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Abstract

We explore different applications of Canonical Least Squares (CLS) clustering on
a corpus of sparse medical claims from a particular health insurance provider. We
find that there are several reasons why most conclusions based on CLS clusters
might be misleading, especially when the data is significantly sparse. We illustrate
these findings by performing a number of synthetic experiments with the most
focus on the sparsity issue since it has not been explored in the literature before.
Based on the insights from the synthetic experiments we show how CLS clustering
can be potentially applied to identify hospital peer-groups: hospitals that share
similar operational characteristics. In addition we demonstrate that CLS clustering
can be used to improve prediction results for the patients length of stay in the
hospitals.

1 Introduction

Data clustering can be useful in various applications. These applications can be roughly divided into
two groups: data analysis applications and prediction applications. The goal of the first group is to
find some new properties of the data by examining obtained clusterings. The goal of the second group
is to improve results of prediction models by adding cluster labels as features. Regardless of the
application, the goal of the clustering algorithm is to find groups of objects that are similar according
to some predefined criteria. One popular choice of similarity criteria is L2 distance in feature space.
In that case such well-known algorithms as k-means [21] or some form of hierarchical clustering [23]
can be used. When feature space contains some dependent or target variable (e.g. produced by
linear combination of other features), it might be reasonable to seek the groups of objects that have
the same relation between dependent and independent variables (e.g. the same linear regression
coefficients). In that case, some form of cluster-wise linear regression (CLR) can be used, e.g. [27]
or [9]. When there are multiple dependent variables and one seeks to find clusters with different
correlation patterns, canonical correlation analysis (CCA) clustering [10] can be applied. Recently,
there has been proposed a canonical least squares (CLS) clustering method [18] that achieves similar
goal to CCA, but is more robust and its results usually have better interpretations.

In this paper we explore potential applications of CLS to a corpus of medical claims of patients from
a particular health insurance provider. For each claim there are 87 different fields characterizing that
claim. These fields include: patients id, claim id, provider id, admittance/discharging dates, patient
age, gender, diagnosis related group (DRG) and other. We first preprocess this data filtering outliers
and not useful features and then produce two different aggregations: claim-level data (with each
object corresponding to one claim) and hospital-level data (with each object corresponding to one
provider, which is usually a hospital). More details about dataset and feature selection/aggregation
processes are given in section 3.

One notable feature extracted from this data is patient length of stay in the hospital (or average length
of stay for a certain DRG in case of the hospital-level data). This feature can be used as a measure



of quality of care for the hospital or claim. There are many business applications that could benefit
from finding groups of claims or hospitals that have similar correlation patterns with quality of care.
One example of such application is finding comparable groups of hospital or “peer groups” that have
similar operational characteristics and similar length of stay dependence on those characteristics.
These groups can then be used to assess hospitals performance fairly by comparing them with each
other only inside their peer group and not across all hospitals. On a claim level, finding clusters that
have similar correlation patterns can be useful for prediction purposes. It is reasonable to assume that
different claims are not homogeneous in terms of their correlation with length of stay. For example,
some patients can have different reactions to certain diseases or types of treatment. Thus, identifying
regression-based clusters and using different regression models for them could potentially improve
the prediction accuracy for a length of stay.

In this paper we demonstrate applications of CLS towards these two goals: correlation-based data
analysis and improvement of prediction results. We start by reviewing the related work for both
of these problems in section 2. We describe dataset used in this paper in more details in section 3
and give a brief introduction into CLS algorithm in section 4. In section 5 we describe a number
of preliminary experiments that lead us to believe that a straightforward application of CLS to a
claim-level data analysis is likely to give misleading results. We identify 3 main problems:

1. Standard metrics evaluating CLS performance overestimate goodness of linear fit to the
data.

2. CLS is prone to finding non-intuitive correlations that only exists in the data by chance.
3. Applying CLS on sparse data is complicated since there are multiple good solutions, with

some extreme cases when CLS problem becomes ill-defined.

The first two problems were mentioned in the literature before in the work of Brusco et al [5] and
Vicari et al [28]. In this paper we give a few more intuitive examples illustrating the issues as well as
provide more general and practical formulations of possible solutions in sections 6.1 and 6.2. The
sparsity problem has not been explored before and thus we give a detailed analysis of this problem
by running a series of synthetic experiments in section 6.3. In section 7.1 we demonstrate how CLS
can be used to improve traditional methods of hospital peer-groups creation. Finally, in section 7.2
we introduce two novel approaches to prediction with regression-based clustering: predictive CLS
which combines CLS objective with k-means and uses a separate classification model to predict CLS
labels at test time; and constrained CLS, which uses a user-defined set of constraints on some features
that are known at test time and thus could be used to derive test labels. We show that these methods
perform better than other models, such as linear regression, random forest [4] and k-plane: a similar
regression-based clustering algorithm proposed in [22]. We summarize and conclude the paper in
section 8.

2 Related work

2.1 Interpretability analysis

When there is only one dependent variable, CLS is equivalent to CLR, proposed by Spath in 1979 [27]
which has been extensively studied in the literature. Hennig [12] explores the problem of identifiability
of linear regression mixtures and proves a set of necessary conditions. In this work we show with
simple examples and experiments that strong sparsity can also lead to non-identifiable mixtures which
was not studied in the original work by Hennig. Although we do not provide any complete theoretical
results it is a potential direction of future research.

The problem of CLR overestimating the goodness of linear fit was first observed by Brusco et al [5].
The authors argue that even when target variable is generated independently from other features, CLR
will find a solution with surprisingly good coefficient of determination (R2) and mean squared error
(MSE). They show that MSE comprises of 2 terms: within-cluster distances and between-cluster
distances. Since CLR finds regression coefficients and clusters simultaneously, it might optimize
between-cluster distance only (by grouping objects with similar target values), ignoring within-cluster
correlations. The authors propose a different metric (based on hypothesis testing) to assess the
performance of CLR adjusted for such a good behaviour when features and targets are independent.
We reinforce the analysis of Brusco et al [5] by providing exact theoretical solution for the uniformly
distributed targets. We also suggest a different adjusted metric which only requires running CLR 2
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times and thus is exponentially faster to compute in the general CLS case when the dimension of
target variables is greater than 1.

Vicari et al [28] expands on the work of Brusco et al [5] showing that since CLR doesn’t distinguish
between within-cluster and between-cluster distances it can converge to a very non-intuitive solutions.
The authors devise an algorithm that has different models for relations within one cluster and relations
between different clusters. The final algorithm can be seen as combining CLR objective with k-means
objective which has also been explored by [6], [22], [8]. We reinforce these observations with simple
examples and provide a general regularized reformulation of CLS, with k-means regularization being
a particular instance.

2.2 Hospital peer-groups

The traditional approaches to finding hospital peer groups usually utilize standard clustering tech-
niques. Klastorin [17] is using hierarchical clustering to identify peer groups. Alexander et al [1]
suggests to use k-means and factor analysis instead which provides a better way to understand how
good the given clustering is. These techniques were tested by Zodet and Clark [31], MacNabb [20]
and Kang et al [16] on the hospital data from the state of Michigan, Canada and South Korea corre-
spondingly. Another approach to defining hospital peer groups was developed by Byrne et al [7]. The
authors suggested that peer groups might not be mutually exclusive and created a nearest neighbors
based algorithm for identifying the peer groups centered at each hospital.

2.3 Prediction

There are multiple approaches on how to use regression-based clustering for prediction. Kang et
al [15] suggests to use fuzzy clustering with Dirichlet prior so that it would be possible to obtain
labels at test time. Bagirov et al [3] applies a modification of CLR to prediction of monthly rainfall,
taking weighted average of different models based on the cluster sizes. Manwani et al [22] proposes
k-plane method that combines CLR with k-means and uses the closest cluster centers as labels at
test time. Our predictive CLS approach is similar to k-plane method, but in order to identify cluster
membership we propose to train a separate model. We demonstrate that this modification leads to
crucial difference in performance. We do not provide the comparison with other prediction methods
since their CLR implementations are very different from CLS.

The idea of doing constrained cluster-wise regression was first proposed in [25], however, the authors
do not explore potential applications to prediction.

3 Data

The dataset used in this project consists of medical claims of patients from a particular health
insurance provider. In total there are around 1 billion claims, each characterized with 87 different
fields (≈ 140 Gb of the raw data). As a preprocessing step we keep only inbound (registered in a
hospital), non-empty claims for 2014 year. We delete claims containing mistakes, such as claims
that have multiple patients associated with them, patients that have multiple gender or birthday or
claims with total length of stay ≥ 60 days. We process the data to obtain the following set of features.
Numerical: age, DRG weight, mean historic length of stay per DRG, mean historic length of stay
per hospital, mean historic length of stay overall. Categorical: DRG, month of admission, hospital
zipcode, was it observation stay, type of stay (emergency, urgent, elective, newborn or trauma),
whether patient has been in this hospital before, whether patient had this DRG before. After dropping
out claims with missing values and representing categorical features in one-hot encoding we obtain a
corpus with ≈ 400000 claims with 872 features each. In order to further reduce the dimensionality
we drop all the binary features that have value of 1 in less than a 1000 claims (e.g. certain rare DRGs
or zipcodes). After the final preprocessing step data size is ≈ 400000× 146.

After described preprocessing we construct a hospital-level aggregation of this data. To do that
we aggregate claims belonging to the same hospital and obtain the following featurization: mean
patient age, mean number of claims per year, mean DRG weight, proportion of claims of certain type,
gender proportion, mean number of observational stay claims, mean number of claims for major
diagnostic categories (MDC), which is an aggregation of DRGs, and mean length of stay per MDC.
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After discarding all the hospitals with less than 20 claims per year we obtain 2197 hospitals with 64
features each.

Another important factor to note about this data is that hospital-level data is dense, while claim-level
data is very sparse, which complicates application of CLS as we show in section 6.3. For both datasets
we consider length of stay as target features. For claim-level data it is just one number per claim,
while for hospital-level data we compute length of stay per MDC and thus its dimension is 26.

4 Canonical Least Squares clustering

CLS clustering can be applied to data that consists of 2 sets of featuresX ∈ Rn×d1 and Y ∈ Rn×d2 . It
is aimed to find partitions of the data that maximize canonical correlations [13] between corresponding
X and Y inside clusters. The first canonical correlation between two sets of features for a particular
object Xi, Yi is defined as

max
u∈Rd1 ,v∈Rd2

Corr(XT
i u, Y

T
i v) (1)

The subsequent correlation coefficients can be found by solving problem 1 with additional constraints
that previously found solutions XTu and Y T v (called canonical variables) should be uncorrelated
with the new pair of canonical variables. The canonical correlation problem can be solved in a closed
form with eigenvalue decomposition, see, for example [11].

CLS clustering has the following parameters: number of clusters k, number of canonical variables to
consider m, data matrices X and Y . When m = 1, CLS clustering consists of iteratively performing
the following 2 steps after randomly initializing cluster assignments.

CLS step. Let R(i) ∈ Rn×n be a diagonal matrix with R(i)
ll = 1 if point l belongs to cluster i. Then,

keeping label assignment fixed, solve:

min
ui∈Rd1 ,vi∈Rd2

[
k∑

i=1

∥∥∥R(i)(Xui − Y vi)
∥∥∥2
2

]
, subject to vTi vi = 1 (2)

Labeling step. Keeping CLS coefficients fixed, assign each object xl, yl to cluster

arg min
i

(yTl vi − xTl ui)2 (3)

Note, that CLS step does not exactly find canonical correlations, since the constraints are different.
However, for the first component this problem can be still solved analytically and its solution has
similar interpretation to canonical correlations. When the number of components is bigger than 1,
corresponding CLS problem cannot be solved exactly and greedy approximation is used. We refer
the reader to the original paper [18] for more details.

5 Preliminary data experiments

5.1 Data analysis

When we first ran CLS on a corpus of medical claims we noticed two discouraging observations. First,
running CLS multiple times with different random initializations produced significantly different
cluster assignments with similar objective values. To quantify this observation we measured the
difference between obtained clusters using three common metrics for comparing label assignments:
Adjusted Rand Index [14], Adjusted Mutual Information [29] and Maximum Kappa Statistic1 [26].
The results of comparing 10 different CLS runs are presented in Figure 1. This problem is not
unique for CLS clustering and is usually handled by running algorithm multiple times and choosing
the assignment with the best objective value. However, since the objective value for all the runs is
very similar, whatever conclusions we might draw about this data will be unreliable and will reflect
the behaviour of the clustering algorithms rather then the real properties of the data. Unless these
conclusions will be consistent across many different runs, even though label assignments are very
different, which is not likely to happen. We explore the potential causes of this behavior in section 6.3.

1The Kappa statistic also allows to find the best match of cluster labels between different runs.
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Figure 1: The results of applying CLS to the corpus of medical claims 10 times with different random
initialization. We present here only adjusted Rand index and adjusted mutual information, because of
the space constraints, although in general all three metrics agree that the obtained clusters are very
different for all 10 runs. Examining the contingency matrix directly also confirms this observation.

Nevertheless, we tried to estimate how well CLS clusters fit this data. In order to do that we conducted
the following experiment: we first ran CLS with k clusters on the whole data. Then, we split each
CLS cluster into 10 folds and for each fold we trained two models: “data model” which used all
the data except that fold and “clusters model” which used all the data only from that cluster except
the chosen fold. Then we obtained predictions for the hold-out fold using both models, and this
process was repeated for all folds in all clusters. After all clusters were evaluated we obtained 2 sets
of predictions for the whole dataset: one for data model and one for clusters model for which we
compute R2 and MSE. Comparing these metrics we can quantify how much better this data can be
described using k best linear predictions instead of one2.

We observed that CLS shows a very good linear fit for this data. Even with k = 2, clusters model
R2 ≈ 0.86 vs R2 ≈ 0.27 for the data model and MSE is decreased ≈ 3 times. Using 8 clusters,
R2 ≈ 0.96 for the clusters model and MSE is decreased ≈ 20 times comparing to the data model.
However, as pointed out in [5], this is not an indication of a good linear structure in the data. Such
good values for R2 and MSE can be obtained even if Y is replaced with random numbers, simply
because CLS can group observations with similar targets together. That is, instead of finding the
“real” linear patterns of the data, CLS is prone to fitting non-existing correlations that can always be
found by grouping the points that happened to be on one line even if the generation process for these
points was completely different. Even though this problem was already described in [5], we reinforce
their findings with our observations and propose a different metric for adjustment for such noise that
doesn’t involve running CLS many times. The details are presented in section 6.1.

6 Synthetic experiments

6.1 Good fit on random data

From the work of Brusco et al [5] and from our preliminary experiments on the medical data we
know that CLS will have good R2 value even when there is no correlation between X and Y . To
understand the intuition behind this phenomena, consider a simple case when X consists of all zeros

2It should be noted that this process is not the same as the usual 10 fold cross-validation since we only
compute R2 and MSE ones for all data points. It is also possible to run the usual cross-validation for each
cluster separately and then consider the obtained 10k estimations as one set, but this is not very informative
since different clusters often show very different prediction results. We also recorded the usual cross-validation
metrics for each cluster and they show similar patterns to the estimation process reported in this paper.
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and Y ∈ R is uniformly sampled from [a, b]. Since X is zero matrix, each model CLS fits will
have only a bias term, equal to the mean of the selected points Yi for cluster i (and therefore MSE
will equal to the Var [y] in that cluster). Thus, assuming the number of points is big enough, CLS
optimization problem is equivalent to finding a separation of [a, b] into k segments, such that the total
variance across all of the segments is minimized:

min
s∈Rk−1

[
Vary∼U(a,s1) [y] + Vary∼U(s1,s2) [y] + · · ·+ Vary∼U(sk−2,sk−1) [y] + Vary∼U(sk−1,b) [y]

]
s.t. a < s1 < · · · < sk−1 < b

This problem has an intuitive solution with si being equally distributed in [a, b], i.e. si = a+ i b−ak .
Defining s0 = a, sk = b and mean of cluster i with ȳi we can compute theoretical value of R2 and
MSE achieved on this data with k clusters and n >> 1 data points:

1−R2 =

1
n

∑k
c=1

∑
y∈[si−si−1]

(y − ȳi)2

1
n

∑
y∈[a,b] (y − ȳ)

2 ≈
k
n

∑
y∈[s1−s0] (y − ȳ1)

2

1
n

∑
y∈[a,b] (y − ȳ)

2 ≈
Vary∼U(s1−s0) [y]

Vary∼U(a,b) [y]
=

1

k2

since n is big and each cluster has approximately n
k elements. Thus, with k clusters, MSE is going

to be k2 times bigger, than with 1 cluster and R2 = k2−1
k2 . So, even for this random data with no

correlation between X and Y and when linear models are restricted to bias only, R2 = 0.75 with
just 2 clusters and R2 ≈ 0.98 for 8 clusters. Running a simple simulation confirms the theoretical
computations with CLS being consistently able to find the optimal solution.

This simple experiment motivates the need to use a different metric of CLS performance that would
account for such a good performance when there is no dependence between X and Y . Brusco et
al [5] suggested to do a hypothesis testing, which consists of running CLS on random permutations of
targets Y and comparing the obtained objective values with objective value for the true Y . Although
this gives a viable metric to assess the actual degree of within-clusters linear fit, it requires running
CLS multiple times. In this paper we propose another metric, which requires running CLS only
2 times and generalizes the concept of R2 directly. We call this metric clusterwise coefficient of
determination and denote with R2

c . Note that, standard R2, essentially, compares the performance of
the chosen regression method to the best possible regression performance when there is no correlation
between X and Y . Thus, in order to compute R2

c we propose to divide the MSE of a CLS ran on (X,
Y) (denoted with MSECLS(X,Y )) by the MSE of CLS ran on (0, Y) (denoted with MSECLS(0, Y )).
The complete formula is given below:

R2
c = 1− MSECLS(X,Y )

MSECLS(0, Y )

It might be possible to compute MSECLS(0, Y ) efficiently without running it on the data second time,
but finding such an algorithm is a direction of future research.

6.2 Converging to a non-intuitive solution

As shown in the previous section, standard metrics for CLS evaluation can indicate that there is a
linear structure, when, in fact, there is no correlation between X and Y at all. However, even when
the data was indeed generated from k linear models, CLS might converge to a very non-intuitive
solution. To illustrate that, consider a simple case when X and Y are one-dimensional variables
(Figure 2 (a)). Visual examination of the data shows that there are 3 CLS clusters (i.e. linear models
generating data): one with strong positive correlation (green), second with strong negative correlation
(blue) and third with almost zero correlation between X and Y (red). However, running CLS on
this data never produces the expected clustering assignment. Figure 2 (b), (c) demonstrates two
typical examples of CLS clusters obtained from different random initializations. These solutions are
preferred by CLS because they, in fact, have lower MSE than the intuitive solution. Indeed, even if
CLS is initialized to the correct label assignment, on the first iteration, it will reassign some of the
points from blue cluster to be in green cluster. This happens, because green cluster’s linear model
will go through the center of blue cluster and some of the blue points will be better explained by
that model. This problem comes from the fact that combining different datasets together will often
increase the chance of finding highly correlated subsets of the combined data simply because there
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Figure 2: Qualitative assessment of CLS performance on a simple 2D example. The true clusters
are depicted on the plot (a). Plots (b) and (c) show two different solutions of CLS, both of which
yield better MSE than the correct clusters. This illustrates that CLS will often find non-intuitive and
non-interpretable cluster assignments since they might be optimal from the point of view of CLS
objective.

are more points to choose from. This is exactly what is happening in the proposed example, since
green and blue points just happen to be on the same line (there would be no problem if the green
cluster was moved down by subtracting 4 from it’s Y values). However, with the increase of the
number of objects and the dimension of the data, it is reasonable to expect that the problem will
become more severe.

It is clear from this experiments, that CLS objective is not always aligned with our intuitive expecta-
tions about the quality of the obtained clusters. Thus, the optimization objective needs to be somehow
changed in order to assign lower values to the solutions with preferred structure. Fortunately, there is
an easy modification to CLS algorithm that would allow to add a regularization term to an objective
function that can encourage solutions with desired properties. In order to do that, the labeling step of
CLS has to be changed in the following way:

arg min
i

[∥∥∥yTl V (i) − xTl U (i)
∥∥∥2
2

+ λφ(i, xl, yl)

]

Where λ ≥ 0 is a regularization hyperparameter. The function φ(i, xl, yl) can be arbitrary, as long as
it only depends on the current point xl, yl and some properties of the cluster i (e.g. U (i) and V (i)).
This function should encode the desired structure of the CLS clusters, besides having a good linear
correlation between X and Y which is encouraged by the first term. One way to define φ(i, xl, yl) is
to set it to k-means objective: φ(i, xl, yl) = βx ‖xl − x̄i‖22 + βy ‖yl − ȳi‖22, where x̄i and ȳi are the
X and Y centers of cluster i respectively. βx and βy can be used to control how compact the clusters
are going to be with respect to X and Y spaces separately3.

Defining φ in such a way we encourage the compactness of the clusters, i.e. the far away points
(measured by the L2 distance) are unlikely to be assigned in the same cluster even if their correlation
pattern is similar. In some sense this formalizes our intuition about the good cluster assignment for
the synthetic example from Figure 2. Indeed, the points from the middle of the blue cluster will
usually have a better correlation fit with the green cluster. However, we would still expect them to
have blue labels, since they are surrounded by blue points and are visually separated from green
points. Indeed, with a wide range of βx and βy values, CLS converges to the expected solution using
the proposed k-means regularization.

3Note that using independent βx and βy makes the objective overparametrized and thus λ can be always set
to 1 without the loss of generality
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6.3 Convergence to significantly different solutions

Finally we explore the issue of converging to multiple significantly different solutions that we
observed during preliminary experiments. There are multiple problems that could be contributing to
this behaviour with various extent. One possible problem is that there are no clear linear clusters in the
data and thus, depending on the random initialization, CLS will converge to different solutions, with
a significant amount of points, that can be assigned to multiple clusters without a noticeable increase
in CLS objective. Another explanation could be that even if there is a linear structure in the data,
CLS might be getting stuck in different local minimums, since only convergence to a local minimum
is guaranteed. However, it is more likely that this behaviour is caused by a more fundamental issue
associated with CLS that we illustrate with the following example.

Consider a simple example where X ∈ R2n×2k, Y ∈ R. The data is structured in such a way so that
either first k or last k features can be non-zero for a given object. That is,

∀xi :

 k∑
j=1

x2ij

 2k∑
j=k+1

x2ij

 = 0

The first n targets are being generated from one linear model: yi = xTi w
(1), i ≤ n and the last n from

another yi = xTi w
(2), i > n. The two linear models can be arbitrary as long as they don’t have bias

terms (which is justified when data has zero mean). Thus, the correct solution for CLS with 2 clusters
would be to assign the first n objects into one cluster and the last n objects into another cluster with
recovered coefficients equal w(1) and w(2). Since there is no noise in the data, this solution yields
R2 = 1. However, there is another label assignment that has perfect fit. Let’s denote with s11 all the
objects from cluster 1 that have first k features equal zero and with s12 all the objects from cluster
1 that have last k features equal zero. s21 and s22 are defined in the same way for cluster 2. It is
easy to see, that combining (s11, s22) in one cluster and (s12, s21) in another cluster, CLS would find
another optimal solution with R2 = 1 and coefficients

ŵ(1) = [w
(1)
1 , . . . , w

(1)
k , w

(2)
k+1, . . . , w

(2)
2k ]T , ŵ(2) = [w

(2)
1 , . . . , w

(2)
k , w

(1)
k+1, . . . , w

(1)
2k ]T

If the features are partitioned into more than 2 mutually exclusive groups or the correct number of
clusters is bigger, then there are exponentially more equivalent solutions that CLS could find.

This is an example of the data for which CLS problem is ill-posed, since there are multiple optimum
solutions. The main reason why this data is adversarial for CLS is because there are groups of features
that are, in some sense, independent from each other. The complete independence is achieved when
for all objects, having non-zero features in one group implies that all features from the other group
are exactly zeros or have no correlation with the target variable (i.e. corresponding linear regression
coefficients are zeros). When this property is approximately satisfied (with few non-zero features or
small correlation with target) we will say that such data has weak feature interdependence.

Although, the complete feature independence is somewhat unrealistic for real datasets, weak feature
interdependence might to be a common property of sparse data. If that is the case, CLS problem for
sparse data will be significantly ill-conditioned, meaning that there would be many different solutions
with almost optimal objective value. To check this hypothesis we conducted a number of synthetic
experiments aimed to estimate the quality of CLS solutions in the presence of sparse features.

For all of the experiments in this section we used the following setup. First, the number of objects
n, the number of sparse features ms, the number of dense features md and sparsity level p are
chosen. Then, the matrix X ∈ Rn×(md+ms) is generated with xij ∼ U(−1, 1) if j ≤ md and
xij ∼ Bernoulli(p) if j > md. Then data is randomly partitioned into k clusters (unless otherwise
stated, k equal 4 was used) and for each cluster, linear regression coefficients and biases wc ∈
Rmd+ms , bi ∈ R are generated. Finally, Y ∈ Rn is generated with yi = wT

c xi + bc if (xi, yi)
belongs to cluster c (note that no noise is added). After that CLS was run on this data 10 times with
different random initializations. We compute the adjusted Rand index (ARI) for all pairs of found
label assignments. The average ARI across all pairs is measuring mutual agreement between found
clusterings. We also compute ARI of each of the found assignments with true labels. Its average is
measuring CLS ability of restoring true labels.

Figure 3 shows results of CLS evaluation when data consists of n = 1000 objects, 8 features which
are either all sparse with p = 0.25 (a) or all dense (b). Clearly, when features are dense, CLS has
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(a) Sparse data
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(b) Dense data

Figure 3: CLS ran 10 times on 1000 objects and (a) 8 sparse features (75% zeros), (b) 8 dense
features. The first row (with index 0) shows the comparison with true labels. Clearly, optimization in
the presence of sparse features is significantly more complicated. Average R2 = 0.95, MSE = 0.03
which shows that found solutions are close to global minimum.

almost convex objective function, since 9 out of 10 runs converged to the true global minimum.
However, when features are sparse, the optimization landscape becomes worse with a lot of good
local minimums that CLS can converge to.

Figure 4 shows CLS dependence on (a) sparsity parameter, (b) number of features, (c) number of
objects, (d) number of clusters, (e) proportion of sparse/dense features. Similar plots can be obtained
when features are not {0, 1}, but {a, b} for any a and b, which shows that the problem is not in the
sparsity (i.e. presence of many zeros), but rather in the small variance in the feature values, which
also leads to weak features interdependence. Figure 4 (a) shows a few interesting dependencies.
First, the following trend can be seen for any number of features: for the extremely sparse data
(p = 0.01) the accuracy of CLS solutions become reasonable good, tending to ARI = 1.0 as p goes
to zero. Then, there is a short range of very bad performance (ARI < 0.2) after which performance
becomes reasonable good with optimum around 0.5. The trend is approximately symmetric across 0.5.
Although on the first glance this behaviour seems complicated, it actually aligns with our intuitive
expectations. Indeed, consider the extreme case when p = 0. Then, CLS will find groups of similar
targets Y and merge them into clusters. As we experimentally confirmed in section 6.1 for the case
when Y ∼ U(a, b), CLS is able to consistently find the optimal solution. In these experiments, the
correct solution is even easier to find, since all Y s inside clusters will be equal to the true intercept of
the corresponding model4. With p close to 0.5, the performance of CLS is also reasonably good, since
this amount of sparsity (for a fixed number of clusters and objects) introduces reasonable dependence
between all subsets of features. The more features, the better performance becomes and the wider
is the range of good performance5. However, when the amount of sparsity is small enough (but not
too small to make the problem trivial), data enters the adversarial regime of weak dependence when
the performance of CLS is very bad. The symmetry around 0.5 is expected since changing 0 to 1
or any other arbitrary number doesn’t introduce new dependencies in the data. Figure 4 (b) shows
that after certain number of features performance starts degrading both for sparse and dense models.
Plots (c), (d) and (e) generally show that increasing number of objects, proportion of dense features
or decreasing number of clusters makes CLS performance better. They also demonstrate significant
difference in performance for the dense and sparse cases.

4Note, that when we introduced motivational example for weak feature interdependence, we considered the
models with no bias. However, when bias is significantly different from zero, even though X = 0, CLS problem
actually has a unique solution and becomes trivial to solve as we observe in the experiments.

5Although, plot (b) shows that after certain number of features performance becomes significantly worse.
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Figure 4: These plots demonstrate how different parameters affect the quality of CLS solutions.

Overall, the following conclusions were obtained:

• CLS clustering cannot be directly applied in the presence of features with weak interdepen-
dence (which is the case when features are sparse), since optimization landscape becomes
highly non-convex with many good local minimums. When data has subsets of features
with zero feature interdependence, the problem becomes ill-defined, since there are multiple
optimal solutions.

• Increasing proportion of dense/sparse features generally improves convergence.

• Increasing number of objects
number of features ratio generally improves convergence.
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• Increasing true number of clusters makes problem harder (performance degrades significantly
more for the sparse case).

• Moving sparsity parameter closer to 0.5 generally improves convergence.

The main conclusion from these experiments is that in the presence of sparse features, even if there
exists a unique global optimum, it is unlikely to be found. And in some cases there are multiple
global optimums and thus, finding actual clusters and coefficient that generated the data is impossible.
Therefore, if interpretation of the clusters is the goal, it is necessary to redefine problem that CLS
is solving in order to have a unique solution. One way to do so is to introduce, so-called, cluster
seeds: objects that are restricted to be in a certain cluster and in some sense define a prior solution
to the problem. This prior is then refined when CLS recomputes clusters linear models and assigns
new points. It is also possible to control how much influence seeds should bring to the cluster model
by weighting seed objects (which is equivalent to implicitly adding the same seed objects to cluster
multiple times). To make the contribution of seed and non-seed objects equal, seed weights could be
set to

√
N(i)

ns/N(i)
s , where N (i)

ns , N
(i)
s are the number of seed and non-seed objects for cluster i. Of

course, if the seed objects are independent and the number of seeds equals the number of features,
CLS problem will have a unique solution, since seeds would fully define corresponding linear models.
When seed objects are representative of the true clusters, one could hope that having even small
number of seeds will provide enough information for CLS to converge to meaningful solutions. In
case when data was not actually generated from a mixture of linear models, seeds can still be useful
to define a clusters of interest. For example, if it is known that some objects behave differently from
the others, placing them as cluster seeds will help to find more objects with similar characteristics.

7 Real-data experiments

7.1 Data analysis

Since the analysis of sparse data is complicated and requires careful tuning, we restrict our attention
to the dense corpus of hospital features. In this section we describe the application of CLS clustering
to a hospital-level data with a focus on finding meaningful clusters that can potentially be used as peer
groups. We show that CLS clustering can provide additional insights into the found peer groups and
can be used to improve and refine final clusters with the correlation information. We start by applying
k-means with 4 clusters to the hospital-level data which is a traditional approach of obtaining hospital
peer groups. K-means was initialized using k-means++ algorithm [2] and best out of 100 iterations
was chosen. We ignore the features corresponding to length of stay, since the goal is to obtain clusters
based on their operational characteristics. The length of stay information will be used later to refine
the analysis by applying CLS clustering. In order to visualize the results we use t-SNE technique [19]
with 2 components. The found 4 clusters are depicted on Figure 5 (a).

In order to easier interpret the clustering results we use the following trick; for each cluster we train 2
models: SVM with L1 regularization [30] and Random Forest [4] in order to classify points from
one cluster vs all the rest. We tune the regularization parameter of SVM to have only few non-zero
features and we also look at top-5 features according to feature importance produced by random
forest. The features found using this technique can be used to understand what separates one cluster
from all the rest and thus gain an intuition into why the hospitals were assigned to that cluster. The
top-3 features for each cluster are:

1. 991 hospitals: “type newborn”, “MDC 6” (digestive system), “MDC 5” (circulatory system)
2. 416 hospitals: “type newborn”, “MDC 15” (newborns and neonates (perinatal period)),

“MDC 14” (pregnancy, childbirth)
3. 169 hospitals: “MDC 20” (alcohol/drug use or induced mental disorders), “age”,

“MDC 19” (mental diseases and disorders)
4. 586 hospitals: “age”, “MDC 23” (factors influencing health status), “type emergency’

Visually examining distributions of these features across the clusters we can further refine the
understanding of obtained results. Cluster 2 seems to consists of hospitals specialized on pregnancy
and childbirth. It has significantly higher average number of claims with type newborn, pregnancy
and childbirth cases than all other clusters. Cluster 3 has a very high proportion of alcohol/drug
illnesses as well as mental diseases comparing to other clusters. Cluster 4 has an average patient age
close to 80 and seems to specialize on senior patients with a relatively small proportion of emergency
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Figure 5: Comparison of (a) k-means clustering with (b) CLS clustering combined with k-means.
Different clusters are depicted with different colors. Cluster centers are marked with white circles,
indicating cluster indices.

claims. Cluster 1 contains large amount of hospitals with big proportion of digestive or circulatory
systems diagnosis, but a lot of hospitals from this cluster don’t have evident specialization.

Next, we apply CLS clustering on the same data to gain additional insights into the found clusters.
CLS uses the same set of features as k-means for independent variables X and seeks clusters that
maximize correlations with length of stay per MDC features Y . Running standard CLS doesn’t reveal
any clear structure in the found clusters with very low CLS objective values indicating that it might
have overfitted the data producing non-intuitive solutions. Thus, we use the method introduced in
section 6.2 of combining CLS with k-means objective on X features only. With βx = 0.01, βy = 0
we obtain meaningful clusters that are depicted on Figure 5 (b). There are 2 interesting observations.
Notice, that CLS doesn’t change cluster 4 significantly, while merging clusters 2 and 3 and splitting
cluster 1 into two clusters. This illustrates that k-means clusters 2 and 3 have similar correlation
patters with length of stay and that cluster 1 is not correlation homogeneous. Examining CLS
coefficients we can see that CLS clusters 1 and 4 (which k-means cluster 1 was split into) have
opposite correlations with, for example, “MDC 1 length” (nervous system), “MDC 4 length” and
(respiratory system) “MDC 9 length” (skin, subcutaneous tissue and breast). However, we want to
emphasize that since CLS coefficients are harder to interpret and might not be intuitively meaningful,
it is important to verify any conclusions with a human expert in the field.

7.2 Prediction

In this section we demonstrate that CLS clustering can be used to improve length of stay prediction
accuracy for a claim-level data6. In this case Y consists of scalar values representing patient length
of stay for a particular claim. It is not possible, however, to directly use linear regression models
produced by CLS clustering, since it is not clear how to assign labels to test data points for which Y
is unknown. One way to do it is to build a separate classification model, predicting CLS labels from
features X ∈ Rd. However, in many cases, d-dimensional planes produced by CLS clustering will
overlap and thus it might be impossible to predict the correct labels considering only features X and
ignoring the targets Y . A simple illustration of this problem is presented in Figure 6.

Manwani and Sastry [22] propose k-plane regression method that counteracts this problem by
combining CLS objective with k-means on features X only7. At test time authors propose to compute

6Note that since the goal of this section is not interpretation of the results, it doesn’t matter if CLS converges
to the “true” clusters generating the data, as long as it is helpful for prediction. Thus, the sparsity problem
described in section 6.3 does not matter as much in this case.

7We described this approach in section 6.2, however, aiming at different goal.
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Figure 6: This plot illustrates that it might be impossible to predict CLS labels from features X
only. In this case there are 2 linear regressions that CLS would find, depicted with orange and blue.
However, ignoring Y will make points from different clusters identical.

k-means centers of each cluster and assign new objects to clusters with closest centers. However,
since the objective function has 2 potentially contradicting terms, it is not guaranteed that this criteria
will match points to the correct clusters even for the training data. Thus, even after combining CLS
and k-means objectives, it might be beneficial to train additional classifier to predict CLS labels at
test time. We call this method predictive CLS (CLSp) and compare its performance to the k-plane
regression method of Manwani and Sastry [22]. Table 1 contains the results of the comparison. To
better understand the performance of both methods we used the following setup. First, the data is
normalized: each feature is divided by standard deviation with no mean subtraction8. Then, CLS
clustering with varying number of clusters k and regularization coefficient βx was applied to the
whole dataset and cluster labels were recorder. We report the cross-validation9 performance of CLS
models on the whole dataset in the second column of Table 1. These values show the performance
of prediction with CLS models if the true labels were known at test time10. Then, the dataset was
split into train (75%) and test (25%) subsets. We predict test CLS labels using Random Forest for
CLSp and closest cluster for k-plane. The accuracy of this prediction is reported in columns 3 and 4.
After that we compute predictions for the length of stay values on a test subset using linear regression
models built with CLS for corresponding predicted clusters. These results are reported in columns 5,
6. Notice that the performance of both CLSp and k-plane crucially depends on the labels prediction
accuracy. With k = 2, βx = 0, even though only 13% of the points are classified incorrectly, the R2

drops from potential 0.77 (when the true labels are known) to 0.21 for CLSp or −0.15 for k-plane
which is significantly worse than running a simple linear regression. The reason for that is because
different CLS clusters have radically different regression coefficients and thus for any incorrectly
assigned label, the prediction might be arbitrary bad. Consider the example on Figure 6: if blue
model is used for prediction of the orange dots, prediction becomes worse and worse farther from the
origin. In that case the best possible prediction model at test time would be a weighted combination
of the blue and orange models with equal weights. Even though this model will always predict zero,
it is the best possible prediction when there is no prior knowledge about cluster labels for test objects.

We utilize this idea to improve the prediction results of CLSp. Instead of taking only the answer of
the model predicted by random forest, we take a weighted average over models for all clusters with
weights being equal to probabilities that a point belongs to certain cluster, which random forest can
compute. This approach is similar in spirit to performing a fuzzy CLR clustering (e.g. [9]) and could
potentially be improved by incorporating fuzzy class memberships into the usual CLS procedure. We
report the results of this weighting technique in columns 7 and 8 of Table 1. For k-plane weights are
equal to the normalized distances to corresponding clusters.

8The reason for that is because the claim-level data is extremely sparse and thus it is possible to utilize fast
sparse algorithms (e.g. LSQR [24] instead of the standard linear regression is used in all the models presented
below) for models training. Subtracting mean, however, would change the sparsity of the data and models will
become much slower to train.

9For the description of this cross-validation process, see section 5.
10Since we obtain cross-validation estimates of R2, the only overfitting present in this evaluation comes from

CLS itself: because we assume that we know the true labels.
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Table 1: Comparison of k-plane regression and predictive CLS. The baseline R2 of a simple linear
regression is 0.3.

k, βx R2 train CLSp label
accuracy

k-plane label
accuracy

CLSp

R2
k-plane
R2

weighted
CLSp R

2
weighted

k-plane R2

2, 0 0.77 0.87 0.80 0.21 -0.15 0.40 -0.22

2, 0.1 0.76 0.91 0.81 0.20 -0.56 0.39 -0.82

2, 0.5 0.54 0.95 0.93 0.24 0.05 0.34 -0.44

2, 0.7 0.48 0.97 0.95 0.30 0.12 0.34 -0.18

2, 1.0 0.55 0.97 0.97 0.30 0.28 0.36 -2.04

2, 10.0 0.33 0.99 1.00 0.33 0.33 0.33 0.24

8, 0.0 0.96 0.38 0.26 0.09 -0.17 0.38 -0.24

8, 0.1 0.88 0.86 0.86 0.19 0.13 0.39 -1.50

8, 0.5 0.60 0.97 0.97 0.30 0.28 0.36 -1.63

8, 0.7 0.55 0.98 0.98 0.32 0.31 0.36 -0.61

8, 1.0 0.53 0.98 0.98 0.32 0.30 0.35 -0.22

8, 10.0 0.34 0.99 1.00 0.33 0.33 0.34 0.24

Note that as expected, CLSp algorithm gives better label prediction accuracy than k-plane. Also,
increasing k-means coefficient βx leads to better label predictions (columns 3, 4) for both algorithms,
but at the same time to lower potential R2 (column 2). Thus, k-plane and usual CLSp don’t perform
well when βx is small and are giving the best R2 for βx = 10 which is almost the vanilla k-means
clustering. However, weighting technique significantly improves the accuracy of CLSp since it
doesn’t yield catastrophically bad predictions for the incorrectly assigned objects anymore. This is
not true with weighted k-plane, since distances to cluster centers are usually very similar and thus
don’t provide a good indication of the models confidence.

However, the final R2 values for the length of stay prediction might still be biased since CLS
clustering was applied to the whole dataset (otherwise it would be impossible to compare label
prediction accuracy for the two methods). We obtain unbiased estimates by running CLS only on
the train data and evaluating the best CLSp models (weighted version, for k = 2 clusters βx = 0,
for k = 8 clusters βx = 0.1) as well as the best k-plane models (usual version, for k = 2 clusters
βx = 10, for k = 8 clusters βx = 10). This unbiased estimation yields similar results to the ones
reported in the Table 1, indicating that CLS doesn’t overfit the data. The new results are presented in
Table 2.

There is another way to do a prediction with CLS clustering. Instead of combining it with k-means,
it is possible to incorporate some natural constraints available in the data. One way to do so is to
constraint claims based on their hospital membership. This means that we enforce all claims from the
same hospital to be in the same cluster. This can be easily incorporated into CLS by changing the
labeling step to compute per hospital argmin instead of per claim. By using this kind of constraints
there is no problem in assigning labels at the test time since hospital membership is assumed to be
known. We denote this method with CLSc and report the results in Table 2. The constrained CLS
shows the best R2 beating even such a highly non-linear model as random forest with just 2 clusters.
With 8 clusters the performance is improved further. The results might become better if additional
tuning is performed, e.g. exploring different types of constraints and different numbers of clusters.

8 Conclusions

In this paper we have demonstrated that applying CLS clustering to sparse datasets might present
significant problems for the interpretation of the results. With theoretical examples and synthetic
experiments we have shown that this happens because in some cases CLS problem becomes ill-
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Table 2: Comparison of different prediction models

MSE R2

Linear Regression 0.71 0.30

Random Forest 0.59 0.42

K-plane (2 clusters) 0.70 0.31

K-plane (8 clusters) 0.67 0.33

CLSp (2 clusters) 0.61 0.40

CLSp (8 clusters) 0.62 0.38

CLSc (2 clusters) 0.57 0.43

CLSc (8 clusters) 0.55 0.45

defined, meaning that there might be exponentially many potential solutions and thus, different
interpretations. We also provide additional insights and interpretations of the problems of finding
non-intuitive solutions and overestimating the goodness of CLS fit that have been observed in the
literature before. Based on this preliminary analysis we show how CLS clustering can be potentially
applied to finding hospital peer-groups, which is an important problem for many health insurance
providers. Finally, we propose new techniques to apply CLS for prediction and experimentally show
that on the problem of predicting patient length of stay they perform better than k-plane regression,
linear regression and random forest.
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