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Abstract

In this work, we borrow the idea of states in automata to define states for objects
that are common in our daily activities. When human interact with objects, the
objects are likely to go through a series of state changes, altering their appearance
and functionality from time to time. The goal of this project is to take an initial step
toward enabling robots to obtain knowledge of unseen objects either by watching
users‘ demonstrations or by playing around with the object’ by itself. We collected
a small dataset that covers a wide range of objects with diverse property and
functionality. Our result pointed out that detecting state changes is a non-trivial
task and requires higher level of understanding and reasoning than simply detecting
change of frame appearance.

1 Introduction

The property and functionality of objects is a fundamental knowledge for machines to understand and
interact with the environment. While most of the existing works focus on object affordance (the type
of interaction we could perform to an object), in this work, we explore a different aspect of object
property and functionality, namely the object states.

In automata, the state of a program is determined by the content of the program’s memory, or more
specifically, the value of the program’s internal variables. Under different states, the program reacts
differently to the same set of inputs, and ends up transiting to different next-states. The program’s
behavior can thus be summarized by a state diagram, depicting all possible states of a program and
the transition between them upon receiving different inputs. In this work, we borrow this idea from
automata to define states for objects. Object states are jointly defined by the appearance and the
functionality it could provide. Similar to executing a program, when we utilize an object for a specific
task, the object may go through a sequence of state changes, altering its appearance and functionality
from time to time. The input for triggering these changes are thus the interaction we provide to the
object. See figure 1 for example

In this project, we explore the task of learning object states through video demonstrations. The
major challenge is that detecting state changes is not equivalent to simply detecting scene changes
or appearance change in frames. First of all, appearance change of the frames could be caused by
various reasons other than change of object states. For example, users or users’ body parts moving
around during demonstration, users rotating/translating objects in 3D space without changing the
object state, but only changing the 3D object pose relative to the camera, etc. See figure 1b for
example. On the other hand, some object state changes only accompanied with subtle appearance
changes that are hard to be detected by naive methods. See figure 1a for examples. Taking all these
possibilities into account, we can conclude that detecting object state changes is not a trivial task. It
is not clear how we could differentiate between above scenarios just by simple approaches such as
applying thresholds on frame difference.

Due to lacking existing dataset suitable for our task, we collect our own dataset by recording 12 video
clips demonstrating user interactions with 12 different objects. Although the dataset is small in its
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(a) Examples of objects in the same state. Although the objects are in the same state, the appearance of the two
frames could be very different due to change of object poses (wallet, pen-bag and mug) and movement of the
hand (cell-phone and laptop).

(b) Examples of objects in the different states. Although the objects are in different states, the appearance of the
two frames could be very similar due to the object is in the very beginning of a state transition (pot and ring-toy)
or the change in object appearance are subtle (lamp, wallet and flap-toy)

Figure 1: Examples for illustrating the difference between detecting state changes and detecting
appearance changes of frames.

size, it covers a wide range of object state changes such as turning on and off the light, unzipping
the bag, putting vegetables into the pot, launching an application on the cell-phone, etc. For detail
specifications of the dataset see section 3. Considering the task requires high level understanding over
the scene and objects, we choose to learn the task with deep neural network models. Over the past
few years, convolutional neural networks (CNN) pretrained on large scale image recognition datasets
has demonstrated the ability of extracting sophisticated object-level features. We also use such a
pretrained CNN for part of our model. Besides, taking into account that the information of previous
and later frames could help deciding the object state in the current frame, we use a bidirectional
recurrent neural network to perform sequence to sequence (frame sequence to object state sequence)
prediction. For details of our approach, see section 4. We demonstrated that even with such a small
and diverse dataset, it is still possible for the deep models to learn certain concepts of object state
changes that could be generalized to unseen objects.

The final objective of this line of research is to allow robots to obtain knowledge of unseen objects
either by watching users using the objects as in their daily activities or by playing around with the
objects by the robot itself. This project takes an initial step toward this final goal by collecting a
small video dataset and learn deep neural network models on top of it to see how good can these
sophisticated model perform on this non-trivial task, given only limited training data.

2 Related Work

To the best of our knowledge, this is the first work explicitly defining object states and focusing on
learning object states from videos. We consider two lines of research that explore other aspects of
object property and functionality.

The first line is about learning and exploring object affordance. Most of the definitions for object
affordance follow the one given by Gibson in [2] (first published in 1979): “properties of an object
[...] that determine what actions a human can perform on them.” Following this definition, many
works formalize the problem of learning object functionality as identifying the possible human-object
interactions for different classes of objects. Gupta et al.[4] uses a Bayesian approach to jointly
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perform human pose recognition, object detection, and object functionality recognition. Grabner
et al.[3] and Jian et al. [5] both take the approach of inferring object affordance by hallucinating
possible human configurations in 3D spaces. Yao et al.[14] learns object functionality by a weakly
supervised approach. Specifically, using existing human pose estimators and object detectors, they
are able to obtain information of object affordance by analyzing the majority of human poses during
human-object interactions in a bunch of training images. The above literature only learn to predict
affordance for objects that belongs to classes in the training set.[15] differentiates with them by
exploring how to learn a more general representation such that it could be use to predict affordance
for novel object classes. Although object affordance is related to object state in the sense that
we also consider the human-object interactions in videos to provide useful important information
for identifying object state, the difference is that in most of the work studying object affordance,
there isn’t the notion that the same object could alter its appearance and functionality after certain
interactions.

The other line of research is about learning object attributes. Research in this field are often
closely related to object classification and recognition [9][13]. The difference is that the additional
supervision of object attributes could help regularize the learning process and also related object
of different classes but share common properties, so that the result is possible to generalize to
unseen object classes. There are already several attribute datasets for specific categories such as
scenes[10], animals[7], faces[8], etc. and also datasets that cover general objects such as [1] and
[11]. Although some of the object attributes considered by these dataset are somehow related to the
functionality of objects, most of the attributes are more related to the appearance, texture and other
visual characteristics. However, these provide rather indirect or even no information about how the
object would react during human-object interaction, which is the major focus of the object property
and functionality considered in our work.

3 Dataset

Figure 2: The 12 objects in our dataset. First row: pot, tape measure, lamp, toy(rings and peg), cell
phone, eye-glasses box. Second row: shaver, pencil bag, toy, wallet, mug, laptop.

#states
DeskLamp 4
FlapToy 12
GlassesBox 6
Laptop 6

#states
Mug 3
PenBag 6
Phone 6
Pot 4

#states
RingToy 10
TapeMeasure 7
Shaver 5
Wallet 7

Table 1: List of objects and number of distinct states in their videos

We collect our own dataset by recording 12 video clips from a first person view point. See figure
2 for the list of objects. In each video, the user demonstrates several different states of an object.
Ideally, we want our model be able to learn object transitions through demonstrations that are close
to our daily activities. However, in this project, since we have limited number of data, we explore
with a more constrained setting where users are playing with the object and demonstrating different
states on purpose.

The total list of objects in the dataset could be found in figure ??. Although the dataset is small in its
size, it covers a wide range of object state changes such as turning on and off the lamp, closing a
lid of the mug, unzipping the bag, putting vegetables into the pot, launching an application on the
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Figure 3: Illustration of the proposed model. Note that the bidirectional RNN layers and the CNN
layers are sharing weights across different time steps.

cell-phone, etc. The videos are typically one to two minutes long, and demonstrate two to twelve
different object states per video. For every frame in the videos, a single integer (1 to K) is assigned to
it as the label of the object state number.

Annotating the state number of each frame is not a trivial task. According to the original definition,
object state is jointly defined by object appearance and functionality. Which means we should
consider two states as different whenever the objects do not have the exact same appearance or
functionality. However, strictly following this guideline may result in too many state transitions in the
video and accounting for too many subtle states. Thus, we have special treatments for the following
two cases. The first case is when the object is continually changing its state or functionality in a short
period of time. For example, when the bag is being unzipped, or a laptop being opened. For these
cases, instead of assigning a new state for every next frame, we simply annotate these frame as -1,
indicating that they are in the middle of state transitions. The second case is when objects only have
minor changes in appearance or functionality. For example, launching a calculator application on the
smart phone is considered a state change, but user typing a digit on the calculator is not. Another
example is an pencil bag with two pens inside is considered to be in a different state compared with
the same bag with two pens and a ruler. However, when the two pens are placed in slightly different
position in the bag, or say if they exchange their positions with each other should not cause state
changes to the bag.

4 Method

In this project, we formulate our task into a supervised learning problem. The dataset described in
section 3 contains labels of object state for every frame in the videos. Given this information, we can
come up with a new label for each frame, indicating whether the object state remains the same from
the previous frame to this frame. In other words, instead of directly learning to predict the current
object state, our model learns to decide whether there is a state change from the previous frame to the
current frame. In addition, we believe that in order to perform this inference, the essential information
resides in a short interval of the target frame. Simply considering the information in a pair of frames
may not be sufficient to determine whether there exists a state change. For this reason, each of our
training instance consists of five consecutive frames. The desired output is then a binary sequence of
length four, indicating whether the there is a change of object state in the last four frames. (We do
not do the prediction for the first frame given that there is no information for the previous frame in
this case). The final problem thus becomes a sequence to sequence prediction where the input is a
sequence of frames and the output is a sequence of binary numbers.

For the model architecture, We choose to concatenate a convolution neural network(CNN) with a
recurrent neural network(RNN) as our final model. The reason for using CNN is due to its proven
ability for capturing sophisticated features of objects and object parts. We believe that detecting state
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Precision Recall F1
Frame Difference 0.312 0.561 0.401
Ours 0.865 0.711 0.781

(a) PenBag

Precision Recall F1
Frame Difference 0.253 0.388 0.306
Ours 0.490 0.848 0.604

(b) Wallet

Table 2: Quantitative results comparing the baseline model and our approach on the PenBag and
Wallet sequence.

changes, unlike detecting appearance change, requires high level object features to be extracted. We
use the popular AlexNet[6] architecture pretrained on the ILSVRC 2015 dataset[12], and remove the
last three fully-connected layers (so the extracted feature vectors contain the spatial information of
the objects). Given N consecutive frames F1, F2, ... , FN , we pass them thourgh the same CNN to
generate the feature vectors x1, x2, ... ,xn.

xt = fC(Ft), t = 1, 2, ..., N

The RNN is used for performing the sequence to sequence prediction. We choose to use bidirectional
RNN since we believe better decision could be made for the target frame if information in both the
previous and later frames are considered at the same time. Also the RNN is equipped with a two
layer LSTM cell in order to remember selective contents of observed frames. See figure 3 for an
overview of our model. Given the feature vectors x1, x2, ... ,xn, the bidirectional RNN predicts state
changes y1, y2, ... ,yn with the following formulation:

~ht = fR(xt,~ht−1)

~ht = fR(xt, ~ht−1)

yt = g(W [~ht; ~ht] + b)

where ~ht and ~ht are the hidden states of the bidirectional RNN at time step t. The final output yt is
generated by a fully connected layer with the input being the concatenation of ~ht and ~ht.

After prediction, we need a post processing step to aggregate the prediction result of every five frames
into the final prediction for the full video. The idea of this post processing is to provide temporal
smoothing for the final prediction, which is not guaranteed if the predictions for every five consecutive
frames are performed independently. In our case, we use a weighted sum of the prediction result,
with the weight determined by a Gaussian kernel centered on the target frame. After the weighted
sum, a median filter of window size three is performed to eliminate outliers and noisy predictions to
generate the final result.

5 Result

In our experiment, we use 10 videos for training, and the rest 2 videos (PenBag and Wallet) for
testing. Here we compare to the baseline approach of detecting state changes by thresholding frame
difference. The threshold is picked by searching a range of values and use the one that gives the
best performance on the training set. Quantitative results are reported in table 2 and although the
qualitative results are best view in video forms, in figure 4 and 5 we sample a short sequence of
frames from the videos to present the result.

PenBag In this sequence, our model performs pretty well on most part of the sequence. Although
there is no non-rigid object like this the model doesn’t confuse the non-rigid transformations with
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Figure 4: Illustration of the proposed model. Note that the bidirectional RNN layers and the CNN
layers are sharing weights across different time steps.

Figure 5: Illustration of the proposed model. Note that the bidirectional RNN layers and the CNN
layers are sharing weights across different time steps.
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object state changes when the bag is squeezed during demonstration. Also in the training set we don’t
have similar action such as zipping and unzipping the zipper, however the model is able to generalize
the learning result to these actions and recognized that the bag is going through state transitions
during these actions.

Wallet In this sequence, our model performs slightly worse than the PenBag sequence, mis-predicting
two important state changes: First is when the wallet is opened (see the last two frames in the first row
of figure 5) the model doesn’t recognize the state change here. The second is when wallet is opened
to show the bills inside (see the second to last frame in the last row of figure 5). In the sequence, the
user stayed in this state for several seconds but the model still predict all the frames in this interval to
be in the middle of a transition. For the rest of the transitions like flipping the inner cover (see the last
three frames of the second row of figure 5), taking out the metro card (see the first three frames in the
third row of figure 5) and opening the inner pocket (see the fourth row of figure 5), the model can
distinguish them from the rigid transformation of wallet performed by the users from time to time.

6 Conclusion

This work takes a first step toward learning object states through video demonstrations. The con-
tribution of this work includes presenting the idea of object states, identifying the challenges of
recognizing object states, collecting the first object state dataset and also trying out state of the art
methods to explore their effectiveness on this task. Futre work includes augmenting the dataset to
contain more objects and also moving toward videos that are more close to how human interact with
objects in daily activities. We expect our work to draw interest in a different aspect of object property
and functionality, together with the workds studying object affordance and atttributes, allow machines
to have a much richer understanding over objects and the environment.
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