embedding
matrix lremb = 0.01, and random seed s = 123. The training is performed with mini-batch gra-
dient descent with 100 batches, initial values of the embedding matrix are sampled uniformly from
(− 6√

D
, 6√

D
). Notice here we use only one embedding matrix for all entities without differentiating

which side they are from.

This result has several implications:

1. The TransE model has a reasonably good performance on the PRFreq data set, mainly
because we are using this refined data set where infrequent entities are discarded. Also this
result shows there is structure in the prescription data set, meaning that we can indeed learn
from the data and make predictions on the attributes of the medicines.

2. The result for the augmented data set is not as good as using only the prescription data
set. The unstructured data set is not so relevant to the prescription data set in the sense
that it doesn’t have lots of overlapping entities or relations. Therefore adding the unstruc-
tured data set into the training set introduces lots of noise and restrictions to the model,
because we have to adjust the embeddings to also fit the extra data, which results in worse
embedding for the original data set.

5.2 Bi-GRU RNN Embedding on Prescription Unique Data Set

We implemented the RNN embedding model in Python using Theano [23] with the Lasagne library
[24] for building neural networks on Theano. Our implementation was based on the Tweet2Vec code
in [19]. To compare our RNN embedding model with TransE, we also implemented TransE with
Lasagne on Theano, but here we use three embedding matrices, one for left hand side entities, one
for relations and one for right hand side entities. Here we modify the TransE model such that the
model maps all the unseen entities to one special vector, so that we can make comparisons with our
RNN model.

For the RNN embedding model, we take the character embedding dimension to be Dc = 8, and the
entity / relation embedding dimension to be D = 50. The training here is done using Nesterov’s
momentum accelerated mini-batch gradient descent with batch size 100. The initial learning rate
is 0.01 and momentum is set to be 0.9. We also update the learning rate (divided by 2) when
the learning process slows down. Parameters are initialized by random sampling from a normal
distribution with mean µ = 0 and variance σ = 0.01. For the TransE model, we also take D = 50,
and use the same training procedure. For the hybrid model, we take both the RNN embedding
dimension and lookup table embedding dimension to be D = 50.

We experiment all three models on the Prescription Frequent data set (PRFreq). Results are listed in
Table 4.

Model Mean Rank Hits@10 Hits@1
RNN 66.8304 45.055% 13.015%

Hybrid 41.3376 50.206% 16.552%
TransE D = 50 32.8015 53.571% 15.453%
TransE D = 25 31.5885 52.987% 12.843%

Table 4: Three models on Prescription Frequent data set

The result shows TransE with embedding dimension 50 has a better performance than the RNN
model on the dense prescription data set, which is as expected, since TransE is using a lookup table
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for every entity and it does not generalize, while RNN model is able to process unseen entities.
Another interesting point is that the hybrid model has a similar performance as the TransE model on
this data set, showing that combining two models helps in this case.

We also train all three models on the Prescription Unique data set (PRUniq), the one without remov-
ing infrequent entities. Results are listed in Table 5.

Model Mean Rank Hits@10 Hits@1
RNN 223.8726 37.183% 10.577%

Hybrid 207.6983 35.678% 9.346%
TransE D = 50 160.0409 36.559% 9.254%
TransE D = 25 164.0306 37.477% 8.262%

Table 5: Three models on Prescription Unique data set

The result shows that our RNN embedding model outperforms TransE in hit@1 criteria and has
similar Hits@10 as TransE, though TransE has a lower mean rank, mainly because it has a better
fit on the frequent data in the training set. Another observation is that reducing the embedding
dimension in TransE results in a larger mean rank, but slightly better Hits@10 and worse Hits@1.

Figure 5: RNN model relations visualization Figure 6: TransE model relations visualization

We visualize the result on test data that appears no more than 6 times in the training set (choosing
6 to control the number of points). Each point in the plots of Figure 5 & 6 is computed by t − h,
where (h, l, t) is a triple in the test set. We use t-SNE [25] to reduce the dimension of each point
to 2; t-SNE is a common dimension reduction technique for high dimensional data and it preserves
the similarity and dissimilarity between points. We color each point by the relation each triple has:
intuitively we want to see how well each model differentiates different relations in the embedding
space. The plots show that the RNN model has a cleaner separation of the four relations than TransE,
meaning that points with the same relations are closer to each other and form tighter clusters, while
points are spreading across the whole plot under the TransE model.

Using the model trained on Prescription Unique data set, if we only look at the rare entities in the
test set, we have the following result, with max freq indicating the maximum frequency that the left
hand side entity appears in the training set.
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MEDICINE NAME AND RELATION PREDICTED ATTRIBUTE
Diphenhydramine contains ingredient water, glycerin, sodium hydroxide,

sodium chloride, edetate disodium
Rizatriptan Benzoate contains ingredient magnesium stearate, microcrystalline,

cellulose, titanium dioxide, lactose monohydrate
Soltamox contains ingredient water, propylene glycol, sodium

hydroxide, glycerin, titanium dioxide
Hydromorphone HCL has dosage form injection, solution, capsule, kit, tablet
Avelox ABC Pack has dosage form capsule, tablet, solution, injection, kit
Neomycin has package form bottle, vial, tube, carton, plastic
Dipentum has package form bottle, plastic, vial, blister pack, single-dose
Rapaflo consumed in oral, intravenous, topical,

intramuscular, ophthalmic
Ultravate PAC-Cream consumed in topical, intravenous, oral,

respiratory (inhalation), subcutaneous

Table 6: Example predictions on the Prescription Unique test set using RNN model

Max Freq = 2 Max Freq = 1 Max Freq = 0
Model Mean Rank Hits@250 Mean Rank Hits@250 Mean Rank Hits@250
RNN 1374.0093 14.019% 1400.9230 20.512% 1491.0322 22.580%

Hybrid 1367.4392 10.280% 1355.1282 5.128% 1477.7419 0.000%
TransE D = 50 1461.9813 9.345% 1667.1025 5.128% 1783.1290 3.226%

Table 7: Three models on Prescription Unique data set

And from Table 7 we can see the RNN model has a better result in both the mean rank and hit@250
criteria than TransE, meaning that when an entity is rare in the training set, RNN model is able to
produce more meaningful embeddings. While the hybrid model has a slightly better mean rank than
the RNN model, its performance under the hit@250 criteria is similar to that of the TransE model,
which is much worse than the RNN model in these cases.

Figure 7: RNN relations on rare triples Figure 8: TransE relations on rare triples

We also perform the same visualization for test data that appears no more than twice in the training
set. Both visualizations show that the RNN model does a better job in separating the relations while
TransE is mixing lots of points in the middle, especially when the data is sparse (infrequent or
unseen).
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Model RNN Hybrid TransE D = 50 TransE D = 25
Number of parameters 152,882 310,732 294,200 147,100

Table 8: Number of parameters in each model

Besides the difference in performance on the data sets, the RNN model also differs from TransE
in model size (the number of parameters). See Table 8 for a comparison of different model in
size. We can see that building a lookup table requires lots of parameters. Take the RNN model
as an example; there are 141,200 parameters in the right hand side entity embedding lookup table,
while the Bi-GRU recurrent neural network only needs about 10,000 parameters. The RNN model
outperforms TransE with similar model size on infrequent data, suggesting that the RNN model is
more efficient in modeling such sparse knowledge bases.

6 Conclusion

We explored various approaches of performing knowledge base completion on a prescription data
set, and proposed a Bi-GRU RNN embedding model to deal with the sparsity issue that appears
in the data set and many real-world situations. Our work shows that the Bi-GRU RNN embedding
model outperforms the baseline model (TransE) when entities appear only a few times in the training
set, and it can deal with any input entities, regardless of whether the entity is in the training set or
not, while existing models can only predict on previously seen entities.

Future work could further analyze the Bi-GRU RNN embedding model and its variants, and apply
this model to more domains where one can also exploit the regularity in the entity names such
as chemical substances or entities with name in other languages. It’s also interesting to see the
performance of this model under different loss functions or different parameter settings including
entity embedding dimension and character embedding dimension.
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[16] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[18] Cı́cero Nogueira dos Santos and Bianca Zadrozny. Learning character-level representations for
part-of-speech tagging. In ICML, pages 1818–1826, 2014.

[19] Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, and William W Cohen.
Tweet2vec: Character-based distributed representations for social media. arXiv preprint
arXiv:1605.03481, 2016.

[20] Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris Dyer,
Alan W Black, and Isabel Trancoso. Finding function in form: Compositional character models
for open vocabulary word representation. arXiv preprint arXiv:1508.02096, 2015.

[21] Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi Choudhury, and Michael Gamon. Rep-
resenting text for joint embedding of text and knowledge bases. ACL Association for Compu-
tational Linguistics, 2015.

[22] Lidong Bing, Sneha Chaudhari, Richard C Wang, and William W Cohen. Improving distant
supervision for information extraction using label propagation through lists. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pages 524–529,
2015.

[23] Theano Development Team. Theano: A Python framework for fast computation of mathemat-
ical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[24] Sander Dieleman et al. Lasagne: First release., August 2015.
[25] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine

Learning Research, 9(Nov):2579–2605, 2008.

14


	Introduction
	Related Work
	Word Embeddings
	Knowledge Base Completion with Embeddings
	Recurrent Neural Networks

	Data & Problem Formulation
	Data
	FB15k Data Set
	Prescription Data Set

	Problem Formulation

	Approach
	TransE Model
	Bi-GRU RNN Embedding Model

	Experiments & Results
	TransE on Prescription Frequent Data Set
	Bi-GRU RNN Embedding on Prescription Unique Data Set

	Conclusion

