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1 Extended Abstract

Background. Bus transit time prediction is to predict how long it takes for a bus to travel from point A to point B.
Good prediction helps with urban transportation planning and bus riders’ time planning. Artificial neural networks have
been proven to work well in this field.
Aim. This project aims to make good travel time predictions for both route and segments of route with the bus GPS
data using artificial neural networks.
Data. We use a collection of 925,368 latitude and longitude data points taken for buses in Porto, Portugal from
April 5th to April 7th, 2015. We also used route map and bus stops data from Porto bus transportation website
(http://www.stcp.pt/en/travel/) as prior knowledge. The bus GPS dataset and prior knowledge are used together
to compute features for the models.
Methods. We developed 3 models to make the travel time prediction, two of which are to predict whole route travel
time and the other one is to predict segment of route travel time. All three models use a three-layer neural network, with
different number of input and hidden units. The first model predicts the whole route travel time with features computed
directly from bus GPS data and prior knowledge, the second model predicts segment of route travel time with preceding
bus information and the last model predicts the whole route travel time by combining predictions of segments.
Results. As the model takes more prior knowledge, higher accuracy is achieved. Moreover, whole route travel time
prediction using segments has better results than the route prediction model using solely bus GPS data. It also performs
better than the segment prediction model, because negative and positive errors of segment predictions cancel each other
out.
Conclusions. First, it is promising to develop a model that takes as many factors as possible to make accurate travel
time predictions, given that prior knowledge improves model accuracy. Second, when there is lots of variations in training
set, neural network may not be a good option because it tries to ”overfit” outliers.
Intellectual merit. This project can serve as a basis for the development of an advanced public transportation system,
which is able to make highly accurate bus transit time predictions using bus GPS data, prior knowledge and real-time
traffic.
Broader Impacts. With more accurate route travel time predictions, the transportation planning institute is able
to arrange more efficient bus schedules and design better bus routes. As for individuals, better segment travel time
predictions can provide much convenience and efficiency on time planning.

2 Problem Statement

The main idea of this project is to predict the bus travel time using bus GPS data with the help of other information
such as bus routes and bus stops information. The models should make good predictions on route travel time as well as
segments of route travel time using the three-layer artificial neural networks.

3 Introduction

Bus transit has been a basic yet vital way of transportation in most cities. From government’s point of view, bus transit
can be easily accessed by mass people. It is a timely reliable, cheap to ride, all-year-along operational and cheap-to-
maintain transportation. From a city dweller’s point of view, bus is more economical and eco-friendly than driving a car.

report.tex 1 of 27 11-29-2017 at 01:25



Final Verison

Because of the advent of bus-only lanes in many cities, bus is even faster than car in some traffic-heavy areas during rush
hours. Although bus is not always on schedule as subway, bus usually covers more areas than subway does. Therefore,
bus has been top-one choice of transportation in many cities for people like daily commuters or travelers. It comes as
no surprise that bus transit planning is an important part of urban transportation planning, and that advanced public
transportation systems (APTS) and advanced traveler information systems (ATIS) have been developed over the years
to provide convenience for bus riders. Hall et al. (1997) pointed out that intelligent transportation systems provides
modest benefits in reducing passenger delay - on the order of 20 seconds per transferring passenger on average. Related
technologies like global positioning systems (GPS), automatic vehicle location systems (AVLS) and automatic passenger
counters systems (APCS) have expanded quickly to support the bus transit systems. And two research problems have
drawn most attentions: bus transit time prediction for a single route and bus arrival time prediction.

However, it is not easy to accurately predict bus transit time, because unlike subway, bus transit time is affected by many
external factors, such as weather and road traffic. An ideal model would be able to take as many factors as possible
to make precise predictions. In addition, historical data is not enough to make dynamic predictions. It is desirable to
dynamically capture real-time transit-related information while making predictions. Third, in cities with developed bus
transportation, it is normal for multiple routes to use common bus stops. Using information from different routes not
only implicitly embeds traffic information, but also provides bus riders with more options of routes to destination. In this
project, we will explore the effects of adding more factors to the model when predicting the bus travel time. Moreover, we
will use multiple routes information, historical bus GPS data and bus routes prior knowledge to predict bus transit time.
All models utilize a three-layer neural network. A three-layer neural network is a good choice for this project because of
three reasons: First, by universal approximation theorem, a three-layer feed forward neural network containing a finite
number of hidden neurons can approximate any continuous functions on compact subsets of Rn, under mild assumptions
on the activation function; Second, a three-layer neural network is enough to solve a large number of problems in real
life. Third, more hidden layers will likely overfit the training set. Especially in this project, the size of training data is
small.

4 Related Work

Bus Arrival Time Prediction with GPS Data
Lin and Zeng (1999) uses bus GPS data obtained from automatic vehicle location systems, together with other information
- bus schedule table, bus delay and time check point - in algorithms to predict bus traveling time from one bus stop to
another. The two-dimensional latitude-longitude data was transformed into a one-dimensional bus path with link-node
representation. Then the data is assessed on its accuracy, on-time performance and delay correlation. In the paper,
base case algorithm uses bus schedule table as prediction. In the other four algorithms, the paper starts with bus GPS
data, additively including bus schedule table, delay and time check point. All five algorithms are compared with overall
precision, robustness and stability. It turns out that time check information has the best influence on bus travel time.
Model Selection
Gurmu and Fan (2014) compared three models to predict bus travel time dynamically using only GPS data. The three
models are historical average, kalman filtering and ANN. Three models are tested on GPS data for bus line LT11 in
Macae, Brazil from November 2008 to May 2009. By analyzing the data, the authors found out that the travel time
between stops vary a lot over time of the day, however, the travel time distribution over different days of the week seem
to be nearly the same. Three sections on the trajectory of different lengths are used to test the models, and models are
compared based on Mean Absolute Percentage Error (average derivation) and Maximum Absolute Percentage Error (max
derivation / robustness). All three models do well for short sections, but kalman filtering and ANN outperform historical
average for both medium and long sections. However, kalman filtering fails at giving reasonable estimation during peak
hours, especially evening peak. On the other hand, ANN can give stable predictions during peak and off-peak hours.
In addition, ANN makes most robust predictions and has the lowest prediction error overall standard deviation. The
authors also found out that ANN is less effective in predicting bus travel time for very short and/or long trips. That is,
only when the observed travel times are in a range between 20 to 50 minutes, the ANN is able to provide real-time travel
information with less than 10% MAPE.
Bus Arrival Time Prediction using Multiple Routes
Yu et al. (2011) proposed a method to predict bus arrival time using multiple bus routes. Bus running time of different
routes were used to estimate current traffic conditions. Four models were implemented and compared: Support Vector
Machine (SVM), ANN, k-NN and Linear Regression (LR). The results showed that this proposed method is more accurate
than the models based on bus running time of a single route. Moreover, SVM has the best performance, k-NN and ANN
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tied for second places and LR was the worst among the four models. We replicate and explained the model in details in
section 6.3.

5 Data

The dataset is a collection of global positioning system (GPS) points for buses in Porto, Portugal. Each data point
records the bus’ latitude, longitude and other 30 features of a bus at a time instant. The information is emitted by on
board unit (OBU) on a bus and sent to the system through one of the three networks: 802.11p, physical and cellular
network.

5.1 Datasets

There are two bus GPS datasets, with same features, but different sizes. The smaller dataset contains data points from
April 5th to 7th, 2015, in total of 925,368 data points. The other dataset covers whole April, from 1st to 30th, and
contains 2,300,742 data points. We will use both datasets to do bus travel time prediction. In particular, we will use
the small dataset for all models and use the large dataset on some models to see if more data would improve prediction
accuracy.

5.2 Data Features

Each point contains 32 features: node id, system time, gps time, server time, latitude, longitude, altitude, speed,
heading, hdop, acceleration x, acceleration y, acceleration z, hops, network, next hop id, rsu id, rssi, vehicle status,
distance, connected time p, connected time 3p, traffic 3g in, traffic 3g out, traffic g in, traffic g out, traffic p in, traffic p
out, traffic eth in, traffic eth out, traffic 3g l2 in, and traffic 3g l2 out. In this project, we only used 4 features: node id,
system time, latitude and longitude. Description of all feature fields can be found in Appendix. We took three examples

Feature Name Description
node id ID of the installed boards in the vehicles

system time Time instance of the board, generally the same as GPS time.
latitude Latitude of vehicle

longitude Longitude of vehicle

Table 1: Description of used features.

from the dataset with only the four fields shown. Examples of full feature data point can be found in Appendix.

Feature node id system time latitude longitude
Example 1 195 2015-04-05 00:00:00 41.148689 -8.610642
Example 2 215 2015-04-05 00:00:00 41.173859 -8.619491
Example 3 372 2015-04-05 00:00:00 41.183071 -8.621082

Table 2: Selected Samples from data.

Node id is an integer that identifies each bus vehicle. System time has precision to minutes in the small dataset and
to seconds in the larger dataset. Both latitude and longitude are high-precision doubles. In some cases, the latitude
and longitude will both be 0. We regard this as a recording error and throw such data points away. We will generate
feature spaces from these four data fields, and feed to travel time prediction neural networks.

5.3 Properties of Raw Data

5.3.1 Frequency of Data Recording

In the small bus dataset, the time ranges from 2015-04-05 00:00:00 to 2015-04-07 17:22:00, with duration of 235,320
seconds. During one minute, the OBU transmits bus information 3 to 4 times. If we divide the duration by the frequency
of bus GPS data transmissions, we are expecting around 15,000 data points for each bus vehicle (node id). However, on
average, each vehicle records only 1940 times. Maximum number of information transmissions for a bus is 10,843 and
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minimum is 34. Vehicles don’t transmit data all the time. It is normal for a bus to stop sending information a few times
a day and each interval ranging from one hour to several hours.

5.3.2 Bus Trajectory

In the small dataset, we find 477 unique vehicles. Latitude and longitude for the same vehicle during an non-interrupted
recording session are grouped together. Ordering them by system time, we get a trajectory. In the small dataset, there
are usually two to three trajectories for each bus vehicle.

5.4 Prior Knowledge

Route is an ordered sequence of bus stops. Each node id must operate on a route. Our model is to predict the route
travel time. We collect two kinds of routes information as prior knowledge and use them to map trajectories to routes.

5.4.1 Route

The first prior knowledge is a bus transportation map in Porto, Portugal. The map shows each route in blue lines and
annotate the route id along the line. Parts of a blue line may have many route id annotated, because different routes
can share common segments. The map is not detailed enough to show sequence of bus stops, however, it annotates
several bus stop ”hubs” that are passed by multiple routes and indicates if the stop is terminal for some routes. The
map partitions the bus transportation system in Porto into 18 zones: C1, C2, C3, C4, C5, C6, C8, C9, C10, C11, C16,
S1, S2, S8, S9, N10, N11, N16. Visually speaking, different zones have different density of bus routes. Downtown Porto
lies in zone C1 and it is the most traffic-heavy zone. Figure 1 shows a small part of the map where zone C1 lies in.

Figure 1: Porto bus route map, routes shown in blue lines, route id annotated and bus stop hubs pointed out

5.4.2 Bus Stops

The second prior knowledge set is the route information on Porto’s official bus transportation website (http://www.
stcp.pt/en/travel/). There are 65 bus routes, 4 of which are circular and the rest are non-circular. Circular route has
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only one direction and non-circular route has two directions. So there are 126 ordered sequences of bus stops. Each bus
stop contains the GPS, stop name, stop code in capitalization, detailed address, and the zone number.

5.5 Processing of Raw Data

5.5.1 Trajectory Visualization

We plot bus trajectories on a map, as shown in Figure 2. Some plotting exhibits strong route patterns. We found out
that a bus usually waits at a bus gathering place before starting the service. Then the vehicle drives from the gathering
place to the route start stop, and repeats the route over and over. In the figure, certain parts of the trajectory is thicker
than other parts, because the bus traverse these parts more times. Usually the thicker part of trajectory is the route and
the lighter part is the path from the gathering place to the route starting point. From the visualization, we also find out
trajectories of circular and non-circular routes.

5.5.2 Trajectory Snapping

The trajectory is plotted with polylines corresponding to sequences of GPS. Because of the high-precision nature and
drifting effect of GPS, the trajectory cannot lie perfectly with the actual roads. Wang et al. (2014) proposed an algorithm
that can reshape the odometry trajectory to fit the constraints of a given topological map. After applying the algorithm,
we obtained clearer bus trajectories, as the contrast shown in Figure 3. We only use snapping for visualization purpose.

5.5.3 Node Id to Route Mapping

With the visualization of snapped trajectories and route prior knowledge, we can match trajectory to route. Starting
with a trajectory, we can match it with segments on the map and identify the possible routes. We then check the routes
on transportation website and match the route shapes. We only record the mapping when there is a perfect match. If
any discrepancy happens, we consider the mapping to be imprecise and don’t use it.

170 node ids out of 477 have a mapping of routes. It is observed that most of the time each vehicle runs one route,
sometimes multiple vehicles operate the same route, and sometimes one vehicle operates multiple routes. As in Figure
4, node id 628 runs two routes 906 and 901. The trajectory can be matched from routes shown on STCP website.

6 Methods

We develop three models to predict the bus travel time for routes and segment of routes. Segment of route is an
arbitrary part of route that starts with one bus stop and ends with another.

• Whole route travel time prediction with GPS data
This model tries to predict the route travel time using bus GPS data and route prior knowledge. We tried three
different sets of input features, from features computed purely from GPS data to features computed by GPS data
integrating with prior knowledge. We see an increase in the accuracy as we embedded more prior knowledge to
model input features.

• Segment of route travel time prediction with multiple routes
This model predicts the segment travel time by using travel times of other buses running on the same segments.
Preceding buses provide implicit traffic information, which helps with prediction accuracy.

• Whole route travel time prediction with aggregation of segments
The third model predicts whole route travel time by adding travel times of continuous and non-overlapping segments
along the route. Each segment travel time is predicted by the previous model.

In the next few section, we will first list the metrics used to compare the model performance. Then go over each model
in detail, showing each model’s purpose, overview, notation setup, computed features, data experiment and test results.
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(a) Bus waits at bus gathering place before service, in left upper part of the map.

(b) Example of non-circular bus route

(c) Example of circular bus route

Figure 2: Trajectory for buses that are not moving, bus with non-circular route and with circular route.
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(a) Before snapping to road, the thread is thicker and trajectory at traffic intersection does not lie on the road.

(b) After snapping, the polyline is tighter and the route is clearer.

Figure 3: Bus 114 trajectory before and after snapping.

6.1 Metrics

Suppose there are N test data points. Error between the predicted and actual travel time for the i-th sample is represented
by εi = ŷi − yi. The metrics we use to measure the model performances are:

• Mean Bias Error measures the average difference between predict travel time and real travel time. Positive error
and negative error will cancel out.

MBE =
1

N

N∑
i=1

εi

• Maximum Absolute Error measures the robustness: maximum deviation of prediction from real travel time.

MaxAE = max
i∈1:N

|εi|
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(a) Trajectory of node id 628

(b) Route 906 shown on website with sequence of bus stops

(c) Route 901 shown on website with sequence of bus stops

Figure 4: Node id 628 runs both route 906 and route 901. Shape of the trajectory matches shapes of the two routes.
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• Mean Absolute Error measures the average derivation of prediction from real travel time.

MeanAE =
1

N

N∑
i=1

|εi|

• Mean Absolute Percentage Error measures the average percentage derivation from real travel time.

MAPE =
1

N

N∑
i=1

∣∣∣∣ εiyi
∣∣∣∣ ∗ 100

• Root Mean Squared Error measures average derivation. Compared to Mean Absolute Error, RMSE puts large
weights on large errors. For this project, RMSE is preferable to MeanAE because large derivation is particularly
undesirable when making travel time predictions, as it will drive bus riders away and make them miss the bus.

RMSE =

√√√√ 1

N

N∑
i=1

ε2i

• Root Sum Squared Error measures the overall deviation from predicted to actual travel time.

RSSE =

√√√√ N∑
i=1

ε2i

6.2 Whole Route Travel Time Prediction with GPS Data

There are many factors that will influence the bus route travel time, such as traffic, weather, dwelling size... Intuitively,
the more the factors are captured, the more accurate the predictions will be. So three models are developed sequentially,
with same architecture but different set of input features. The first feature space is purely extracted from bus GPS data.
For the second and third model, more and more prior knowledge is embedded. The three feature spaces are:

• GPS data generated start point of route
Without prior knowledge, the start point of a route is chosen by the most visited and longest waited GPS position
in a trajectory. In this model, we predict the travel time for the part between any two consecutive start points.

• Start and end stops provided by route prior knowledge data
With the route prior knowledge, start and end stop GPS for a route can be obtained. We use this information to
track each route. Generated input features are less noisy compared to the previous feature space.

• Zones distribution provided by route prior knowledge data
Besides route start and end stops, the third feature space also uses zone information. As shown in the Figure 1,
the zones bear different traffic weights. Inclusion of zone information implicitly bring bus route density factor to
the model.

6.2.1 GPS data generated route start point

Model Overview
Suppose there is a target bus vehicle n, which operates on route l. We want to predict how long it takes for n to complete
a route, using the route start point Al, route start time TAl

n and route length Ul. The numerical value of latitude and
longitude at route start point is not important for the neural network, so we transform the (latitude, longitude) pair into
one-hot categorical vectors ~al, which determines how far Al is from the center of downtown Porto, Portugal. In general,
we expect the further route start point is, the less traffic, thus given same route length, the bus n will need less time.
Route start time TAl

n denotes the timestamp at which bus n arrives at route start point Al. It is also transformed into
an one-hot vector, ~tAl

n . The bus starting during rush hours is expected to have longer travel time. Route length Ul is
a positive real value, corresponding to the distance traveled during one route traversal. If other factors are the same,
longer route costs more time.
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The model makes the whole route travel time prediction by:

ŷl,n = f
(
~al,~t

Al
n , Ul

)
Computed Features
The three features are transformed as follows:

• ~al = one-hot(distance(Al, p))
We located the center of downtown Porto, denoted as p, at (41.155265, -8.61335) on Google Map. The one-hot
vector has 5 ranges, corresponding to distance [≤ 3km, 3km-5km, 5km-7km, 7km-10km, ≥ 10km].

• ~tAl
n = one-hot(TAl

n )
Time is also transformed to one-hot vectors, depending on which range the hour falls into: [1am-5am, 6am-11am,
11am-4pm, 4pm-9pm, 9pm-1am].

• Ul
The distance the bus traveled between two consecutive route start points.

Data Processing

Algorithm 1 Generation of the feature space from bus GPS data

for each trajectory s in a set of trajectories of bus n: Sn do
group GPS points within 150 meters for s
fms = generate frequency map(s)
Al = sort(fms)[0]
initialize Ul = 0
initialize last time the bus passes route start point T ′Al

n = null

for each GPS and timestamp tuple (slati , slngi , stsi ) in trajectory s do

Ul+ = distance((slati , slngi ), (slati−1, s
lng
i−1)) if i ≥ 1

if (slati , slngi ) == Al then
record vectorized Al as ~al;
record vectorized stsi as ~tAl

n

record Ul
record y = TAl

n − T ′Al
n if T ′Al

n is not null
update Ul = 0
update T ′Al

n = TAl
n

end

end

end

First we clean each trajectory by group GPS points within 150 meters. Then the cleaned trajectory is converted to a
frequency map: with each unique GPS point as key and list of seconds the bus stays on the GPS point as value. For
example, if a bus passes a point twice - the first time the bus stays 20 seconds, the second time 60 seconds, then the
value should be (20, 60). We rank entries in the map first by how many times the bus stays at the GPS point, then by
how much total time the bus stays on the point. The top entry is chose as the bus route start point for this trajectory.

After finding the route start point, we loop through the sequence of GPS points. When the bus passes the route
start point, the timestamp is recorded and the distance from last time the bus passed the same point is taken as the
route length. Then we convert route start point and timestamp to vector, and take the tuple as one input data point.

6.2.2 Start and end stops provided by route data

GPS data generated route start point itself is error-prone. This error will be amplified as we use wrong start point to find
the route and generate the input features. Besides, without the end point of route, the travel time predicted is actually
for routes traversed in both directions. In this model, we use prior knowledge of route start and end stops from Porto
bus transportation website.
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Model Overview
Suppose we have a target bus vehicle n, which operates on a route l that has a start point GPS Al, and end point GPS
Bl. We want to have a model that can predict the route travel time ŷl,n for n from Al to Bl, starting at timestamp TAl

n .

Al and Bl will be converted to vector ~al, ~bl, representing the distance to the center of downtown Porto. Start time TAl
n

will also be converted to vector ~tAl
n to distinguish between regular hours and rush hours. The last input feature is the

distance traveled for current route Ul.

The model will predict route travel time by:

ŷl,n = f
(
~al,~bl,~t

Al
n , Ul

)
Computed Features

• ~al = one-hot(distance(Al, p))

• ~bl = one-hot(distance(Bl, p))

• ~tAl
n = one-hot(TAl

n )

• Ul
Route start stop and end stop vectorization is the same as in the previous model. Calculate the distance between
terminal stop and center of Downtown Porto p at (41.155265, -8.61335). Then categorize the distance according to [≤
3km, 3km-5km, 5km-7km, 7km-10km, ≥ 10km]. Categorize hour of time according to [1am-5am, 6am-11am, 11am-4pm,
4pm-9pm, 9pm-1am].

Data Processing
From bus GPS data, the input features are generated using algorithm 2.

First, we use actual bus stop GPS to replace trajectory GPS points if their distance is less than 45 meters. Then we can
find out how long the bus spends on each stop. In real life, bus drivers usually rest a while at terminal stops, so that
terminal stops have longer stay time than non-terminal stops. Thus we pick out stops in a trajectory that the bus stays for
longer than 4 minutes and treat as a terminal stop. In the data experiment, we find clear route patterns using this method.

With the start and end stops chosen, GPS points in the trajectory are looped through. We extract the path from
start stop to end stop and vice versa. Then record the start stop GPS, end stop GPS, start stop arrival time, path
distance, and travel time as one input data point.

6.2.3 Zones distribution provided by route data

The actual travel time is hugely influenced by the traffic along the path from start stop to end stop. So we use zone
information to capture the traffic. For each trajectory, we partition GPS into zones. Determining how many recorded
data points in each zone roughly tells the traffic combinations for the path, thus making the prediction more accurate.

Model Setup
Suppose there is a target bus n, running on route l, for which we want to predict the route travel time ŷl,n. l starts at
bus stop Al and ends at bus stop Bl. Considering a route traversal from Al to Bl or vice versa, represented as a sequence
of (latitude, longitude, timestamp) tuples. Zl,n is the distribution of how many GPS points in a route traversal lies in
each zone. There are 18 zones: [C1, C2, C3, C4, C5, C6, C8, C9, C10, C11, C16, S1, S2, S8, S9, N10, N11, N16]. So
Zl,n is a 18x1 vector. Time-wise, we transfer the timestamps to a vector showing how many timestamps fall in each time
range. The time distribution Wl,n is a 5x1 vector with ranges: [hour 1-5, hour 6-11, hour 11-16, hour 16-21, hour 21-1].
The third feature is the length of route Ul.

Travel time for the whole route is predicted by:

ŷl,n = f(Zl,n,Wl,n, Ul).

Computed Features
We use 1-nearest-neighbors to assign the zone number of the closest bus stop to the GPS point.
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Algorithm 2 Generation of input feature using GPS data and route prior knowledge

for each trajectory s in a set of trajectories for bus n: Sn do

for each tuple (slati , slngi , stsi ) in trajectory s do
for each bus stop m with GPS (mlat,mlng) in the set of bus stops: M do

if distance((slati , slngi ), (mlat,mlng)) ≤ 45m then

(slati , slngi ) = (mlat,mlng)
end

end

end

initialize Al, Bl, T
Al
n = null

initialize Ul = 0
for each GPS and timestamp tuple (slati , slngi , stsi ) in trajectory s do

Ul += distance((slati , slngi ), (slati−1, slngi−1)) if i ≥ 1

if (slati , slngi ) is in bus stops set: M then

T ′ = timestamp bus leaves (slati , slngi )
if T ′ - stsi ≥ 4 minutes then

if Al == null then

Al = (slati , slngi )
TAl
n = stsi

end
else

if (slati , slngi ) == Al then
update TAl

n = stsi
update Ul = 0

end
else

Bl = (slati , slngi )

record ~al = vectorized Al, ~bl = vectorized Bl, ~t
Al
n = vectorized TAl

n , Ul, y = stsi − TAl
n

update Al = Bl
update TAl

n = stsi
update Ul = 0
jump the loop to after bus leaves (slati , slngi )

end

end

end

end

end

end

• Zl,n =
[∑

i I(zone(slati , slngi ) = C1), ...,
∑
i I(zone(slati , slngi ) = N16)

]
• Wl,n = [

∑
i I(stsi ∈ hour(1, 5)), ...,

∑
i I(stsi ∈ hour(21, 1))]

• Ul
Data Processing
The algorithm 3 shows how to generate input features for this model.

There are three steps to transfer the data to the computed features. First, we snap the GPS point to bus stop GPS
within 45 meters. Then the same method to find start and end stops as in the previous model is used. After getting
the start and end stops, (lat, lng, timestamp) tuples for the trajectory are looped through. Once a terminal bus stop
is reached, the algorithm starts to aggregate zone and time distribution of each GPS point encountered until the other
terminal stop is reached. Then record the computed features, re-initialize the features and repeat the same collecting
process, until whole trajectory is looped through.
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Algorithm 3 Generation of input feature using bus GPS data and zone, route prior knowledge

for each trajectory s in a set of trajectories for bus n: Sn do

for each tuple (slati , slngi , stsi ) in trajectory s do
for each bus stop m with GPS (mlat,mlng) in the set of bus stops: M do

if distance((slati , slngi ), (mlat,mlng)) ≤ 45m then

(slati , slngi ) = (mlat,mlng)
end

end

end
initialize Zl,n = [0] * 18
initialize Wl,n = [0] * 5
initialize Ul = 0
for each GPS and timestamp tuple (slati , slngi , stsi ) in trajectory s do

m′ = KNN((slati , slngi ), M, k=1)
Zl,n += vectorize (zone(m′))
Wl,n += vectorize (stsi )

Ul += distance((slati , slngi ), (slati−1, slngi−1)) if i ≥ 1

if (slati , slngi ) is in bus stops set: M then

T ′ = timestamp bus leaves (slati , slngi )
if T ′ - stsi ≥ 4 minutes then

if Al == null then

Al = (slati , slngi )
TAl
n = stsi

update Zl,n = [0] * 18
update Wl,n = [0] * 5
update Ul = 0

end
else

if (slati , slngi ) == Al then
update TAl

n = stsi
update Zl,n = [0] * 18
update Wl,n = [0] * 5
update Ul = 0

end
else

record Zl,n, Wl,n, Ul, y = stsi − TAl
n

update Al = (slati , slngi )
update TAl

n = stsi
update Zl,n = [0] * 18
update Wl,n = [0] * 5
update Ul = 0
jump the loop to after bus leaves (slati , slngi )

end

end

end

end

end

end

6.2.4 Learning Model

All three sets of features are fed to three-layer neural networks. The first model takes three computed features ~al, ~t
Al
n ,

Ul, feeding to network with 11 input nodes, 6 hidden units, and 1 output unit. The second model takes four computed
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features ~al, ~bl, ~t
Al
n , Ul, feeding to network with 16 input nodes, 11 hidden units, and 1 output unit. The third model

takes three computer features Zl,n, Wl,n, Ul, feeding to a network with 24 input units, 13 hidden units and 1 output
unit.

Bias are included in hidden and output layers. Hidden units are activated by tanh and output layer is linear func-
tion. All three models try to minimize the loss function given by Mean Squared Error:

Loss =
1

N

N∑
i=1

(ŷi − yi)2.

Input dataset is divided into training set (70%) and test set (30%). 20% of test set are used as the validation set. Training
set is shuffled and 16 data points forming a batch. We use Adam optimizer to train the model parameters, with adaptive
learning rate starting at 0.001. If there is no improvement in validation loss for 10 epochs, decrease the learning rate by
0.1. The model stops training until learning rate reaches 1e-8.

6.2.5 Model Input Data Properties

Model 2 and 3 uses the same method to get start and end stops, so they have same path partition data. Because model
1 uses only start bus stop while the other two models use both start and end bus stops, the mean value of y for model 1
is larger than the mean value of y in the other two models.

Model # of samples Min (m) Max (m) Mean (m) Std
model 1 1041 21 197 54.67 23.83

model 2&3 932 10 232 42.45 24.85

Table 3: Statistics for model 1 input.

6.2.6 Results

All three models have small Mean Bias Error, however this does not mean the model is making good prediction, because
the positive error and negative error can cancel out. The Mean Absolute Error tells that on average model 1 predicts the
route travel time 23 minutes away, 12 minutes for model 2 and 14 minutes for model 3. All models make large prediction
error on some routes. These large route prediction errors result in larger Root Mean Squared Error than their respective
Mean Absolute Error.

Comparing cross models, we do see a drop in Mean Absolute Percentage Error, as embedding more prior knowledge
to input features. This finding is inspiring because our ultimate goal is to absorb as many factors as possible to make
good travel time prediction.

Model mean of y
(m)

std of y MBE MaxAE MeanAE MAPE RMSE RSSE

model 1 54.6702 23.6525 -13.5874 96.9902 22.5471 43.1676% 28.8501 351.82209
model 2 42.3944 24.2462 -3.6364 116.3902 11.8916 27.7715% 21.5533 207.4756
model 3 42.4539 24.5109 -10.2638 124.4084 13.754 26.6366% 24.1624 233.1805

Table 4: Result for route travel time prediction model using bus GPS data.

6.3 Segment Travel Time Prediction Model with Multiple Routes

Besides making prediction on whole route, it is also useful to make prediction on segment of the route. Segment of route
is an arbitrary part of the route that between any two bus stops. Given a bus is at stop A, the model can predict how
long it takes for the bus to go from A to stop B, thus providing bus riders at stop B with bus arrival time prediction.
Bus arrival information is particularly important because it saves people time waiting at bus stops and allow them to
make better time planning.
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This model solves the problem of bus travel time prediction using multiple routes. Multiple routes provide more references
while making predictions, and also improve data timeliness and reliability, thus increasing model performances.

6.3.1 Model Overview

Figure 5: Illustration of preceding buses.

Suppose that there are three routes 101, 102, 103, that runs on one common segment: from bus stop A to bus stop B. We
want to predict the segment travel time for a target bus n. Bus n operates route 101. When bus n arrives at bus stop A at
timestamp TA101,n, there are bus n+1 (route 102), n+2 (route 103), n+3 (route 101)... that are between bus stop A and
bus stop B. There are also bus k (route 102)...k+µ (route 101)...k+δ (route 103) that proceed from bus stop A to bus stop
B and pass B. We treat these buses that have passed the end bus stop as preceding buses. This is illustrated in Figure 5.

We use the travel time of preceding buses on segment A to B to predict the travel time for target bus n. Traffic is
highly time sensitive, we expect traffic ten minutes ago is more like current traffic than traffic one hour ago. So travel
time of preceding buses will make a more accurate prediction than that of a non-preceding bus. The time closeness
between preceding bus of any routes and the target bus n is denoted as tCL,n (’C’ means closeness), where L is set of

routes that pass segment A-B. The smaller the tCL,n is, the more accurately preceding bus reflects current traffic situation.
We use the weighted average travel time of δ preceding buses as another input feature t̄rL,n (’r’ means running time).
The weight is given by the normalized inverse time closeness, which gives more weight if the bus is timely closer to the
target bus. Preceding bus that operates on same route bears more similarities to target bus. Therefore another input
feature is the running time of the preceding bus of the same route l, denoted as trl,n. The time closeness between this
bus and target bus is taken as tcl,n.

The model predicts the target bus travel time by these four computed features:

ŷl,n = f(tCL,n, t
c
l,n, t̄

r
L,n, t

r
l,n)

6.3.2 Computed Features

We want to predict the travel time ŷl,n of target bus n, which operates on route l, for a pre-specified segment from bus
stop A to B. L is the set of routes that pass this segment.

• tCL,n = TAl,n − TAL,k time closeness between target bus n and the timely closest preceding bus k of any route in L,
measured by the arrival time difference at bus stop A for bus n and preceding bus k.
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• tcl,n = TAl,n − TAl,k+µ time closeness between target bus n and preceding bus k + µ of same route l, measured by the
arrival time difference at bus stop A for bus n and k + µ.

• trl,n = TBl,k+µ − TAl,k+µ segment travel time of preceding bus k + µ of same route l, measured by the arrival time
difference between bus stop A and bus stop B.

• t̄rL,n =
∑δ
j=1

1/(TA
l,n−T

A
L,k+j)

Γ

(
trL,k+j

)
,

where Γ =
∑δ
j=1 1/

(
TAl,n − TAL,k+j

)
t̄rL,n is the weighted average segment travel time of δ preceding bus k, ...k + δ of any routes in the route set L.
Travel time for each preceding bus is measured by arrival time difference between bus stop A and bus stop B. The
weight is the normalized inverse of the time closeness between the preceding bus and the target bus.

6.3.3 Model Setup

We feed the four computed features tCL,n, t
c
l,n, t̄

r
L,n, t

r
l,n to a three-layer neural network. The network has 4 input nodes, 5

hidden units and 1 output units. Bias included in hidden and output layers. Hidden units are activated by tanh. Output
activation is linear, given travel time prediction is real-valued. The model tries to minimize the loss function given by
Mean Squared Error:

Loss =
1

N

N∑
i=1

(ŷi − yi)2
.

We use Adam optimizer to train the weights, with adaptive learning rate starting at 0.1.

6.3.4 Data Experiment

We use small bus GPS dataset to do the data experiment. First we picked four segments, each goes one of the four
directions: south, north, west, east. Then we process the data to compute features for the network. After the computed
features are generated, we partition the computed features data into training and test set. Then we train and test the
network and analyze the results.
Segments Selection
The four segments are shown in table below. They cover four directions and are located in different zones. Also they are
passed by many bus routes, thus we can collect reasonably large amount of data. More data leads to better timeliness and
reliability of the computer features. The relative positions of the four segments can be seen in Figure 6. And statistics
for each segment is shown in table 5.

Figure 6: Relative position of four segments on map.
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Direction From bus stop - To bus stop Routes
North AREOSA MERCADO (ARSM1) - ERMESINDE FORUM

(ERM4)
701, 703, 704, 705, 707

South TRINDADE (TRD3) - SAO BENTO (SBNT) 200, 202, 305, 900, 901,
904, 905, 906

East CORUJEIRA (CRJ1) - TV. DA PONTE (TPT1) 700, 700 V94, 800, 801,
806

West CARMO (CM0) - BOAVISTA B. BUCESSO (BS1) 201, 208, 302, 507, 601

Table 5: Four segment selection: start and end bus stops and routes passing the segment.

Algorithm 4 Finding Arrival Time for Segment Starting and Ending Stops

for each segment d do
Get start and end bus stop GPS (Ad, Bd) from bus stops prior knowledge
for each route l in set of routes that pass d: Ld do

Find node ids that operates route l from node id to route mapping
for each node id n that runs route l do

for each trajectory s in set of trajectories for bus n: Sn do

for each GPS and timestamp pair (slati , slngi , stimestampi ) in trajectory s do

if vincenty
(

(slati , slngi ), Ad

)
≤ 50m then

record arrival time TAd

l,n = stimestampi for segment d

end

if vincenty
(

(slati , slngi ), Bd

)
≤ 50m then

record arrival time TBd

l,n = stimestampi for segment d

end

end

end

end

end

end

Algorithm 5 Computing input features from bus stop arrival time

for each segment d do
get start and end stop GPS pair (Ad, Bd) from prior knowledge
for each bus stop arrival time pairs (TAd

l,n , T
Bd

l,n ) for segment d do
Calculate:
tCL,n = TAd

l,n − T
Ad

L,k if k is present

tcl,n = TAd

l,n − T
Ad

l,k+µ if k + µ is present

trl,n = TBd

l,k+µ − T
Ad

l,k+µ if k + µ is present

t̄rL,n =
∑3
j=1

1/
(
T

Ad
l,n
−TAd

L,k+j

)∑3

j=1
1/
(
T

Ad
l,n
−TAd

L,k+j

) (TBd

L,k+j − T
Ad

L,k+j

)
if there are 3 preceding buses

y = TBd

l,n − T
Ad

l,n

if all four features exist then

record
(
tCL,n, t

c
l,n, t̄

r
L,n, t

r
l,n, y

)
for segment d

end

end

end

Data Processing
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The procedure to process raw data to get bus arrival timestamps at stops for each segment for each bus vehicle is shown
in algorithm 4. The next step is to compute input features from timestamp pairs (TAl,n, T

B
l,n), as shown in algorithm 5.

There are three steps to generate model input features from the bus GPS raw data. First, since we know the routes that
transit through each segment and the mapping from node id to route, we can find out the bus vehicles that pass each
segment. Then we loop through the trajectory and record bus arrival time at start and end stops of each segment. We
consider GPS within 50 meters of the stop as ”passing” the stop. Then we compute the four features using the arrival
timestamps.

Data Experiment
North segment is the longest: 4.44km, but with lightest traffic. Long distance makes the travel time have high variance.
South segment is the shortest but traffic-heaviest, which also implies high variance. On the other hand, east and west
segments have relatively stable travel time.

Direction From - To # of
sam-
ples

Distance
(Approx.)

Min
Travel
Time
(m)

Max (m) Mean (m) Std

North ARSM1 - ERM4 36 4.44km 8 53 21.23 13.150
South TRD3 - SBNT 67 0.63km 2 65 11.915 9.007
East CRJ1 - TPT1 60 1.65km 4 8 5.204 0.802
West CMO - BS1 58 1.39km 4 8 5.698 0.902

Table 6: Statistics for four segments picked.

Learning Model
We have four group of data. We performed predictions on each group as well as on four groups combined. In both
situations, 70% of the data are used as training set, 30% test set. We set batch size to be 10 for training set and shuffle
the data. During training, the model starts to overfit around 200 epochs.

Results
In general, the model has little mean bias error. Noisy inputs lead to high error rate. Clean data in the east and west
direction have high prediction accuracy, with Mean Absolute Error of 0.8 and 0.7 minutes. North and south segments
have high Mean Absolute Error, which means the prediction on average deviates 9.1 and 4.6 minutes away from the
actual travel time. For south, east ans west segments, the Mean Absolute Error is closer to Root Mean Squared Error,
while north segment makes large prediction errors on some data points. This also proves that north segment’s Max
Absolute Error, 25.8 minutes, is far larger than the counterparts of other segments. After combining all four directions
together, error rate is around 55%. The model works really well with east and west segments, less well with four directions
combined, worse with north and worst with south.

Model mean of y
(m)

std of y MBE MaxAE MeanAE MAPE RMSE RSSE

North 21.2285 12.8552 -7.6794 25.8103 9.0903 57.9887% 13.9004 28.7475
South 11.8293 7.4351 -1.4125 15.9499 4.6824 59.2737% 6.9571 20.3487
East 5.2015 0.7467 -0.3491 1.9029 0.8502 16.8405% 1.0292 2.8681
West 5.7066 0.8195 -0.0212 1.7414 0.7028 12.8016% 0.9134 2.5181
All Direc-
tions

9.7965 8.7411 -1.5753 29.3046 3.7999 55.2241% 7.6735 34.0372

Table 7: Results for the segment travel time prediction model.

6.4 Whole Route Travel Time Prediction with Combined Segments

This model partitions a route into segments and make segment travel time predictions by using preceding buses infor-
mation. The final route travel time prediction is the addition of all segment predictions. The negative and positive error
of segment predictions will cancel out, so we expect this route travel time prediction model to outperform previous three
models.
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6.4.1 Model Overview

On the Porto city bus transportation system, we pick a set of bus stop ”hubs”, where more routes pass these hubs than
other bus stops. The set of hubs is denoted as H. Route between any two bus hubs is considered a segment. For a bus
vehicle n, operating on route l, the timestamp n passes the hub hi is denoted as Thi

l,n. Route l will be separated by hubs H
into several segments, denoted as Dl. For each segment d in Dl, we use bus hubs arrival timestamp to calculate the four
input features: tCL,n,d, t

c
l,n,d, t̄

r
L,n,d, t

r
l,n,d. The model takes the four features and make segment travel time prediction.

The final route travel time prediction is given by:

ŷl,n =

Dl∑
d

f
(
tCL,n,d, t

c
l,n,d, t̄

r
L,n,d, t

r
l,n,d

)
6.4.2 Computed Features

The model has the same four computed features as the segment travel time prediction model.

• tCL,n,d = TAd

l,n - TAd

L,k

For segment d, the start bus hub is denoted as Ad. k is the preceding bus for segment d. Time closeness is given
by arrival time difference at segment start bus hub.

• tcl,n,d = TAd

l,n − T
Ad

l,k+µ

k + µ is the preceding bus that operates the same route l. Time closeness is given by arrival time difference at
segment start bus hub.

• trl,n,d = TBd

l,k+µ − T
Ad

l,k+µ

Running time of the preceding bus of route l is the arrival time different between the two bus hubs.

• t̄rL,n,d =
∑δ
j=1

1/
(
T

Ad
l,n
−TAd

L,k+j

)
Γ

(
trL,k+j,d

)
Γ =

∑δ
j=1 1/

(
TAd

l,n − T
Ad

L,k+j

)
Weighted average travel time of preceding buses on same segment d.

6.4.3 Model Setup

This model has the same setup as segment travel time prediction model.

6.4.4 Data Experiment

We conduct the experiment on the small bus GPS dataset and gather bus hub GPS from bus transportation website.
Bus stop hubs selection

Figure 7: Stops picked for whole route prediction with combined segments.
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36 bus hubs are selected, and their codes are: COB4, AEPT1, SRGB1, STLZ2, VIS3, SBNT2, GODS, BS6, RFAR1,
MPL3, BLFZ1, VALE, SO3, VDE, ACV, AL7, LBM1, RTE4, RTES1, PT3, C24A5, MTSP1, CQ10, CMP1, ERMI2,
MV3, HSJ10, CMS2, ALD1, EDRG1, TRD3, VLGE1, MATM1, SPC, GNR1, CORD4. They spread across zones, and
considerable number of routes pass them. Their position on the map is shown in Figure 7.
Data processing

Algorithm 6 Generating segment traversal information

for each bus n do
for each trajectory s in set of trajectories for bus n: Sn do

initialize Ad = null
initialize Bd = null
for each (slati , slngi , stsi ) in trajectory s do

h′ = closest bus hub ((slati , slngi ), H)

if distance((slati , slngi ), h′) ≤ 150 meters then
if Ad == null then

Ad = h′

TAd

l,n = stsi
end
else

if Ad == h′ then

TAd

l,n = stsi
end
else

Bd = h′

TBd

l,n = stsi
record TAd

l,n , TBd

l,n , n, l to file ”Ad −Bd.txt”

update Ad = Bd, T
Ad

l,n = TBd

l,n

end

end

end

end

end

end

There are two steps to generate the input data from bus GPS data. First is to construct segment traversal information for
all buses, i.e. get bus hubs arrival timestamps from each bus (algorithm 6). The second step is to partition trajectories
into route traversals and partition each traversal into segments and compute input features (algorithm 7).
Result
We measure the model for both segment prediction and route prediction. 1030 route traversals and 3127 segment
traversals input data were gathered. As shown in Figure 8, the model can make good predictions in most cases. The red
line shows the prediction error and it swings around 0. Also, Mean Bias Error is low. The model does well at predicting
outliers, given the fact that Mean Absolute Error is close to Root Mean Squared Error. Also this model effectively cancels
out prediction errors among segments, resulting in lower MAPE for route predictions than for segment predictions, shown
in table 8.

Model # of samples Min (m) Max (m) Mean (m) Std
segment 3127 1 155 8.9936 10.4955

route 1030 1 185 27.3039 21.3237

Table 8: Statistics for model 3 input.
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Algorithm 7 Generating model input features

for each bus n do
for each trajectory s in set of trajectories for bus n: Sn do

segments = []
visitedHubs = []
initialize Ad = null, Bd = null
for each (slati , slngi , stsi ) in trajectory s do

h′ = closest bus hub ((slati , slngi ), H)

if distance((slati , slngi ), h’) ≤ 150 meters then
if Ad == null then

Ad = h′

TAd

l,n = stsi
end
else

if Ad == h′ then

TAd

l,n = stsi
end
else

Bd = h′

TBd

l,n = stsi
if h′ not in visitedHubs then

open file ”Ad −Bd.txt” and compute tCL,n,d, t
c
l,n,d, t̄

r
L,n,d, t

r
l,n,d

compute y = TBd

l,n − T
Ad

l,n

segments.append([tCL,n,d, t
c
l,n,d, t̄

r
L,n,d, t

r
l,n,d, y])

end
else

record segments
update segments = []
update visitedHubs = [Bd]

end

update Ad = Bd, T
Ad

l,n = TBd

l,n

end

end

end

end

end

end

Model mean of y
(m)

std of y MBE MaxAE MeanAE MAPE RMSE RSSE

segment 9.4636 10.3567 -0.4279 62.8879 2.2907 50.0264% 5.7146 101.0200
route 5.2446 21.1207 -1.2955 62.4300 5.2446 32.5633% 10.4480 106.0359

Table 9: Results for segment travel time prediction model.

7 Model Improvements

We made three modifications: use the larger dataset, predict travel time by time of the day and modify the loss function.
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Figure 8: Prediction travel time for each segment, true travel time and their difference.

7.1 More Data

It is desirable if model has higher accuracy with more data. To test this, we use the large bus GPS dataset in the first
model (route travel time prediction using bus GPS data generated starting points). Traffic on different day of the week
differs a lot. So we only use Sunday’s data from the large dataset, since data in the small dataset only covers Sunday
(data for Monday and Tuesday contains only one bus vehicle and the vehicle is not moving). The large dataset provides
18 more data points. We experimented on using only 50% v.s. 100% of the data combining the small and large datasets.
We got the following results. As the metrics show, larger dataset increases the Max Absolute Error, however improving
the overall prediction accuracy.

Model mean of y
(m)

std of y MBE MaxAE MeanAE MAPE RMSE RSSE

50% data 56.1125 25.5773 -12.0337 93.8483 24.0119 44.6895% 30.8083 225.2527
100% data 54.8319 24.6186 -12.0790 108.2958 21.8783 40.5001% 29.1240 299.7227

Table 10: Metrics for route travel time prediction model using 50% of the data v.s. 100% of the data (small dataset plus
Sunday data in the large dataset).

7.2 Prediction by Time of the Day

The second improvement we did is to predict travel time using data from the same time of the day, since travel time for
a route happening at 5AM will be very different from the same route happening at 5PM. We conducted the optimization
for the first model. We tried two ways to divide the input data: into 24 hours and into parts of the day (before dawn
0-5, morning 6-12, afternoon 13-19, evening 20-24).

For the first model, predictions using hourly data and part-of-the-day data achieve better results than predictions by day.
At hour 23, there is only 7 data points, so the error is extremely small. Part-of-the-day predictions are more stable than
hourly predictions. Hourly predictions do badly at 2, 8, 16 o’clock, while part-of-the-day predictions do badly during
morning hours. Results is shown in Figure 9.
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Figure 9: MAPE comparison for the first model for predictions using different time of the day.

7.3 Customize Loss Function

The loss function we used for all models is Mean Squared Error loss. This loss function penalizes positive and negative
errors equally. We can relax this restriction. In real life, if model predicts arrival time earlier than the actual bus arrival
time, it is acceptable because one or two minutes in advance will urge bus riders to arrive at the stop early and catch the
bus on time. However, if predicted time is advanced too much, it will actually drive riders away. On the other hand, it
is unacceptable to make predictions after the actual bus arrival time. Considering this, we can modify our loss function
to be more realistic:

L =
1

N

N∑
i=1

[
(ŷi − yi)2

+ + α ∗ (yi − ŷi)2
+

]
While training, α is set at 0.5. We tested the customized loss function for all three models and get following results in
table 11.

Model mean of y
(m)

std of y MBE MaxAE MeanAE MAPE RMSE RSSE

M1.1 54.6680 23.6543 -12.8299 96.1293 22.3616 41.1286% 29.0639 296.5158
M1.2 42.117 23.9314 -5.9098 115.0933 11.8148 26.2901% 21.6167 208.1771
M1.3 43.1245 25.1217 -12.7370 132.3283 15.4744 28.9221% 27.2398 262.7963
M2-
North

21.2333 12.6785 1.6543 1.9844 1.6543 10.5673% 1.6821 2.9135

M2-
South

12.5285 6.8927 -4.4420 18.1242 5.9992 62.8067% 8.9979 21.9537

M2- East 5.4 0.7399 -1.3462 2.7640 1.6144 30.6459% 1.7821 3.9849
M2- West 5.7375 0.8170 -0.1590 1.8042 0.7731 13.3006 1.0037 2.2871
M2 - All 9.8957 8.8766 -2.4493 31.3964 3.8553 62.3219% 8.17095 36.1881
M3 - seg-
ment

9.1977 9.7143 -0.9721 51.8333 2.0190 24.0846 5.2978 93.6795

M3 -
route

4.9265 20.1482 -2.9401 55.0181 4.9265 17.7262 10.063 102.1323

Table 11: Metrics for models using customized loss function.
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8 Discussion and Conclusion

Starting with very intuitive model that predicts the route travel time using bus GPS data, we obtained a not very good
result. With more prior knowledge added to the model, the predictions accuracy improves. Making the route travel time
prediction model use the segment travel time prediction model achieves better performance, since the preceding buses
implicitly embed the traffic information. It also outperforms segment travel time prediction model, because negative and
positive errors of segment predictions cancel out. Moreover, grouping route traversal data by parts of the day and hour
of the day and making predictions only using data from the same time slot of the day improve model accuracy. It tells
us that for time-sensitive data like bus travel time, morning route traversal situation is very different from evening ones,
so we should never mix them together to make predictions.

In addition, utilizing a customized loss function makes the predictions better fit bus riders’ needs. And it is promising
to see that with more data and including more factors in the input features, the model is able to generate better results,
thus making the model of practical value.
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10 Appendix

10.1 Feature Description

Feature Name Description
node id ID of the installed boards in the vehicles

system time Time instance of the board, generally the same as GPS time.

gps time Time instance when the information was captured

server time Time instance when the inforamtion reach the server

latitude Latitude of vehicle

longitude Longitude of vehicle

altitude Altitude of vehicle

speed Speed of vehicle in km/h

heading Heading/direction of the vehicle (Degrees)

hdop Horizontal Dilution of Precision

accel x Acceleration of x axis

accel y Acceleration of y axis

accel z Acceleration of z axis

hops Number of hops until information reaches server (minus 1 when information
sends directly through as RSU)

network Connection network (802.11p, cellular)

next hop id next node id (OBU or RSU) where the traffic passed after being sent

rsu id ID of the RSU that received the information

rssi Received Signal Strength

vehicle stats Vehicle status (1-Engine started; 2-Moving; 3-Stopped; 4-Dead; 5-Unknown)

distance

connected time p Time connected through WAVE network (.11p) in seconds

connected time 3g Time connected through Cellular network in seconds

traffic 3g in Incoming traffic made through Cellular (4G) network

traffic 3g out Outgoing traffic made through Cellular (4G) network

traffic g in No entries

traffic g out No entroes

traffic p in Incoming traffic made through 802.11p network

traffic p out Outgoing traffic made through 802.11p network

traffic eth in Incoming traffic made through physical netowrk, could be active in RSUs

traffic eth out Outgoing traffic made through physical network, could be active in RSUs

traffic 3g I2 in Cellular traffic layer 2

traffic 3g I2 out Cellular traffic layer 2 outgoing
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10.2 Sample Data Point

Feature Example 1 Example 2 Example 3
node id 195 215 372

system time 2015-04-05 00:00:00 2015-04-05 00:00:00 2015-04-05 00:00:00

gps time 2015-04-05 00:00:00 2015-04-05 00:00:00 2015-04-05 00:00:00

server time 2015-04-05 01:01:00 2015-04-05 01:02:00 2015-04-05 01:01:00

latitude 41.148689 41.173859 41.183071

longitude -8.610642 -8.619491 -8.621082

altitude 100 109 99

speed 0 66 0

heading 190 265 222

hdop 0 0 0

accel x 0 0 0

accel y 0 0 0

accel z 0 0 0

hops 1 0 2

network p 3g p

next hop id 481 0 501

rsu id 481 0 447

rssi 42 0 21

vehicle stats 1 5 1

distance 0 294 0

connected time p 13 2 13

connected time 3g 0 13 0

traffic 3g in 0 0.076 0

traffic 3g out 0 0.076 0

traffic g in 0 0 0

traffic g out 0 0 0

traffic p in 4842.691 0 1.439

traffic p out 259.822 0 2.041

traffic eth in 0 0 0

traffic eth out 0 0 0

traffic 3g I2 in 0 0.076 0

traffic 3g I2 out 0 0.274 0
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