
DAP Report

Learning Deep Generative Models

With Discrete Latent Variables

Hengyuan Hu
Department of Machine Learning

Carnegie Mellon University
hengyuah@andrew.cmu.edu

28 Nov 2017

Abstract

There have been numerous recent advancements on learning deep generative models with latent
variables thanks to the reparameterization trick that allows to train deep directed models effectively.
However, since reparameterization trick only works on continuous variables, deep generative models
with discrete latent variables still remain hard to train and perform considerably worse than their
continuous counterparts. In this paper, we attempt to shrink this gap by introducing a new
architecture and its learning procedure. We develop a hybrid generative model with binary latent
variables that consists of an undirected graphical model and a deep neural network. We propose
an efficient two-stage pretraining and training procedure that is crucial for learning these models.
Experiments on binarized digits and images of natural scenes demonstrate that our model achieves
close to the state-of-the-art performance in terms of density estimation and is capable of generating
coherent images of natural scenes.

DAP Committee members:

Ruslan Salakhutdinov 〈 rsalakhu@cs.cmu.edu 〉 (Advisor)
Aarti Singh 〈 aartisingh@cmu.edu 〉
Barnabás Póczos 〈 bapoczos@cs.cmu.edu 〉

1 of 19

hengyuah@andrew.cmu.edu
rsalakhu@cs.cmu.edu
aartisingh@cmu.edu
bapoczos@cs.cmu.edu

DAP Report

1 Introduction

Building generative models that are capable of learning flexible distributions over high-dimensional
sensory input, such as images of natural scenes, is one of the fundamental problems in unsupervised
learning. Historically, many multi-layer generative models, including sigmoid belief networks
(SBNs) [1], deep belief networks (DBNs) [2], and deep Boltzmann machines (DBMs) [3], contain
multiple layers of binary stochastic variables. However, since the debut of variational autoencoder
(VAE) [4] and reparameterization trick, models with continuous variables have largely replaced
previous discrete versions. Many improvements [5; 6; 7; 8] along this direction have been pushing
forward the state-of-the-art for years.

Comparing with continuous models, existing discrete models have two major disadvantages. First,
models with continuous latent variables are easier to optimize due to the reparameterization trick.
Second, every layer in models, including SBNs and DBNs, is stochastic. Such design pattern restricts
the depth of these models because adding one layer can only provide small additional representation
power while the extra stochasticity increases the optimization difficulty and thus out-weights the
benefit.

In this paper we explore learning discrete latent variable models that perform equally well with its
continuous counterparts. Specifically, we propose an architecture that resembles the DBN but uses
deep deterministic neural networks for inference and generative networks. From the VAE perspective,
this can also be seen as deep VAE with one set of binary latent variables and learnable restricted
Boltzmann machine (RBM) prior [9]. We develop a two-stage pretraining, training procedure for
learning such models and show that they are necessary and effective. Finally, we demonstrate
that our models can closely match the state-of-the-art continuous models on MNIST in terms of
log-likelihood and are capable of generating coherent images of natural scenes.

2 Background

Although discrete models are largely replaced by continuous models in practice, there has been a
surge in the interest of the learning algorithms that accommodate discrete latent variable models,
such as sigmoid belief networks (SBNs) [10; 11; 12]. In this section, we briefly review those methods
that lay the foundation of our learning procedure.

To learn a generative model p(x) on a given dataset, we introduce latent variable z and decompose
the objective as log p(x) = log

∑
z p(x, z). Posteriors samples from p(z|x) are required to efficiently

estimate the exponential sum
∑

z p(x, z). However, when p(x, z) is parameterized by a deep neural
network, exact posterior sampling is no longer possible. One way to overcome it is to simultaneously
train an inference network q(z|x) that approximates the true posterior p(z|x). With samples from q

2 of 19

DAP Report

distribution, we can train p by optimizing the variational lower bound:

log p(x) = log

[∑
z

p(x|z)p(z)

q(z|x)
q(z|x)

]
≥ Ez∼q(z|x) log

p(x, z)

q(z|x)
(1)

Meanwhile, q(z|x) has to be optimized towards p(z|x) in order to keep the variational bound tight.

In the Wake-Sleep algorithm [13; 2], the wake phase corresponds to maximizing the objective in
Eq. 1 with respect to the parameter of p(x, z) using samples from q(z|x) given a datapoint x. In
the sleep phase, a pair of samples z,x is drawn from the generative distribution p(x, z) and then
q is trained to minimize the KL divergence KL(p(z|x) ‖ q(z|x)). This objective, however, is not
theoretically sound as we should instead be minimizing its reverse: KL(q(z|x) ‖ p(z|x)).

Reweighted Wake-Sleep (RWS) [11] brings two major improvements to the original Wake-Sleep
algorithm. The first one is to reformulate the log-likelihood objective as an importance-weighted
average and derive a tighter lower bound:

log p(x) = logEzi∼q(z|x)

[
1

K

K∑
i=1

p(x, zi)

q(zi|x)

]
≥ Ezi∼q(z|x)

[
log

1

K

K∑
i=1

p(x, zi)

q(zi|x)

]
= LK . (2)

In the wake phase of RWS, parameters in p are learned by optimizing the new lower bound defined
in Eq. 2 [5]. The second improvement is to add a wake phase for learning q. The wake phase for q
can be viewed as minimizing the KL divergence KL(p(z|x) ‖ q(z|x)) for a given datapoint xdata

instead of xsample as in the sleep phase. The authors empirically show that the new wake phase
works better than the sleep phase in the original Wake-Sleep and works even better when combined
with the sleep phase.

Although RWS tightens the bound and works well in practice, it still does not optimize a well-defined
objective for inference network q. [12] propose a new method named VIMCO, which solves this
problem. In VIMCO, both p and q are optimized jointly against the lower bound in Eq. 2. However,
the gradient w.r.t parameters in q will have high variance if we compute them naively. VIMCO
algorithm utilizes the multiple samples to compose a baseline for each sample using the rest of
samples (we refer readers to the original paper for more technical details). The author shows that
VIMCO performs equally well as RWS when training SBNs on MNIST.

3 Model

Let us consider a latent variable model p(x) =
∑

z p(x|z)p(z) with the distribution p(z) defined over
the latent space. In addition, an inference network q(z|x) is used to approximate the intractable
posterior distribution p(z|x). This fundamental formulation is shared by many deep generative
models with latent variables, including deep belief networks (DBNs), and variational autoencoders

3 of 19

DAP Report

(VAEs). Different realizations result in different architectures and corresponding learning algorithms.
In our model, the prior distribution pϕ(z) is multivariate Bernoulli modeled by a restricted Boltzmann
machine (RBM) with a parameter vector ϕ. The approximate posterior distribution qφ(z|x) is
multivariate Bernoulli with its mean modeled by a deep neural network φ. The generative distribution
pθ(x|z) is modeled by a deep neural network θ as well. Note that both networks are deterministic.

This model has several advantages. First, compared with VAEs, RBMs can handle both discrete and
continuous latent variables. It also allows for a much richer family of latent distributions compared
to simple factorized distributions as in vanilla VAEs. Although for VAEs, the posterior distribution
is regularized towards a factorized Gaussian prior by minimizing KL divergence, in practice the KL
divergence is never zero, especially when modeling complex datasets. Such discrepancy between the
prior and learned posterior can often damage the generative quality. The RBM approach, however,
instead of pulling the posterior to some pre-defined prior, learns to mimic the posterior. During
generation process, prior samples drawn by running the Markov chain defined by the RBM can
often lead to images with higher visual quality than those drawn from vanilla VAEs.

Second, compared with SBNs and DBNs, only communication between inference and generative
networks uses stochastic binary states. In this case, the inference and generative networks become
fully differentiable so that multiple layers can be jointly optimized by back-propagation. This
is radically different from SBNs and DBNs where each inference layer is trained to approximate
the posterior distribution of a specific generative layer. Our framework can greatly increase the
model capacity by allowing more complicated transformation between high dimensional input space
and latent space. In addition, networks can exploit modern network design techniques, including
convolution, pooling, dropout [14], or even ResNet [15] and DenseNet [16], in a very easy and
straightforward way. Therefore, similar to VAEs, models under this framework can be scaled to
handle more complex datasets compared to traditional SBNs and DBNs.

3.1 Pretraining with Autoencoder

Training a hybrid model is never a trivial task. Notably in our case, the encoder and decoder
networks can be very deep and gradient cannot be propagated through stochastic states. In addition,
RBMs are often more sensitive to training compared to feed-forward neural networks. Therefore, as
in DBNs and DBMs, a clever pretraining algorithm that can help find a good weight initialization
can be very beneficial.

To learn a good image prior, we jointly train parameters of the inference network φ and generative
network θ as an autoencoder. To obtain a binary latent space, we use additive i.i.d uniform noise [17]
together with a modified hardtanh function to realize “soft-binarization”. This method can be

4 of 19

DAP Report

described as the following function:

B(z) = f(z + U(−0.5, 0.5)), where f(x) =


0, x ≤ 0

x, 0 ≤ x ≤ 1

1, x ≥ 1

(3)

and z = E(x) is the output of the encoder. This soft-binarization function will encourage the
encoder to encode x into ([−∞,−1] ∪ [1,+∞])|z| to maximize the information that follows through
this bottleneck while allowing gradient descent methods to find such solution efficiently. To avoid
overfitting, dropout can be applied after B function. The adoption of dropout in z space can also
prevent the co-adaptation between latent codes, which makes it easier for RBMs to model.

In practice, we find that this pretraining procedure produces well binarized latent space on which
RBMs can be successfully trained. Therefore, we can then pretrain the RBMs on z using contrastive
divergence [9] or persistent contrastive divergence [18]. After pretraining, we remove B and append
a sigmoid function σ to the end of the encoder to convert it to the inference network, i.e.φ = σ ◦ E .
The decoder is then used to initialize the generator θ.

3.2 Training

Since our model shares the fundamental formulation with many of the existing variational based
models, we can modify the state-of-the-art learning algorithms to train it. The specific algorithms
we are interested in are the reweighted wake-sleep (RWS) [11] and VIMCO [12] which give the best
results on SBN models and can handle discrete latent variables.

As reviewed in the background section, both RWS and VIMCO are importance sampling based
methods, that need to compute weights wi = p(x, zi)/q(x|zi) for multiple samples zi given input x.
These weights are then normalized as w̃i = wi/(

∑
j wj) to decide the contribution of each sample to

the gradient estimator. In our model, the joint probability p(x, z) is intractable due to the partition
Z function introduced by RBM. However, it can be substituted by its unnormalized counterpart:

p∗(x, z) = Zp(x, z) = e−F(z)p(x|z), (4)

as the coefficient Z will be canceled during the weight normalization step. The F(z) is the free
energy assigned to z by RBM, which can be computed analytically.

The RBM is also trained using multiple samples as part of the generative module. In both RWS
and VIMCO, the gradient for RBM with parameter ϕ is:

∂

∂ϕ
LK '

K∑
i=1

w̃i
∂

∂ϕ
log pϕ(zi) = −

K∑
i=1

w̃i
∂F(zi)

∂ϕ
+ Ez−∼M

[
∂F(z−)

∂ϕ

]
. (5)

5 of 19

DAP Report

The second term in Eq. 5 is the intractable model dependent term which needs to be estimated
using samples from the RBM. The samples are obtained by running a persistent Markov chain as in
persistent contrastive divergence [18].

There is one more modification for the sleep phase in RWS. The generative process now starts from
a Markov chain defined by RBM instead of a direct draw from unconditional Bernoulli prior. This
can be seen as the contrastive version of RWS. For completeness, we put the detail of Contrastive
RWS and VIMCO in Appendix A.

3.3 Evaluation

Quantitative evaluation of deep generative models is very crucial to measure and compare different
probabilistic models. Fortunately, we can refer to a rich set of existing techniques for quantitative
evaluations. One way to evaluate our model is to decompose the lower bound LK in Eq. 1 as follows:

LK = Ezi∼q(z|x)

[
log

1

K

K∑
i=1

p∗(x, zi)

q(zi|x)

]
− logZ (6)

and estimate partition function Z with Annealed Importance Sampling (AIS) [19]. This method
is very efficient since we only need to estimate Z once no matter how large the K is. However,
since AIS gives an unbiased estimate of Z, it on average tends to underestimate logZ since
logZ = logE(Ẑ) ≥ E(log Ẑ) [20].

Another method that yields conservative estimates is Reverse AIS Estimator (RAISE) [20], which
returns an unbiased estimate of p(z). However, RAISE can be quite time consuming since it needs to
run an independent chain for every z. Therefore, we suggest to use AIS as main tool for evaluation
during training and model comparison, since empirically AIS provides fairly accurate estimates,
but also run RAISE as a safety check before reporting final results to avoid unrealistically high
estimates of LK .

4 Related Work

In Figure 1, we show the visualization of our model together with three closely related existing
latent variable models, DBNs [2], DEMs [21] and VAEs [4].

The major difference between DBNs and our models is that every layer in the inference and generative
networks in DBNs is stochastic. Such design drastically increases the difficulty in training and
restrict the model from using modern deep convolutional architectures. Although convolution,
combined with a sophisticated probabilistic pooling technique, has been applied to DBNs [22], the
resulted convolutional DBNs is still difficult to train. It is also unclear how more recent techniques

6 of 19

DAP Report

(a) DBN (b) DEM (c) VAE (d) Our Model

Figure 1: Comparison between (a) deep belief networks, (b) deep energy models, (c) variational autoencoders
and (d) our models. Dashed boxes denote stochastic layers and solid boxes denote deterministic layers.
Bidirectional arrows denote undireicted connections. For simplicity, recognition networks in VAE and our
model are represented by a single upward arrow.

like residual connections [15] can be adapted for them. Our models, on the other hand, can integrate
these techniques easily and learn deeper networks effectively.

The deep energy models (DEMs) by [21] are previous attempts to use multiple deterministic layers
to build deep generative models. In their setting, only the top-most layer, which resembles the
hidden layer in an RBM, is stochastic. There is no explicit generator in the model and sampling
is carried out through Hamiltonian Monte Carlo (HMC). In practice, we find that HMC samplers
are too sensitive to hyper-parameters, making them extremely hard to use for sampling from deep
convolutional networks. The generator solution in our model is simpler, more robust, and more
scalable.

VAEs [4] are modern deep generative models that have shown impressive success in a wide variety of
applications [23; 24]. VAEs are directed graphical models that also consist of stochastic latent layers
and deterministic deep neural networks. However, VAEs use factorized prior distributions, which can
potentially limit the networks’ modeling capacity by placing a strong restriction on the approximate
posterior [5]. There have been several works trying to resolve this issue by deriving more flexible
posteriors [25; 6]. The RBM in our model can represent more complex prior distributions by design,
which can possibly lead to more powerful models.

PixelRNNs [26] and GANs [27] are two other popular generative models. PixelRNNs are fully
observable models that use multiple layer of LSTMs to model images as a sequence of pixels.
PixelRNN and its various variant PixelCNN [28; 29; 8] exhibit excellent capacity on modeling
local detail on images and are the state-of-the-art models in terms of density estimation. GANs
simultaneously train a discriminator and a generator. The discriminator is trained to distinguish
generated samples from real data while generator is trained to fool discriminator by generating
realistic samples. GANs can generate visually appealing images but they are hard to evaluate
quantitatively. Although several methods have been discussed recently [30; 31], quantitative
evaluation of GANs still remains a challenging problem.

7 of 19

DAP Report

Model NLL Test

DBN [19] 84.55
AR-SBN/SBN (RWS) [11] 84.18
IWAE [5] 85.32

Our Model (VIMCO, no pretrain) 121.65
Our Model (Contrastive RWS) 84.33
Our Model (VIMCO) 83.69 (83.77)

Table 1: Fully connected models

Model NLL Test

DRAW [34] 80.97
IAF VAE [6] 79.88
PixelRNN [26] 79.20
VLAE [26] 79.03
Gated PixelVAE [7] 78.96

Our ResNet Model 79.58 (79.64)

Table 2: Deep ResNet model

Average test negative log-probabilities on MNIST. Numbers of our model are computed with the AIS method
in Section 3.3 while number in parenthesis is computed with the RAISE method.

5 Experiments

We now describe our experimental results. Through a series of experiments we 1) quantitatively
evaluate the importance of the pretraining step and compare the performance of our model trained
with Contrastive RWS and VIMCO algorithms, 2) scale our model with ResNet [15] to approach
the state-of-the-art result on MNIST, 3) scale our model to modeling images of natural scenes, and
show that it performs comparable with its continuous counterparts in terms of density estimation,
while being able to generate coherent samples. Please refer to Appendix C for details on the
hyper-parameters and network architectures.

5.1 MNIST

We run our first set of experiments on the statically binarized MNIST dataset [19; 32]. To model
binary output, the generator θ computes the mean of the Bernoulli distribution pθ(x|z). We first
train a simple model where both inference and generative networks are multi-layer perceptrons.
The inference network contains five layers (784-200-200-100-100-200) and the generator contains the
same layers in reverse order. We use ELU [33] as our activation function. Note that the final layer
in the inference network is normally larger since it is supposed to transmit only binary information.
The RBM has 200 visible units z and 400 hidden units h. The model is first pretrained and then
trained with Contrastive RWS or VIMCO using 50 samples per data point. The learning curves of
the first 200 epochs for models trained with both methods are shown in Figure 2a.

To evaluate our model, we use the AIS method following Eq.6 in Section 3.3 with K = 5e4. Z
is estimated by running 5000 AIS chains with 1e5 intermediate distributions. Table 1 shows
performance of our fully connected model together with several previous works that use a similar
network size. From the table and the learning curves in Figure 2a, we can see that our model
trained with VIMCO objective performs better compared to training with Contrastive RWS. The

8 of 19

DAP Report

(a) Test NLL during training (b) Model samples

Figure 2: Left: Negative log-likelihood on MNIST test set during training with Contrastive RWS and
VIMCO. Right: Samples generated by running Gibbs sampling in RBM for 1000 steps and passing generated
z through generator θ, no further sampling in pixel space.

superiority of VIMCO over Contrastive RWS is consistent during our experiments with various
network configurations. In addition, we need to carefully tune the learning rate for inference and
generative network separately to make Contrastive RWS work well on our model, which may be
caused by the fact that wake-sleep algorithms are not optimizing a well defined objective.

To emphasize the importance of the pretraining algorithm, we also train the model with VIMCO
directly starting from random initialization and it performs significantly worse. This result shows
that the pretraining stage is very effective and is also necessary to make our model work. We also
evaluate the best model with RAISE method to make sure that the result is not over-optimistic.
For RAISE, we use fewer samples (K = 5e3) due to its high computation cost. The RAISE result is
shown in the parenthesis in Table 1. The two estimators agree closely with each other, indicating
that the results are accurate. Finally, we show samples from our model trained with VIMCO in
Figure 2b.

Comparing with other methods in Table 1, our model clearly outperforms previous models that use
multiple stochastic layers with or without RBM. The improvement indicates that using continuous
deep networks can indeed result in better performance in terms of density estimation. Notably, our
model also outperforms IWAE [5], which in principle can be seen as the continuous counterpart of
our model without an RBM prior. To fully test the capacity of our framework, we train a deep
convolutional model with ResNet [15] blocks. The result is shown in Table 2. Our model surpasses
the previous best models that use purely VAEs [34; 6] and is only slightly behind the state-of-the-art
models that use PixelRNN [26] or VAEs combined with PixelCNNs [7; 8]. In principle, PixelCNN
can also be integrated into our framework as decoder, but we will leave this for future work.

9 of 19

DAP Report

Model NLL Train NLL Test

ResNet VAE with IAF [6] 3.11
DenseNet VLAE [7] 2.95
PixelCNN++ [29] 2.92

IWAE 4.45 4.54
Our Model (1024-2048) 4.73 4.84
Our Model (2048-4096) 4.49 4.56

Table 3: Average test negative log-probabilities on CIFAR10 in bits/dim. Numbers of our model are
computed with the AIS method.

5.2 CIFAR10

CIFAR10 has been a challenging benchmark for generative modeling. To model real value pixel
data, we set the generative distribution pθ(x|z) to be discretized logistic mixture following [29].
In the pretraining stage, the objective is to minimize the negative log-likelihood. The marginal
distribution of the encoded z space and the reconstruction of test images are shown in Figure 5 in
Appendix B. We note that the pretrained autoencoder preserves enough information while converting
high dimensional real value data to binary. This transformation makes it possible apply simple
models like RBM to challenging tasks such as modeling CIFAR10 images. We train two models
under our framework. Both of them use ResNets [15] for inference and generative networks. The
latent space for the first model has 1024 dimensions and is modeled by RBM with 2048 hidden
units. The latent space for the second model has 2048 dimensions and RBM has 4096 hidden units.
Similar to what we have discovered during the MNIST experiments, we find that VIMCO is more
effective and robust to hyperparameters than Contrastive RWS. Therefore, the model is trained
using VIMCO with 10 samples per data point.

For quantitative and qualitative comparisons under controlled variates, we train an IWAE [5]
with roughly the same networks and the same amount of posterior samples per data point. The
quantitative results are shown in Table 3 and samples from both models are shown in Figure 3a and
Figure 4a. Here, our model performs slightly worse than IWAE in terms of density estimation, but
the samples from our model have much higher visual quality. Note that results from both models
are far behind those from state-of-the-art models [29]. To achieve significantly better results for
VAE family models on CIFAR10, we often need to use more complicated networks with multiple
sets of latent variables [6] or use autoregressive decoders for output distribution [7] or both [8]. In
this work, however, we keep our models simple to focus on the learning procedure.

To facilitate visual comparison, we also reproduce samples from a popular GAN model [35] in
Figure 4b. Samples from our model look natural, coherent but blurry, while samples from WGAN
look clear, detailed but distorted. We admit that with many advanced techniques [36; 37; 38], GANs
still produce the highest quality images. However, our model has the advantage that it can be

10 of 19

DAP Report

(a) Samples on CIFAR10 (32× 32) (b) Samples on ImageNet64 (64× 64)

Figure 3: Samples generated by our model trained on CIFAR10 (left) and ImageNet64 (right).

properly evaluated as a density model. Additionally, the flexibility of our framework could also
accommodate potential future improvements.

5.3 ImagetNet64

We next use the 64× 64 ImageNet [26] to test the scalability of our model. Figure 3b, shows samples
generated by our model. Although samples are far from being realistic and have strong artifacts,
many of them look coherent and exhibit a clear concept of foreground and background, which
demonstrates that our method has a strong potential to model high resolution images. The density
estimation performance of this model is 4.92 bits/dim.

6 Conclusion

In this paper we presented a novel framework for constructing deep generative models with RBM
priors and develop efficient learning algorithms to train such models. Our models can generate
appealing images of natural scenes, even in the large-scale setting, and, more importantly, can be
evaluated quantitatively. There are also several interesting directions for further extensions. For
example, more expressive priors, such as those based on deep Boltzmann machines [3], can be used

11 of 19

DAP Report

(a) Samples on CIFAR10 from IWAE (b) Samples from WGAN

Figure 4: Samples generated by IWAE (left) and WGAN (right) trained on CIFAR10

in place of RBMs, while autoregressive [39] or recurrent networks [26] can be used for inference and
generative networks.

References

[1] R. M. Neal, “Connectionist learning of belief networks,” Artif. Intell., vol. 56, no. 1, pp. 71–113, Jul.
1992. [Online]. Available: http://dx.doi.org/10.1016/0004-3702(92)90065-6

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1162/neco.2006.18.7.1527

[3] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in Proceedings of the
Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009,
Clearwater Beach, Florida, USA, April 16-18, 2009, 2009, pp. 448–455. [Online]. Available:
http://www.jmlr.org/proceedings/papers/v5/salakhutdinov09a.html

[4] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” ArXiv e-prints, Dec. 2013.

[5] Y. Burda, R. B. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,” CoRR, vol.
abs/1509.00519, 2015. [Online]. Available: http://arxiv.org/abs/1509.00519

[6] D. P. Kingma, T. Salimans, and M. Welling, “Improving variational inference with inverse autoregressive
flow,” CoRR, vol. abs/1606.04934, 2016. [Online]. Available: http://arxiv.org/abs/1606.04934

12 of 19

http://dx.doi.org/10.1016/0004-3702(92)90065-6
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.jmlr.org/proceedings/papers/v5/salakhutdinov09a.html
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1606.04934

DAP Report

[7] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and
P. Abbeel, “Variational lossy autoencoder,” CoRR, vol. abs/1611.02731, 2016. [Online]. Available:
http://arxiv.org/abs/1611.02731

[8] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vázquez, and A. C. Courville, “Pixelvae:
A latent variable model for natural images,” CoRR, vol. abs/1611.05013, 2016. [Online]. Available:
http://arxiv.org/abs/1611.05013

[9] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural
Comput., vol. 14, no. 8, pp. 1771–1800, Aug. 2002. [Online]. Available: http://dx.doi.org/10.1162/
089976602760128018

[10] A. Mnih and K. Gregor, “Neural variational inference and learning in belief networks,” CoRR, vol.
abs/1402.0030, 2014. [Online]. Available: http://arxiv.org/abs/1402.0030

[11] J. Bornschein and Y. Bengio, “Reweighted wake-sleep,” CoRR, vol. abs/1406.2751, 2014. [Online].
Available: http://arxiv.org/abs/1406.2751

[12] A. Mnih and D. J. Rezende, “Variational inference for monte carlo objectives,” CoRR, vol.
abs/1602.06725, 2016. [Online]. Available: http://arxiv.org/abs/1602.06725

[13] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The wake-sleep algorithm for unsupervised neural
networks,” Science, vol. 268, pp. 1158–1161, 1995.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp.
1929–1958, 2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[16] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional networks,” CoRR, vol.
abs/1608.06993, 2016. [Online]. Available: http://arxiv.org/abs/1608.06993

[17] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,” CoRR, vol.
abs/1611.01704, 2016. [Online]. Available: http://arxiv.org/abs/1611.01704

[18] T. Tieleman, “Training restricted boltzmann machines using approximations to the likelihood gradient,”
in Proceedings of the 25th International Conference on Machine Learning, ser. ICML ’08. New York,
NY, USA: ACM, 2008, pp. 1064–1071. [Online]. Available: http://doi.acm.org/10.1145/1390156.1390290

[19] R. Salakhutdinov and I. Murray, “On the quantitative analysis of deep belief networks,” in Proceedings
of the 25th International Conference on Machine Learning, ser. ICML ’08. New York, NY, USA: ACM,
2008, pp. 872–879. [Online]. Available: http://doi.acm.org/10.1145/1390156.1390266

[20] Y. Burda, R. B. Grosse, and R. Salakhutdinov, “Accurate and conservative estimates of MRF
log-likelihood using reverse annealing,” CoRR, vol. abs/1412.8566, 2014. [Online]. Available:
http://arxiv.org/abs/1412.8566

[21] J. Ngiam, Z. Chen, P. W. Koh, and A. Y. Ng, “Learning deep energy models.” in
ICML, L. Getoor and T. Scheffer, Eds. Omnipress, 2011, pp. 1105–1112. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#NgiamCKN11

13 of 19

http://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1611.05013
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
http://arxiv.org/abs/1402.0030
http://arxiv.org/abs/1406.2751
http://arxiv.org/abs/1602.06725
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1611.01704
http://doi.acm.org/10.1145/1390156.1390290
http://doi.acm.org/10.1145/1390156.1390266
http://arxiv.org/abs/1412.8566
http://dblp.uni-trier.de/db/conf/icml/icml2011.html#NgiamCKN11

DAP Report

[22] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations,” in Proceedings of the 26th Annual International
Conference on Machine Learning, ser. ICML ’09. New York, NY, USA: ACM, 2009, pp. 609–616.
[Online]. Available: http://doi.acm.org/10.1145/1553374.1553453

[23] Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick, “Improved variational autoencoders
for text modeling using dilated convolutions,” CoRR, vol. abs/1702.08139, 2017. [Online]. Available:
http://arxiv.org/abs/1702.08139

[24] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational Autoencoder for Deep
Learning of Images, Labels and Captions,” ArXiv e-prints, Sep. 2016.

[25] D. Jimenez Rezende and S. Mohamed, “Variational Inference with Normalizing Flows,” ArXiv e-prints,
May 2015.

[26] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural networks,” CoRR, vol.
abs/1601.06759, 2016. [Online]. Available: http://arxiv.org/abs/1601.06759

[27] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative Adversarial Networks,” ArXiv e-prints, Jun. 2014.

[28] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu,
“Conditional image generation with pixelcnn decoders,” CoRR, vol. abs/1606.05328, 2016. [Online].
Available: http://arxiv.org/abs/1606.05328

[29] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifications,” CoRR, vol. abs/1701.05517, 2017.
[Online]. Available: http://arxiv.org/abs/1701.05517

[30] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation of generative models,” ArXiv
e-prints, Nov. 2015.

[31] Y. Wu, Y. Burda, R. Salakhutdinov, and R. B. Grosse, “On the quantitative analysis
of decoder-based generative models,” CoRR, vol. abs/1611.04273, 2016. [Online]. Available:
http://arxiv.org/abs/1611.04273

[32] H. Larochelle and I. Murray, “The neural autoregressive distribution estimator,” in The Proceedings of
the 14th International Conference on Artificial Intelligence and Statistics, ser. JMLR: W&CP, vol. 15,
2011, pp. 29–37.

[33] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning
by exponential linear units (elus),” CoRR, vol. abs/1511.07289, 2015. [Online]. Available:
http://arxiv.org/abs/1511.07289

[34] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, “DRAW: A recurrent neural network for image
generation,” CoRR, vol. abs/1502.04623, 2015. [Online]. Available: http://arxiv.org/abs/1502.04623

[35] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” ArXiv e-prints, Jan. 2017.

[36] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans,” CoRR, vol. abs/1606.03498, 2016. [Online]. Available:
http://arxiv.org/abs/1606.03498

14 of 19

http://doi.acm.org/10.1145/1553374.1553453
http://arxiv.org/abs/1702.08139
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1701.05517
http://arxiv.org/abs/1611.04273
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1606.03498

DAP Report

[37] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and equilibrium in generative adversarial
nets (gans),” CoRR, vol. abs/1703.00573, 2017. [Online]. Available: http://arxiv.org/abs/1703.00573

[38] Z. Dai, A. Almahairi, P. Bachman, E. H. Hovy, and A. C. Courville, “Calibrating energy-
based generative adversarial networks,” CoRR, vol. abs/1702.01691, 2017. [Online]. Available:
http://arxiv.org/abs/1702.01691

[39] K. Gregor, A. Mnih, and D. Wierstra, “Deep autoregressive networks,” CoRR, vol. abs/1310.8499, 2013.
[Online]. Available: http://arxiv.org/abs/1310.8499

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980,
2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[41] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to
accelerate training of deep neural networks,” CoRR, vol. abs/1602.07868, 2016. [Online]. Available:
http://arxiv.org/abs/1602.07868

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” CoRR, vol.
abs/1603.05027, 2016. [Online]. Available: http://arxiv.org/abs/1603.05027

[43] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,” Distill, 2016.
[Online]. Available: http://distill.pub/2016/deconv-checkerboard

15 of 19

http://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1702.01691
http://arxiv.org/abs/1310.8499
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1603.05027
http://distill.pub/2016/deconv-checkerboard

DAP Report

A Details on Contrastive Reweighted Wake-Sleep and VIMCO

A.1 Contrastive Reweighted Wake-Sleep

Algorithm 1 Contrastive Reweighted Wake-Sleep for a single observation

1: Sample x from training distribution.
2: for i = 1 to K do
3: Sample zi from qφ(z|x).
4: end for
5: Compute unnormalized weights wi =

p∗θ(x,zi)
qφ(zi|x)

6: Normalize the weights w̃i = wi∑
i′ wi′

7: Sample {z−} from M CD/PCD chains and pass through generator θ to obtain {x−}
8: Wake update for generative network θ with gradient:

K∑
i=1

w̃i∇θ log pθ(x, zi)

9: Wake and sleep updates for inference network φ with gradient:

K∑
i=1

w̃i∇φ log qφ(z(k)|x) +
1

M

M∑
j=1

∇φ log qφ(z−j |x
−
j)

10: Update RBM ϕ with gradient:

−
K∑
i=1

w̃i∇ϕFϕ(zi) +
1

M

M∑
j=1

∇ϕFϕ(z−j)

16 of 19

DAP Report

A.2 VIMCO

Algorithm 2 VIMCO for a single observation

1: Sample x from training distribution.
2: for i = 1 to K do
3: Sample zi from qφ(z|x)
4: end for
5: Compute unnormalized weights wi =

p∗θ(x,zi)
qφ(zi|x)

6: Compute multi-sample variational bound: LK = log 1
K

∑K
i=1 wi

7: for i = 1 to K do

8: Compute geometric mean of the rest of samples: w−i =
(∏

j 6=i wj

) 1
K−1

9: Compute the baseline learning signal: L−i = log 1
K

(
w−i +

∑
j 6=i wj

)
10: end for
11: Normalize the weights w̃i = wi∑

i′ wi′

12: Sample {z−} from M CD/PCD chains and pass through generator θ to obtain {x−}
13: Update generative network θ with gradient:

∑K
i=1 w̃i∇θ log pθ(x, zi)

14: Update inference network φ with gradient:

K∑
i=1

(LK − L−i − w̃i)∇φ log qφ(zi|x)

15: Update RBM ϕ with gradient:

−
K∑
i=1

w̃i∇ϕFϕ(zi) +
1

M

M∑
j=1

∇ϕFϕ(z−j)

17 of 19

DAP Report

B Qualitative Evaluation of Pretrained Model on CIFAR10

(a) Encoded CIFAR10 (b) Reconstruction by autoencoder

Figure 5: Left: Marginal distribution of z in the encoded CIFAR10. Right: Reconstruction of test images.
These are expected value of the output distribution without further sampling.

C Experimental Setup

In this section, we describe the training details and network configurations for experiments in
Section 5. Code will be released as well.

The general training procedure is as follows. We first pretrain the inference and generative networks
as autoencoder by maximizing log-likelihood on training data. Then we pretrain RBM with
contrastive divergence starting from 1 step (CD1) and gradually increase to 25 steps (CD25). This
training method has been previously used to produce the best RBM on MNIST dataset [19]. We
additionally train the RBM using persistent contrastive divergence with 25 steps (PCD25) or more.
Finally, we train all three components jointly with Contrastive RWS or VIMCO. In Contrastive
RWS and VIMCO, samples from RBM are drawn from a persistent chain. We use SGD with
learning rate decay for learning RBMs and Adam or Adamax [40] elsewhere.

We experiment with three activation functions ReLU, LeakyReLU and ELU [33], and find out that
ELU performs slightly better. Inspired by [6], we use weight normalization [41] in deep ResNet
models as we find that it works better than batch normalization for our model as well.

In MNIST experiments, the shallow fully connected model uses an inference network with five layers
(784-200-200-100-100-200) and a generative network with the same layers in reversed order. The
RBM has 200 visible units z and 400 hidden units h. For the deep ResNet model, the inference

18 of 19

DAP Report

network uses three basic pre-activation [42] residual blocks with 25, 50, 50 feature maps. Each block
uses kernel size 3 and is repeated twice with stride 2 and 1 respectively. After residual blocks, there
is a fully connected layer with 200 neurons. The RBM has 200 visible units and 400 hidden units.
The generative network uses the same blocks but with stride one. We upsample the feature map
with nearest neighbour interpolation by a factor of 2 before feeding it into each block and shortcut
to avoid checkerboard artifact [43].

In CIFAR10 and ImageNet64 experiments, the output distribution pθ is a discretized mixture of 10
logistic distributions [29]. The network for CIFAR10 uses 4 residual blocks with 64, 128, 192, 256
feature maps. Each block is repeated twice as in MNIST. There is no fully connected layer in this
model and final feature map (256× 2× 2) is flattened to a 1024 dimensional vector. The RBM has
1024 visible units and 2048 hidden units. The network for ImageNet64 uses 5 residual blocks with
64, 128, 128, 256, 256 feature maps. Each block uses stride 2 and is only repeated once. The RBM
is the same as the one in CIFAR10.

19 of 19

	Introduction
	Background
	Model
	Pretraining with Autoencoder
	Training
	Evaluation

	Related Work
	Experiments
	MNIST
	CIFAR10
	ImagetNet64

	Conclusion
	Details on Contrastive Reweighted Wake-Sleep and VIMCO
	Contrastive Reweighted Wake-Sleep
	VIMCO

	Qualitative Evaluation of Pretrained Model on CIFAR10
	Experimental Setup

