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Abstract

Background. An important problem in neuroscience is understanding what parts of the hu-
man brain work together. Neuroscientists often approach this problem by generating — largely
by hand — clusterings of points in and on the brain. From the point of view of statistics, the
relevant tools here are: (1) sparse inverse covariance estimators, which yield partial correlation
graphs, and (2) graph-based clustering methods, for clustering the graphs.

Aim. We apply a state-of-the-art estimator of the inverse covariance matrix, called PseudoNet,
as well as several graph-based clustering methods (including the well-known Louvain method),
to recently released functional magnetic resonance imaging (fMRI) data, in order to generate
an entirely data-driven clustering of the brain that reveals insights about how the brain works.

Data. As far as fMRI data go, the data we use is relatively new and good quality; the data
is from the Human Connectome Project, a research project started by the government to study
what parts of the brain work together. Specifically, the data we use is an (91, 282 × 91, 282)-
dimensional sample correlation matrix that is of size ≈ 30 GB.

Method. We take a two-step approach. First, we generate a partial correlation graph by
running the sample correlation matrix through PseudoNet. Then, we use a graph-clustering
method to generate clusters from the graph. We compare how close our clustering is to a state-
of-the-art, hand-crafted clustering from the neuroscience literature by using a variant of the
standard Jaccard score.

Results. Although our method is not perfect, it does capture some important features of
the brain known to neuroscientists.

Conclusion. The results we get are encouraging, suggesting that with a little more work,
we might be able to generate a clustering that is completely on par with (or better than), in
some sense, the hand-crafted one from the neuroscience literature.

Intellectual merit. As far as we can tell, there really does not seem to be a single paper
in either the neuroscience or statistics literatures that uses the latest in fMRI data as well as
statistical methodology to generate clusterings of the brain. This is probably because (1) fMRI
data tends to be very high-dimensional, ruling out many standard tools in a computational
scientist’s toolbox; (2) neuroscientists may simply, by and large, be unaware of the latest tools
in statistics; and (3) good quality fMRI data has only recently become widely available.

Broader impacts. Understanding which parts of the brain work together can help suggest
avenues for future research in neuroscience and medicine. Our method can also be applied to
other domains, e.g., genetics, finance, and energy, and might be useful there.

Keywords: sparse inverse covariance estimation; community detection; fMRI; brain.
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1 Introduction

Figure 1: The Brodmann areas, for the left hemi-
sphere of the brain.

An important, long-standing question in sys-
tems neuroscience is (colloquially speaking):
which parts of the brain work together? Having
an answer to this question is not only intellectu-
ally interesting, but also practically useful be-
cause it can help suggest avenues for further re-
search in neuroscience and medicine. Of course,
the question is somewhat ill-defined, so we must
make precise what we mean by the phrases
“parts” and “work together”. For “parts”, we
simply mean a set V ⊂ R3 of points/voxels that
lie in and on the brain (we make this still more
precise later, in Section 5). Turning to “work
together”, we leave this phrase a little less de-
fined, only taking it to mean: two (or more)
parts of the brain “work together” if they are
involved in accomplishing the same basic neuroscientific process, while a person is at rest. So, our
question amounts to essentially asking for a partition V1, . . . , Vk of the set of voxels V , possessing
some neuroscientific validity. In the neuroscience literature, these kinds of partitions are usu-
ally referred to as functional connectivity maps, functional connectomes, or parcellations, while in
statistics the term clustering is more common; in this report, we use all these terms interchangeably.

Obtaining a reasonable functional connectivity map has been a topic of interest in the neuroscience
community since at least the early 1900s, starting with Brodmann’s work on the so-called Brod-
mann areas, one of the first parcellations of the brain, which still has some use even today; see
Figure 1 to the right, for a lateral (i.e., side) picture of the Brodmann areas on the left hemisphere
of the brain. Recent work has focused on building parcellations, largely by hand and/or by using
simple computational methods, starting from high-quality functional magnetic resonance imaging
(fMRI)1 data; see, e.g., Eickhoff et al. (2015) for a good survey, as well as Glasser et al. (2016) for
a highly regarded approach here. On the other hand, a smaller stream of recent work has looked at
applying more sophisticated statistical methods, but using older low-dimensional fMRI data (Ryali
et al., 2012; Hsieh et al., 2013; Fu et al., 2015; Belilovsky et al., 2016; Wang et al., 2016). Notably,
what seems to be missing from the literature is a mostly/entirely data-driven, non-invasive (i.e.,
non-dissective) approach for generating a parcellation that leverages the latest in both fMRI data
and statistical methodology.

From a statistical point of view, an initial attempt at generating a parcellation is to simply apply
an off-the-shelf clustering algorithm to fMRI data; empirically, this approach fails to generate use-

1Recall that fMRI measures oxygen levels throughout the brain as a function of time, providing a dynamic picture
of the brain; by contrast, standard MRI does not measure oxygen, and only provides a static snapshot of the brain.
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ful results, at least in part because it is not entirely clear what metric and underlying probability
model are appropriate here. A more refined two-step approach is, at a high-level, as follows: (1)
generate an (unweighted or weighted) undirected graph, based on the (partial) correlations between
the voxels detected in the fMRI data, and then (2) apply a graph-based clustering algorithm to
generate a parcellation, based on the strength of the correlations. Methods for sparse inverse co-
variance estimation (see, e.g., Friedman et al. (2008); Peng et al. (2009); Ali et al. (2016a)) are
quite useful tools for the first step here, as they have been used to successfully generate conditional
independence, marginal correlation, and partial correlation graphs (Wasserman, 2016) from data in
many other domains, e.g., genetics (Friedman et al., 2008; Khare et al., 2015), finance (Won et al.,
2013; Khare et al., 2015; Ali et al., 2016a), and energy (Wytock and Kolter, 2013; Ali et al., 2016b,a).

In this report, we present an entirely data-driven method for generating a parcellation from recently
released high-dimensional fMRI data, by leveraging very recent advances in the sparse inverse co-
variance estimation and numerical linear algebra literatures; qualitatively, the method is able to
generate parcellations that match, in several important ways, a state-of-the-art parcellation gener-
ated largely by hand (Glasser et al., 2016). This is useful because it reduces the need for laborious
and potentially error-prone engineering by hand when making scientific discoveries; furthermore,
our method is fast, and also comes with a number of other computational and statistical guarantees,
which essentially assure us that the method is “doing the right thing” (under certain conditions).

An outline for the rest of this report is as follows. In Section 2, we review some related work, and
explain in a little more detail some of the concepts we touched on above. In Section 3, we succinctly
state our goals for this report. In Section 4, we describe our approach for generating a parcellation,
in some detail. In Section 5, we give the details on the fMRI data we use. In Section 6, we present
the results of applying our method for generating a parcellation to the fMRI data; in Section 6, we
also analyze the results. Finally, in Section 7, we wrap up with a brief look back at our findings.

2 Background and related work

We divide our review of relevant work into two parts: first we cover work coming out of the neu-
roscience literature, and then we cover work coming out of statistics.

As mentioned above, the study of functional connectivity maps was initiated, more or less, with
Brodmann’s seminal work in the early 1900s; of course, Brodmann’s maps were generated without
the benefit of the (non-invasive) fMRI data that we have access to these days. Another example
of a functional connectivity map, from the early days of research in this area, can be seen in Table
3 of Felleman and Van Essen (1991), which is essentially just an adjacency matrix, where the ver-
tices (i.e., rows/columns) are different regions of the cerebral cortex (i.e., the surface of the brain).
More recently, with the increasing availability of fMRI data, researchers have turned to generating
parcellations from data; the state-of-the-art here is really the work of Glasser et al. (2016), which
generates a parcellation by applying a multi-class, shallow neural network to high-quality fMRI
data recently released by the Human Connectome Project (much more on this data later, in Sec-
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tion 5), but then relies on domain knowledge in order to significantly post-processes the results by
hand. Although there is no universally agreed upon ground truth for parcellations of the brain,
the parcellation of Glasser et al. (2016) is highly regarded in parts of the neuroscience community
for at least a few reasons: (1) the authors used the latest available (and hence least noisy) fMRI
data, in addition to other data sources (e.g., the distribution of fat across the brain) and domain
knowledge (we use neither of these); (2) many of the clusters corroborate the independent findings
of neuroscientists studying specific parts of the brain; and (3) the clusters matched fMRI scans of
test subjects performing certain tasks.

Turning to the statistics literature, the work of Ryali et al. (2012) applies the SPACE estimator
of the inverse covariance matrix (Peng et al., 2009), except augmented with an additional squared
`2-norm penalty, to low-dimensional fMRI data.2 This approach turns out to be quite related to the
approach we pursue in this report, but it nonetheless suffers from some serious limitations that our
approach does not: (1) the criterion in defining optimization problem for the estimator in question
is nonconvex, meaning that the estimates generated by the method may not be globally optimal,
leading to interpretability issues and also meaning that it might be quite computationally expen-
sive to compute any estimate at all; (2) the estimates are not guaranteed to recover the correct
sparsity pattern under idealized conditions (see Corollary 4.5 in Ali et al. (2016a)), meaning that
the method might actually generate partial correlation graphs with missing edges; and (3) the work
uses older, lower-quality fMRI data: the spatial and temporal resolution, number of subjects, and
quality of the fMRI machines used are all lower than that of the more recent data made available
by the Human Connectome Project.

In terms of other statistical work, Hsieh et al. (2013) apply a method that they call BIG & QUIC
to some very high-dimensional fMRI data, in order to generate a conditional independence graph;
this is mostly done as a proof-of-concept of the method, as the qualitative analysis the authors
present is somewhat cursory. Fu et al. (2015) apply the graphical lasso algorithm of Friedman et al.
(2008) to older fMRI data, except with an `0-“norm” penalty instead of the usual `1-norm penalty,
making the corresponding optimization problem nonconvex. Finally, Belilovsky et al. (2016) appy
a pseudolikelihood-based estimator, with a deep neural network as the predictive primitive instead
of, say, a lasso regression, to fMRI data obtained from subjects with autism instead of the broader
population.

We mention again that, as far as we are aware of, there is really not a single piece of work in either
the neuroscience or statistical literatures that takes advantage of the very latest advances in both
fMRI data and statistical methodology in order to generate a useful parcellation.

2An interesting side note, for statisticians: the authors use stability selection (Meinshausen and Bühlmann, 2010)
to choose the tuning parameters for their method.
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3 Aim / problem statement

Here, we state more plainly the problem we are trying to solve in this report, deferring most of the
details to subsequent sections. As before, let V ⊂ R3 be a set of p = 91, 282 points/voxels lying
in and on the brain. Let X ∈ Rn×p be a data matrix, constructed by observing the values of the
p voxels across 1, 200 people, at different points in time, in an fMRI machine, and then averaging
over the people and points in time so that n = 5, 142 (and p = 91, 282, still). Now compute the
sample correlation matrix S, by standardizing the columns of X and then forming S = (1/n)XTX.
We want to use S to generate a clustering of the p voxels, that at least to some extent qualitatively
and quantitatively matches the results from Glasser et al. (2016), a highly regarded parcellation
from the neuroscience literature. Given the large value of p, we would also like the method we
use for generating the parcellation to be computationally efficient, and possess favorable statistical
properties.

4 Method

To help orient the reader, we first present an overview of our method for generating a parcellation;
each subsection then steps through the details.

4.1 Overview of method

Given a sample correlation matrix S ∈ Sp+, the set of (p × p)-dimensional positive semidefinite
matrices, generated from the raw fMRI data, . . .

1. . . . we first generate a partial correlation graph3 by passing the sample correlation matrix S
as the input to PseudoNet, a new method for for sparse inverse covariance estimation (see
Section 3.1 of Khare et al. (2015) as well as Ali et al. (2016a) for details). PseudoNet returns
an estimate Ω̂ of the underlying inverse covariance (correlation) matrix; the sparsity pattern
of Ω̂ yields an adjacency matrix for the partial correlation graph.

2. Next, we use an off-the-shelf graph-based clustering method (actually, we experiment with
three different methods) that generates a clustering C(Ω̂) from the partial correlation graph.

3. Finally, we measure the quality of a parcellation both qualitatively and quantitatively. Quali-
tatively, by visually inspecting the clustering C(Ω̂), and comparing it to what is known about
the brain from the systems neuroscience literature. Quantitatively, by computing a variant of
the Jaccard score, which is a classic measure that evaluates how similar two clusterings are,
relative to the parcellation generated by Glasser et al. (2016).

3Recall that a partial correlation graph is an undirected graph, where the vertices represent the variables (voxels,
for us) and an edge is placed between two vertices if and only if the partial correlation between the corresponding
variables is nonzero; when the underlying data-generating process is multivariate normal, then the partial correlation
graph exactly coincides with the (perhaps more familiar) conditional independence graph.
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4.2 Sparse inverse covariance estimation

Here, we describe PseudoNet in more detail. PseudoNet generates an estimate of the underlying
inverse covariance matrix, by solving the following convex optimization problem:

Ω̂(λ1, λ2) = argmin
Ω∈Rp×p

{
−1

2 log det(Ω2
diag) + n

2 TrSΩ2 + λ1‖Ωoff‖1 + λ2
2 ‖Ω‖

2
F

}
, (1)

where Ωdiag ∈ Rp×p is a diagonal matrix whose entries are the diagonal entries of Ω; Ωoff ∈ Rp×p is
a matrix whose off-diagonal entries are the off-diagonal entries of Ω, but its diagonal entries are set
to zero; S ∈ Rp×p is again the sample correlation matrix; ‖ · ‖1 is the elementwise `1-norm; ‖ · ‖F
is the Frobenius norm; and λ1, λ2 > 0 are tuning parameters.

Why PseudoNet? Compared to other estimators of the inverse covariance matrix, PseudoNet
possesses a number of useful properties that other estimators do not (see Ali et al. (2016a) for more
details): briefly, computing the PseudoNet estimate is (1) computationally fast and scalable, since
PseudoNet distributes some of its core numerical linear algebra work across a network of machines
(see the next paragraph for more details); (2) capable of handling non-Gaussian data, empirically
speaking; and (3) guaranteed to be unique, globally optimal, and recover the sparsity pattern of
the underlying inverse covariance matrix.

Optimization algorithm. PseudoNet uses a proximal gradient method to optimize the criterion
in (1); the important parts of the method are described in Algorithm 1. Assuming the iterates
Ω̂(1), Ω̂(2), . . . are sparse (but S is dense), it turns out that the runtime of a single iteration of
Algorithm 1 is dominated by the cost of computing the soft-thresholding operator, O(p2), and the
cost of the sparse-dense matrix-matrix multiplication4 SΩ, O(nnz(Ω) · p), where nnz counts the
number of nonzero entries in its argument. For large values of p, as is the case for us, the method
can be slow and require a lot of space; a distributed approach is therefore useful here. For all the
experiments in this report, we use the distributed SpDM3 method of Koanantakool et al. (2016)
for computing the product SΩ (as well as the product ΩS, by symmetry); the code for this version
of PseudoNet is available at: https://bitbucket.org/penpornk/spdm3-hpconcord.

Choice of tuning parameters. We computed the PseudoNet estimate at all combinations of
the tuning parameters

λ1 ∈ {0.5, 0.6132, 0.6388, 0.6931, 0.722} × λ2 ∈ {0.1024, 0.128, 0.16, 0.2, 0.25, 0.3125}.

The above grid of tuning parameter values was chosen based on trial and error: making λ1 or λ2

much bigger resulted in the identity matrix as the estimate, and making λ1, λ2 any smaller re-
sulted in an extremely dense estimate. For a single (λ1, λ2) pair on the grid, the proximal gradient
method took ≈ 37 minutes to run on an m4.4xlarge Amazon EC2 instance5, with MPI. We also

4The phrase “sparse-dense matrix-matrix multiplication” is often written as “SpDM3”, for short.
5The m4.4xlarge instance has 16 logical cores and 32 GB of RAM.
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Algorithm 1 Sketch of the proximal gradient method for computing the PseudoNet estimate

Input: sample correlation matrix S ∈ Sp+; tuning parameters λ1, λ2 > 0

Output: estimate of the inverse covariance matrix Ω̂
initialize starting point Ω ∈ Sp++ (the set of (p × p)-dimensional positive definite matrices);
optimization tolerance ε > 0; line search parameters τinit, β ∈ (0, 1)
repeat
• compute the gradient, g(Ω) = −Ω−1

diag+ n
2 (SΩ+ΩS)+λ2Ω, of the smooth part of the criterion

in (1) evaluated at Ω; compute SΩ (and ΩS) in a distributed fashion, using the SpDM3 method
of Koanantakool et al. (2016)
• choose the step size τ via backtracking line search, using the parameters τinit, β
• update Ω← prox(λ1τ)‖·‖1(Ω−τg(Ω)), where proxα‖·‖1 is the proximal operator of z 7→ ‖z‖1
with parameter α > 0, i.e., the soft-thresholding operator (Parikh and Boyd, 2013)

until some stopping criterion is satisfied
output the estimate Ω̂← Ω

used warm-starting, from tuning parameter-to-tuning parameter, to further accelerate the method.
Later, in Section 6, we present the results for all the estimates, and then compare them qualitatively
as well as quantitatively.

We briefly mention two other potential directions here. First, as Section S.1.2 of the supplementary
material for Ali et al. (2016a) suggests, we could have used, say, cross-validation to pick a single
(λ1, λ2) pair to report that optimizes a quantity resembling the Bayesian Information Criterion;
however, for this report, we are most interested in seeing visually how the parcellation changes with
the tuning parameters. Second, as Section S.1.3 suggests, we could have used sequential strong
screening rules (Tibshirani et al., 2012), from tuning parameter-to-tuning parameter, to accelerate
the proximal gradient method; however, these rules generate solutions that are not guaranteed
to satisfy the Karush-Kuhn-Tucker conditions (although, empirically, the rules seem to work very
well).

Where does the criterion in (1) come from? The criterion in (1) may look a little mysterious.
In the supplement, we motivate it by showing that it follows quite naturally from basic arguments
about partial correlations; the criterion can also be seen as a generalization of the criterion for the
graphical lasso.

Sample correlation matrices vs. sample covariance matrices. Even though PseudoNet
was originally desgined to accept a sample covariance matrix as input (see Section 2 in Ali et al.
(2016a)), passing in a sample correlation matrix does not really change anything, for our purposes;
this is important for us because the sample covariance matrix is not readily available to us (but
the sample correlation matrix is). The reason for nothing really changing is because using the
sample correlation matrix is equivalent to just working with the standardized variables X1, . . . , Xp;
assuming standardized variables, the sample correlation matrix actually is the sample covariance
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matrix for the transformed variables. Furthermore, let Ω̂ be the PseudoNet estimate for the trans-
formed variables. Then Ω̂−1 is an estimate of the underlying covariance matrix for the transformed
variables, in which case

D̂−1Ω̂−1D̂−1

is an estimate of the underlying covariance matrix for the untransformed variables, where D̂ is a
diagonal matrix whose entries are the sample standard deviations. So,

(D̂−1Ω̂−1D̂−1)−1 = D̂Ω̂D̂

is an estimate of the underlying inverse covariance matrix for the untransformed (but still zero
mean) variables, because D̂ is diagonal with strictly positive entries and Ω̂ is positive definite.
Finally, we get that

the sparsity pattern of Ω̂ = the sparsity pattern of D̂Ω̂D̂,

since again D̂ is diagonal with strictly positive entries; thus we can still generate a partial correlation
graph for the untransformed variables, even by working with the sample correlation matrix.

4.3 Graph-based clustering

Having computed a partial correlation graph from the PseudoNet estimate Ω̂, we consider three
different methods for computing a clustering from the graph.

1. Connected components. We use a standard algorithm (Pearce, 2005) for identifying the con-
nected components in the partial correlation graph. Unfortunately, for all the PseudoNet
estimates we compute in previous subsection, the algorithm identifies only a single connected
component, making this approach not too useful; consequently, we do not report any results
for this approach.

2. Louvain method. We use a standard algorithm for community detection, called the Louvain
method (Blondel et al., 2008). The Louvain method generates a range of clusterings, going
from ones with many clusters (i.e., finer clusterings) to ones with a few (i.e., coarser). Em-
pirically, the Louvain method has been observed to run in O(p log p) time, which is quite fast,
making it a much better choice than other graph-based clustering algorithms, e.g., spectral
clustering, which requires an eigenvalue decomposition.

3. Persistent homology. We use an off-the-shelf Python package from the persistent homology
literature (Morozov, 2016), for computing a clustering from the degree matrix for the graph
generated by PseudoNet.

4.4 Measuring the quality of a clustering

To evaluate a clustering C(Ω̂) generated by our workflow, we compare the clustering to the clustering
CGlas given in Glasser et al. (2016), using a variation of the standard Jaccard score: we compute

Jacc(C(Ω̂), CGlas) =
1

2

(
J(C(Ω̂), CGlas) + J(CGlas, C(Ω̂))

)
, (2)
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where

J(A,B) =
k∑
i=1

max
j=1,...,`

|Ai ∩Bj |
|Ai ∪Bj |

for two clusterings A = {A1, . . . , Ak} and B = {B1, . . . , B`}.

Trying other metrics, e.g., the variation of information introduced by Meilă (2003), for measuring
the similarity between two clusterings is certainly worthwhile, as different metrics have different
strengths/weaknesses; we leave this kind of investigation to future work. The Jaccard score in
particular is useful, at least in part because it is easy to compute and explain.

5 Data

As far as fMRI data goes, the data we use is relatively newer and of higher quality. The data was
generated by the Human Connectome Project (Smith et al., 2013), a research project initiated in
2011 by two National Institutes of Health (NIH) grants given to a group of 10 universities; the goal
of the project is to understand how the various parts of the cerebral cortex work together.6

The data that we use was generated as follows. First, 1,200 subjects were put into a state-of-the-art
fMRI machine (see the left panel of Figure 2) and measurements were taken, while the subjects
were at rest (i.e., without stimulating the subjects), every 0.7 seconds for an hour, at 2 millimeter
× 2 millimeter × 2 millimeter cubes/voxels spread evenly throughout the cerebral cortex. Next,
as fMRI data is typically very noisy, a significant amount of post-processing was done to denoise
the data, ultimately leading to a data matrix with dimensions ≈ 6, 171, 400 × 91, 282. To further
reduce the level of noise, the columns of the data matrix were then averaged over the 1,200 subjects,
leading to a data matrix with dimensions ≈ 5, 142 × 91, 282. Finally, a sample correlation matrix
with dimensions 91, 282× 91, 282 (and of size ≈ 30 GB) was computed, which is used as input for
PseudoNet. Figure 2 of Smith et al. (2013) provides a nice overview of the data generation process;
for convenience, we present the figure here, in the right panel of Figure 2.

Table 1 presents some basic statistics for this sample correlation matrix; somewhat more interest-
ingly, in Figure 3 we plot the empirical quantile function for the off-diagonal entries of this sample
correlation matrix, i.e., the x-axis represents a level α ∈ [0, 1], while the y-axis represents the small-
est threshold Q(α) below which (100 ·α) percent of the entries fall. The gently-upward-sloping line
segment in the middle of the plot indicates that lots of the entries in the sample correlation matrix
are ≤ 0.6, meaning that most voxels are weakly correlated with most other voxels, i.e., there is
some strong signal in the data, but also a lot of noise.

Finally, we mention that the entire sample correlation matrix is available at:
https://db.humanconnectome.org/data/projects/HCP_1200.

6For the curious reader: the Human Connectome Project is related to but distinct from the BRAIN Initiative
started by the Obama Administration, in 2012.

9 of 34 11-29-2017 at 23:02



DAP Final Version

Figure 2: Left: an fMRI machine. Right: an overview of the process used to generate the sample correlation
matrix we use; taken from Figure 2 of Smith et al. (2013).

Minimum value -0.5355

Maximum value 1.0000

Average value 0.1803

Median value 0.1491

Standard deviation 0.1590

Table 1: Some basic statistics about the entries of
the sample correlation matrix we use.

Figure 3: The empirical quantile function for the
off-diagonal entries of the sample correlation matrix
that we use, showing the level of signal vs. noise in
the data.

10 of 34 11-29-2017 at 23:02



DAP Final Version

6 Results and discussion

The top and middle rows of Table 2 present the best clusterings generated by PseudoNet followed
by the persistent homology and Louvain methods, respectively, when compared to the clusterings
of Glasser et al. (2016) presented in Figure 4, according to the (modified) Jaccard score. We addi-
tionally consider a simple baseline, given by discarding {99, 99.1, . . . , 99.8, 99.9, 99.91, . . . , 99.98,
99.99}% of the sample covariance matrix entries: i.e., keep entries with the largest magnitudes
(c.f. Mazumder and Hastie (2012)) in order to generate (marginal) correlation graphs; this baseline
lets us probe the comparative advantage of using marginal vs. partial correlations. The bottom
row of Table 2 presents the best clusterings generated by this baseline, i.e., thresholding the sample
covariance matrix at various levels. The left and middle columns present the results for the left
and right hemispheres, respectively. We see that the persistent homology clusterings perform the
best, in terms of Jaccard score, across both hemispheres.

Qualitatively, we see that the persistent homology clusterings are able to identify several clusters
of interest to the neuroscience community (c.f. Figure 3 in Glasser et al. (2016)); this is certainly
encouraging, since we do not expect perfect recovery of all the clusters in Figure 4, as the latter
clusters rely on a significant amount of domain knowledge. Some examples:

• Generally speaking, the Glasser et al. (2016), Louvain, and persistent homology method
parcellations all exhibit some similarities across the temporal cortex (a part of the brain used
for receiving information from the senses); Louvain perhaps does a little better than the
persistent homology method here.

• Louvain and the persistent homology method both seem to pick up on area 55b, a part of the
brain used for listening.

• Louvain and the persistent homology method both pick up on the lateral intraparietal cortex
(LIPv), an area involved in controlling the eyes.

• The persistent homology method seems to identify the middle temporal visual area (MT),
also known as area V5, involved in seeing moving objects, while Louvain appears to miss it.

• Finally, the persistent homology method picks up on Brodmann’s area 44, used for listening
and speaking, while Louvain misses it.

Overall, based on the above observations, it appears that the parcellation generated by the persis-
tent homology method gets a slight edge over Louvain; on the other hand, the clusterings generated
by the sample covariance matrix seem to miss the above clusters, as they appear overly smooth.

Lastly, it is also interesting to analyze the sparsity patterns of the PseudoNet and sample covariance
matrix estimates yielding the best clusterings; these are presented in the right column of Table 2.
Three features here are striking:

1. The PseudoNet estimates possess a block diagonal structure, where the blocks turn out to
correspond to the left and right hemispheres.
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2. Second, the sparsity patterns of the blocks themselves turn out to correspond to the (spatially)
closest voxels. In Figure 5, we present the sparsity pattern, of the left hemisphere only (for
simplicity), of the PseudoNet estimate associated with the top left plot of Table 2; in Figure
5, we also present the sparsity pattern of a matrix we constructed, where the (i, j)th entry
of the matrix is the great-circle distance between the voxels i and j, after retaining only
0.1% of closest voxels. The sparsity patterns of the distance matrix and PseudoNet estimate
indeed look visually similar, suggesting that the PseudoNet estimate has recovered some of
the spatial signal in the data, without being “told” to do so. Inspecting the right hemisphere
conveys the same message.

3. Third, although the sparsity patterns of the PseudoNet and sample covariance matrix es-
timates appear vaguely similar, the subtle differences between them drive the (significant)
differences in the clusterings. We emphasize that these features arise naturally, without be-
ing hard-coded into our method.

The actual Jaccard scores, as well as a significantly expanded set of results, can be found in the
supplement.

Figure 4: The clusterings from Glasser et al.
(2016), for the left and right hemispheres of the
brain; the clusterings were generated by applying
a multi-class, shallow neural network to the same
data we use (Smith et al., 2013), but use a signifi-
cant amount of domain knowledge in order to post-
processes the results by hand. The colors have no
significance, except to demarcate the different clus-
ters.
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λ1 = 0.48, λ2 = 0.39, ε = 3, λ1 = 0.5, λ2 = 0.39, ε = 3, λ1 = 0.48, λ2 = 0.39, ε = 3,
% of best score = 100 % of best score = 100 % of best score = 100

λ1 = 0.64, λ2 = 0.13, k = 1, λ1 = 0.5425, λ2 = 0.39, k = 0, λ1 = 0.64, λ2 = 0.13, k = 1,
% of best score = 75.03 % of best score = 73.45 % of best score = 75.03

t = 99.9, k = 4, t = 99.9, k = 3, t = 99.9, k = 4
% of best score = 32.24 % of best score = 32.45 % of best score = 32.24

Table 2: Top row: the best clusterings generated by PseudoNet followed by the persistent homology method,
relative to the clusterings of Glasser et al. (2016) presented in Figure 4, according to the (modified) Jaccard
score; the left and middle columns present the results for the left and right hemispheres, respectively, while
the right column presents the sparsity pattern (black indicates a nonzero entry) of the PseudoNet estimate
yielding the best clustering for the left hemisphere (the sparsity patterns for the right hemisphere are in the
supplement). Middle row: the same plots, except for PseudoNet followed by the Louvain method. Bottom
row: the same plots, except generated by thresholding the sample covariance matrix at various levels.
Indicated below each clustering is the percentage of the best Jaccard score it attains (higher is better); since
the persistent homology clusterings perform the best, these percentages are just 100. The actual Jaccard
scores, as well as a significantly expanded set of results, can be found in the supplement. Also indicated are
the tuning parameter values yielding the clusterings (i.e., λ1, λ2 for PseudoNet; ε ≥ 0, k ∈ Z+ controlling
the number of clusters for the persistent homology and Louvain methods, respectively; and t denoting the
percentage of discarded sample covariance matrix entries). The colors in the various plots have no special
meaning.
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Figure 5: Left: the sparsity pattern of the PseudoNet estimate associated with the top left plot of Table
2, where we have only plotted the 29,696 coordinates belonging to the surface of the left hemisphere (for
simplicity). Right: the sparsity pattern of a (91, 282 × 91, 282)-dimensional (symmetric) matrix we con-
structed, whose (i, j)th entry is the great-circle distance between the voxels i and j, where we have (again)
only plotted the 29,696 coordinates belonging to the left hemisphere, and additionally retained just the 0.1%
of closest voxels. In both plots, black indicates a nonzero entry.

7 Conclusion

In this report, we looked at applying methods from statistics and numerical linear algebra to
high-quality, high-dimensional fMRI data in order to generate a parcellation of the human brain;
data-driven parcellations, like ours, are useful because they can reduce the need for laborious hand-
crafted parcellations, and also help drive research agendas in neuroscience and medicine. Although
the parcellations we generated were not perfect compared to Glasser et al. (2016), they still captured
some features of the brain that are known to the neuroscience community; our approach is also
general enough that it could be applied in other domains, e.g., genetics, finance, and energy, without
much modification, perhaps yielding insights there, as well. There is also certainly room to fine-tune
our approach. For example, we could (and should) consider evaluating the statistical significance
of our results; along these lines, it would be interesting to report results, where we use a model
selection criterion to pick the “best” clustering (as opposed to searching for the best clustering, as
we have done here). Finally, it would be interesting to apply the SpDM3 method for computing the
product SΩ (in a distributed fashion) to other sparse inverse covariance estimators, e.g., a proximal
gradient method applied to the graphical lasso criterion.
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Supplementary material

7.1 Where does the criterion in (1) come from?

Here, we motivate the criterion in (1) by showing that it follows quite naturally from basic argu-
ments about partial correlations; some of these ideas are spread out across Khare et al. (2015) and
Ali et al. (2016a), but we consolidate them here.

The connections between partial correlations and linear regression (i.e., that the coefficients in a
pseudolikelihood regression are related to the elements of the inverse covariance matrix as well as
the partial correlations, in a specific way) are old; Equations 2 and 3 in Kolar et al. (2010) recall
the ideas cleanly, and start us off on the right foot. From these equations, a reasonable criterion
for sparse inverse covariance estimation might be

−1

2
log det Ω2

diag +
1

2

p∑
i=1

Ω2
ii

∥∥∥∥∥∥Xi −
p∑
j 6=i
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√
Ωjj

Ωii
Xj
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2

2

+ λ1‖Ωoff‖1 +
λ2

2
‖Ω‖2F ,

with variables W,Ω ∈ Rp×p, where W is a (symmetric) matrix containing the partial correlations.
Above, the extra Ω2

ii term outside the squared Euclidean norm can be thought of as a weighting
factor on each term in the sum, while the − log det Ω2

diag term can be thought of as preventing the
diagonal entries of Ω from getting too small.

Now, plugging in Equation 1 from Kolar et al. (2010), i.e.,

Wij =
−Ωij√
ΩiiΩjj

,
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we get that
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which is precisely the criterion in (1); the criterion can also be seen as a generalization of the
criterion for the graphical lasso.

7.2 Expanded set of results

Here, we provide an expanded set of figures and tables, that present (some more of) the clusterings
generated by PseudoNet, as well as thresholding the sample covariance matrix at various levels,
followed by the persistent homology and Louvain methods, at some values of each method’s tuning
parameters; our intent is simply to give the reader a sense of how the clusterings can vary with
each method’s tuning parameters. To help orient the reader, we include the following guide to the
expanded results.

• Table 3 presents the clusterings, for the left hemisphere, generated by PseudoNet followed
by the persistent homology method, at the tuning parameter values: ε = 3 (generally corre-
sponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 4. Table 13
presents the Jaccard scores (2) for these clusterings.

• Table 4 presents the clusterings, for the right hemisphere, generated by PseudoNet followed
by the persistent homology method, at the tuning parameter values: ε = 3 (generally corre-
sponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 4. Table 14
presents the Jaccard scores (2) for these clusterings.
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• Table 5 presents the clusterings, for the left hemisphere, generated by PseudoNet followed
by the persistent homology method, at the tuning parameter values: ε = 3 (generally corre-
sponding to more clusters) as well as all the λ1, λ2 values we describe in Section 4. Table 15
presents the Jaccard scores (2) for these clusterings.

• Table 6 presents the clusterings, for the right hemisphere, generated by PseudoNet followed
by the persistent homology method, at the tuning parameter values: ε = 0 (generally corre-
sponding to more clusters) as well as all the λ1, λ2 values we describe in Section 4. Table 16
presents the Jaccard scores (2) for these clusterings.

• Table 7 presents the clusterings, for the left hemisphere, generated by PseudoNet followed
by the Louvain method, at the tuning parameter values: k = 0 (generally corresponding to
fewer clusters) as well as all the λ1, λ2 values we describe in Section 4. Table 17 presents the
Jaccard scores (2) for these clusterings.

• Table 8 presents the clusterings, for the right hemisphere, generated by PseudoNet followed
by the Louvain method, at the tuning parameter values: k = 0 (generally corresponding to
fewer clusters) as well as all the λ1, λ2 values we describe in Section 4. Table 18 presents the
Jaccard scores (2) for these clusterings.

• Table 9 presents the clusterings, for the left hemisphere, generated by PseudoNet followed
by the Louvain method, at the tuning parameter values: the largest value of k considered by
Louvain (generally corresponding to more clusters) as well as all the λ1, λ2 values we describe
in Section 4. Table 19 presents the Jaccard scores (2) for these clusterings.

• Table 10 presents the clusterings, for the right hemisphere, generated by PseudoNet followed
by the Louvain method, at the tuning parameter values: the largest value of k considered by
Louvain (generally corresponding to more clusters) as well as all the λ1, λ2 values we describe
in Section 4. Table 20 presents the Jaccard scores (2) for these clusterings.
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λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48

λ1 = 0.5

λ1 = 0.5208

λ1 = 0.5425

λ1 = 0.5651

λ1 = 0.5887

λ1 = 0.6132

λ1 = 0.6388

λ1 = 0.6654

λ1 = 0.6931

λ1 = 0.722 —

Table 3: The clusterings, for the left hemisphere, generated by PseudoNet followed by the persistent homology method, at the
tuning parameter values: ε = 3 (generally corresponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 4.
Table 13 presents the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either
all the voxels into a single cluster or each voxel into its own cluster.



λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48

λ1 = 0.5

λ1 = 0.5208

λ1 = 0.5425

λ1 = 0.5651

λ1 = 0.5887

λ1 = 0.6132

λ1 = 0.6388

λ1 = 0.6654

λ1 = 0.6931

λ1 = 0.722 —

Table 4: The clusterings, for the right hemisphere, generated by PseudoNet followed by the persistent homology method, at the
tuning parameter values: ε = 3 (generally corresponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 4.
Table 14 presents the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either
all the voxels into a single cluster or each voxel into its own cluster.



λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48

λ1 = 0.5
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λ1 = 0.5651

λ1 = 0.5887

λ1 = 0.6132

λ1 = 0.6388

λ1 = 0.6654

λ1 = 0.6931

λ1 = 0.722

Table 5: The clusterings, for the left hemisphere, generated by PseudoNet followed by the persistent homology method, at the
tuning parameter values: ε = 3 (generally corresponding to more clusters) as well as all the λ1, λ2 values we describe in Section 4.
Table 15 presents the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either
all the voxels into a single cluster or each voxel into its own cluster.



λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883
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Table 6: The clusterings, for the right hemisphere, generated by PseudoNet followed by the persistent homology method, at the
tuning parameter values: ε = 0 (generally corresponding to more clusters) as well as all the λ1, λ2 values we describe in Section 4.
Table 16 presents the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either
all the voxels into a single cluster or each voxel into its own cluster.



λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48

λ1 = 0.5
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Table 7: The clusterings, for the left hemisphere, generated by PseudoNet followed by the Louvain method, at the tuning parameter
values: k = 0 (generally corresponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 4. Table 17 presents
the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either all the voxels into a
single cluster or each voxel into its own cluster.



λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48

λ1 = 0.5

λ1 = 0.5208

λ1 = 0.5425

λ1 = 0.5651

λ1 = 0.5887

λ1 = 0.6132

λ1 = 0.6388

λ1 = 0.6654

λ1 = 0.6931

λ1 = 0.722

Table 8: The clusterings, for the right hemisphere, generated by PseudoNet followed by the Louvain method, at the tuning
parameter values: k = 0 (generally corresponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 4. Table
18 presents the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either all the
voxels into a single cluster or each voxel into its own cluster.



λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48

λ1 = 0.5
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λ1 = 0.5425

λ1 = 0.5651

λ1 = 0.5887

λ1 = 0.6132

λ1 = 0.6388

λ1 = 0.6654

λ1 = 0.6931

λ1 = 0.722

Table 9: The clusterings, for the left hemisphere, generated by PseudoNet followed by the Louvain method, at the tuning parameter
values: the largest value of k considered by Louvain (generally corresponding to more clusters) as well as all the λ1, λ2 values we
describe in Section 4. Table 19 presents the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate
clustering that puts either all the voxels into a single cluster or each voxel into its own cluster.



λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48

λ1 = 0.5

λ1 = 0.5208

λ1 = 0.5425

λ1 = 0.5651

λ1 = 0.5887

λ1 = 0.6132

λ1 = 0.6388

λ1 = 0.6654

λ1 = 0.6931

λ1 = 0.722

Table 10: The clusterings, for the right hemisphere, generated by PseudoNet followed by the Louvain method, at the tuning
parameter values: the largest value of k considered by Louvain (generally corresponding to more clusters) as well as all the λ1, λ2
values we describe in Section 4. Table 20 presents the Jaccard scores (2) for these clusterings. “—”, if present, indicates a degenerate
clustering that puts either all the voxels into a single cluster or each voxel into its own cluster.
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t = 99 t = 99.9 t = 99.99

Table 11: The clusterings, for the left and right hemispheres (see the top and bottom rows, respectively),
generated by thresholding the sample covariance matrix at various levels t followed by the Louvain method,
at the tuning parameter values: k = 0 (generally corresponding to fewer clusters) as well as all the λ1, λ2
values we describe in Section 4.
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t = 99 t = 99.9 t = 99.99

Table 12: The clusterings, for the left and right hemispheres (see the top and bottom rows, respectively),
generated by thresholding the sample covariance matrix at various levels t followed by the Louvain method,
at the tuning parameter values: the largest value of k considered by Louvain (generally corresponding to
more clusters) as well as all the λ1, λ2 values we describe in Section 4.

λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.2043 0.2199 0.2242 0.2326 0.2277 0.2422 0.2447 0.23
λ1 = 0.5 0.2112 0.224 0.2315 0.2329 0.2343 0.2283 0.2197 0.2185
λ1 = 0.5208 0.1964 0.1895 0.2264 0.2385 0.2317 0.2282 0.2348 0.2358
λ1 = 0.5425 0.1905 0.1972 0.1951 0.2181 0.2268 0.2295 0.2289 0.2255
λ1 = 0.5651 0.1833 0.197 0.1973 0.1981 0.2125 0.2268 0.2242 0.2213
λ1 = 0.5887 0.1838 0.1845 0.1992 0.2067 0.1953 0.2057 0.2078 0.2155
λ1 = 0.6132 0.1702 0.1752 0.198 0.1995 0.2121 0.2014 0.2036 0.1891
λ1 = 0.6388 0.1698 0.1693 0.1864 0.1837 0.1859 0.191 0.1831 0.1785
λ1 = 0.6654 0.1538 0.1854 0.1759 0.1701 0.1748 0.1844 0.1805 0.1467
λ1 = 0.6931 0.1652 0.1689 0.1664 0.1686 0.1722 0.162 0.1472 0.0516
λ1 = 0.722 0.1382 0.1536 0.1556 0.1536 0.1442 0.1394 0.0758 —

Table 13: The Jaccard scores (2) for the clusterings of the left hemisphere in Table 3, generated by PseudoNet followed by
the persistent homology method, at the tuning parameter values: ε = 3 (generally corresponding to fewer clusters) as well
as all the λ1, λ2 values we describe in Section 4. “—”, if present, indicates a degenerate clustering that puts either all the
voxels into a single cluster or each voxel into its own cluster.
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λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.2258 0.2315 0.2461 0.2279 0.2451 0.2436 0.2311 0.2431
λ1 = 0.5 0.2036 0.2245 0.2328 0.2326 0.2427 0.2314 0.2654 0.2528
λ1 = 0.5208 0.2255 0.2166 0.2317 0.2311 0.2427 0.2399 0.2381 0.2417
λ1 = 0.5425 0.21 0.2172 0.232 0.2355 0.2279 0.2299 0.245 0.2349
λ1 = 0.5651 0.2233 0.2182 0.2236 0.2341 0.2367 0.231 0.2286 0.2413
λ1 = 0.5887 0.2055 0.2187 0.2179 0.2369 0.2261 0.2321 0.2279 0.2067
λ1 = 0.6132 0.1843 0.2002 0.2245 0.2224 0.2113 0.219 0.2256 0.21
λ1 = 0.6388 0.1817 0.1843 0.2024 0.204 0.2154 0.2161 0.1981 0.1826
λ1 = 0.6654 0.1786 0.1678 0.1824 0.1891 0.1952 0.1749 0.1851 0.1273
λ1 = 0.6931 0.1652 0.1714 0.1686 0.1736 0.1714 0.1702 0.1284 0.061
λ1 = 0.722 0.1372 0.1562 0.162 0.1563 0.1364 0.1264 0.0875 —

Table 14: The Jaccard scores (2) for the clusterings of the right hemisphere, generated by PseudoNet followed by the
persistent homology method, at the tuning parameter values: ε = 3 (generally corresponding to fewer clusters) as well as all
the λ1, λ2 values we describe in Section 4. “—”, if present, indicates a degenerate clustering that puts either all the voxels
into a single cluster or each voxel into its own cluster.

λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.0507 0.051 0.0527 0.0532 0.0511 0.0503 0.051 0.0518
λ1 = 0.5 0.053 0.0518 0.052 0.0519 0.0526 0.0531 0.0517 0.0516
λ1 = 0.5208 0.0517 0.0519 0.0527 0.0517 0.0524 0.0526 0.0522 0.0536
λ1 = 0.5425 0.0522 0.0519 0.0509 0.0516 0.0516 0.0514 0.0532 0.0533
λ1 = 0.5651 0.0514 0.0524 0.0512 0.0528 0.0529 0.0518 0.0518 0.0533
λ1 = 0.5887 0.0498 0.0524 0.0534 0.0521 0.0522 0.0521 0.0526 0.0532
λ1 = 0.6132 0.0504 0.0501 0.0531 0.052 0.0523 0.0529 0.0523 0.0505
λ1 = 0.6388 0.053 0.052 0.0494 0.0502 0.0517 0.0502 0.0516 0.0543
λ1 = 0.6654 0.0526 0.0529 0.0536 0.0533 0.0537 0.0506 0.0535 0.0558
λ1 = 0.6931 0.0529 0.054 0.0518 0.052 0.0532 0.0543 0.0566 0.0815
λ1 = 0.722 0.0549 0.0528 0.0525 0.0534 0.056 0.0561 0.0718 0.0884

Table 15: The Jaccard scores (2) for the clusterings of the left hemisphere, generated by PseudoNet followed by the
persistent homology method, at the tuning parameter values: ε = 3 (generally corresponding to more clusters) as well as all
the λ1, λ2 values we describe in Section 4. “—”, if present, indicates a degenerate clustering that puts either all the voxels
into a single cluster or each voxel into its own cluster.
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λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.0532 0.0506 0.0519 0.0516 0.0522 0.0521 0.0516 0.0508
λ1 = 0.5 0.0538 0.0536 0.0513 0.0512 0.0515 0.0525 0.0524 0.0506
λ1 = 0.5208 0.052 0.0519 0.0521 0.0509 0.0527 0.0517 0.0522 0.0509
λ1 = 0.5425 0.0505 0.0523 0.0528 0.0532 0.0511 0.0529 0.0526 0.0522
λ1 = 0.5651 0.0523 0.0501 0.0513 0.0513 0.053 0.0521 0.0512 0.0528
λ1 = 0.5887 0.0516 0.0528 0.0504 0.0515 0.0518 0.0515 0.0523 0.0511
λ1 = 0.6132 0.0505 0.0517 0.0525 0.0534 0.0511 0.0516 0.0543 0.0534
λ1 = 0.6388 0.0514 0.0543 0.0516 0.0522 0.0519 0.0533 0.0532 0.0544
λ1 = 0.6654 0.0544 0.0528 0.0514 0.0518 0.0525 0.0529 0.0565 0.061
λ1 = 0.6931 0.0527 0.0555 0.0525 0.0528 0.055 0.0529 0.0597 0.0845
λ1 = 0.722 0.0535 0.0524 0.0535 0.0527 0.0553 0.0566 0.0698 0.0918

Table 16: The Jaccard scores (2) for the clusterings of the right hemisphere, generated by PseudoNet followed by the
persistent homology method, at the tuning parameter values: ε = 0 (generally corresponding to more clusters) as well as all
the λ1, λ2 values we describe in Section 4. “—”, if present, indicates a degenerate clustering that puts either all the voxels
into a single cluster or each voxel into its own cluster.

λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.1069 0.1101 0.0956 0.1042 0.1015 0.0958 0.0901 0.0905
λ1 = 0.5 0.1123 0.1076 0.1065 0.102 0.1089 0.1053 0.1007 0.107
λ1 = 0.5208 0.1097 0.111 0.1092 0.1096 0.1065 0.0982 0.1001 0.105
λ1 = 0.5425 0.1313 0.1123 0.1148 0.1085 0.1166 0.1143 0.1065 0.117
λ1 = 0.5651 0.1258 0.1216 0.1134 0.1167 0.1164 0.1097 0.1151 0.12
λ1 = 0.5887 0.129 0.1228 0.1233 0.1091 0.1203 0.1205 0.1238 0.1188
λ1 = 0.6132 0.1337 0.1294 0.1298 0.1289 0.1185 0.1285 0.1231 0.1455
λ1 = 0.6388 0.1477 0.1368 0.1363 0.1296 0.131 0.1344 0.1473 0.1517
λ1 = 0.6654 0.1486 0.1486 0.1458 0.1405 0.1488 0.1534 0.1486 0.1583
λ1 = 0.6931 0.1469 0.1453 0.1512 0.1483 0.146 0.1627 0.1706 0.0273
λ1 = 0.722 0.1581 0.1608 0.1557 0.1608 0.1661 0.1779 0.0461 0.0061

Table 17: The Jaccard scores (2) for the clusterings of the left hemisphere, generated by PseudoNet followed by the Louvain
method, at the tuning parameter values: k = 0 (generally corresponding to fewer clusters) as well as all the λ1, λ2 values we
describe in Section 4. “—”, if present, indicates a degenerate clustering that puts either all the voxels into a single cluster
or each voxel into its own cluster.
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λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.1105 0.1014 0.1034 0.1042 0.0988 0.0976 0.0976 0.0935
λ1 = 0.5 0.1084 0.1064 0.1011 0.1105 0.1003 0.1012 0.0992 0.1022
λ1 = 0.5208 0.1263 0.1059 0.1195 0.1056 0.0995 0.1059 0.1 0.1051
λ1 = 0.5425 0.122 0.1167 0.1113 0.1111 0.0997 0.1085 0.1125 0.0997
λ1 = 0.5651 0.1219 0.1212 0.1144 0.1022 0.1044 0.1109 0.1029 0.1189
λ1 = 0.5887 0.1218 0.1205 0.1184 0.1219 0.1159 0.1202 0.1183 0.135
λ1 = 0.6132 0.132 0.1259 0.1339 0.1265 0.1269 0.124 0.1294 0.1361
λ1 = 0.6388 0.1362 0.1364 0.1289 0.1286 0.1318 0.1279 0.1357 0.158
λ1 = 0.6654 0.1483 0.1451 0.1428 0.142 0.1438 0.1498 0.1626 0.1675
λ1 = 0.6931 0.1518 0.1552 0.1451 0.1473 0.1552 0.1671 0.1736 0.027
λ1 = 0.722 0.1648 0.1725 0.1556 0.1607 0.1643 0.1758 0.0482 0.0061

Table 18: The Jaccard scores (2) for the clusterings of the right hemisphere, generated by PseudoNet followed by the
Louvain method, at the tuning parameter values: k = 0 (generally corresponding to fewer clusters) as well as all the λ1, λ2
values we describe in Section 4. “—”, if present, indicates a degenerate clustering that puts either all the voxels into a single
cluster or each voxel into its own cluster.

λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.1678 0.1666 0.154 0.14 0.1297 0.135 0.1311 0.1284
λ1 = 0.5 0.1632 0.1778 0.1595 0.1515 0.1537 0.1454 0.128 0.1422
λ1 = 0.5208 0.1578 0.1719 0.1589 0.1663 0.1604 0.1572 0.145 0.1609
λ1 = 0.5425 0.1538 0.1572 0.166 0.1542 0.1702 0.1689 0.1684 0.1569
λ1 = 0.5651 0.1503 0.1602 0.1541 0.1473 0.1561 0.1587 0.1502 0.155
λ1 = 0.5887 0.1526 0.158 0.1537 0.1622 0.1564 0.1547 0.149 0.1338
λ1 = 0.6132 0.1438 0.1425 0.154 0.1487 0.151 0.1489 0.1327 0.1191
λ1 = 0.6388 0.1414 0.1453 0.134 0.1431 0.1393 0.1357 0.1238 0.0967
λ1 = 0.6654 0.1252 0.1263 0.1403 0.1301 0.1279 0.1196 0.0987 0.0653
λ1 = 0.6931 0.1137 0.1159 0.1161 0.1163 0.109 0.0937 0.0701 0.0216
λ1 = 0.722 0.1008 0.1005 0.1015 0.0961 0.0891 0.0679 0.0298 0.0061

Table 19: The Jaccard scores (2) for the clusterings of the left hemisphere, generated by PseudoNet followed by the
Louvain method, at the tuning parameter values: the largest value of k considered by Louvain (generally corresponding to
more clusters) as well as all the λ1, λ2 values we describe in Section 4. “—”, if present, indicates a degenerate clustering
that puts either all the voxels into a single cluster or each voxel into its own cluster.
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λ2 = 0.1024 λ2 = 0.128 λ2 = 0.16 λ2 = 0.2 λ2 = 0.25 λ2 = 0.3125 λ2 = 0.3906 λ2 = 0.4883

λ1 = 0.48 0.1719 0.1697 0.1633 0.1763 0.1499 0.1475 0.1442 0.1365
λ1 = 0.5 0.1689 0.1675 0.167 0.17 0.1661 0.1587 0.1411 0.1729
λ1 = 0.5208 0.1651 0.1581 0.1808 0.1694 0.1655 0.1528 0.153 0.1512
λ1 = 0.5425 0.1697 0.1556 0.1634 0.1637 0.1591 0.1581 0.1857 0.1598
λ1 = 0.5651 0.1651 0.1663 0.1509 0.1554 0.1567 0.1542 0.151 0.1416
λ1 = 0.5887 0.1492 0.1602 0.1635 0.1541 0.1512 0.1586 0.1506 0.1536
λ1 = 0.6132 0.1474 0.1596 0.1586 0.1593 0.1649 0.1548 0.1436 0.1168
λ1 = 0.6388 0.1321 0.1337 0.1495 0.1502 0.1458 0.1272 0.1188 0.0938
λ1 = 0.6654 0.119 0.1203 0.1233 0.1221 0.1185 0.1125 0.0973 0.0635
λ1 = 0.6931 0.112 0.1136 0.1128 0.111 0.107 0.0932 0.0694 0.0213
λ1 = 0.722 0.0943 0.098 0.0994 0.0937 0.0832 0.0672 0.0299 0.0061

Table 20: The Jaccard scores (2) for the clusterings of the right hemisphere, generated by PseudoNet followed by the
Louvain method, at the tuning parameter values: the largest value of k considered by Louvain (generally corresponding to
more clusters) as well as all the λ1, λ2 values we describe in Section 4. “—”, if present, indicates a degenerate clustering
that puts either all the voxels into a single cluster or each voxel into its own cluster.
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