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Abstract

Background. In vivo calcium imaging through microendoscopic lenses enables imaging of
previously inaccessible neuronal populations deep within the brains of freely moving ani-
mals. When analyzing long term neuronal activities to understand neuronal dynamics over
time, neuron images collected in multiple sessions need to be aligned, which means neurons
need to be tracked along all time sessions. However, there exist many inconsistencies in
the images of different sessions, due to things like rotations and shifts of the camera, and
natural changes in the brain, which leads to the alignment problem nontrivial. Currently
the aligning is done by hand, which is very time consuming.

Aim. Our goal is to design an algorithm that can align neurons in different time sessions
in order to help neuroscience researchers analyze long term neuron activities.

Data. The dataset we use is calcium imaging data from a pharmacological experiment
in which 11 male Drd1a-tdTomato mice received IP injections of either SKF38393 (D1
specific agonist) or saline vehicle in a 2 day crossover experimental design. Calcium data
was acquired with an Inscopix nVista HD microscope with an acquisition rate of 20Hz. We
apply CNMF-E (Zhou et al., 2016) and PCA/ICA (Mukamel et al., 2009) to get neuron
contours for every neuron movie as our input data.

Method. We apply shape context method (Belongie et al. (2001)) to encode neurons
to feature vectors and focus on matching neurons across sessions by specifying a cost
function to measure the dissimilarities between pair of neurons. We detect and analyze
the dissimilarity based on distances between pairs of neurons and neuron shapes. Next, we
form the problem into linear assignment problem to determine the final matching results.

Results. Our proposed algorithm can align neurons across sessions accurately up to 90%.

Conclusion. Shape context can extract very effective features for our matching problem
and the optimization problem set up in our proposed method can help us match neurons
accurately. We can provide all potential matching pairs sorted by the confidence that we
have for the matching, so that researchers can choose the hard line by themselves that
indicates up to where, they want to believe the matching results.
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1 Introduction

Monitoring the long run activity of large-scale neuronal ensembles during complex behavioral
states is fundamental to neuroscience research. In vivo calcium imaging through microendo-
scopic lenses enables imaging of previously inaccessible neuronal populations deep within the
brains of freely moving animals, so microendoscopy has lots of potential applications across
neuroscience field. In order to do long run analysis of neuronal activities based on microendo-
scopic data, we need to get neuron contours from microendoscopic data and track neurons in
different time sessions.

However, neuron images are noisy so that it is hard to get clear neuron contours and even
after getting all the neuron contours, the contours still cannot be used directly to identify the
same neurons in different sessions. When data is collected in multiple sessions, there exist
many inconsistencies in the images, due to things like rotations and shifts of the camera, and
natural changes in the brain. There exists some technical limitations that the camera has to
be taken out of the brain everyday in order to be maintained in a good situation and cannot
be put exactly at the same position everyday. Also, neurons showing up in one session may
not show up in another. Neurons may not fire in another day and if the distance from the
camera to neurons changes, the range of neurons that can be covered in the image will also
change. Thus, totally understanding the activities of neuron behaving is really tough (Zhou
et al., 2016). Currently neurons in different sessions are matched by putting neuron cloud
images on top of each other in PhotoShop and moving the images manually for larger covering
area, which indicates proper matchings. But when there are neuron images from hundreds of
days, it is unfeasible for human beings to track the neurons one by one by hand.

We proposed an algorithm using following techniques to automated align neurons in differ-
ent sessions (c.f. Section 3):

• Extract neuron contours from noisy neuron images using constrained nonnegative matrix
factorization for microendoscopic data (CNMF-E) (Zhou et al., 2016) to get neuron
contours.

• Apply shape context (Belongie et al., 2001) technique to encode neurons into feature
space and develop a similarity score for neurons in different time sessions.

• Based on features and similarity scores for neurons, we formalize the problem into a
linear assignment problem and apply Hungarian algorithm to get matching pairs.

Experiments on both simulated and real data to demonstrate the effectiveness of proposed
method (c.f. Section 4 and Section 5).

1.1 Related Works

There exist many methods for extracting cellular signals from microendoscopic data, such as
semi-manual ROI analysis (Barbera et al., 2016; Klaus et al., 2017) and PCA/ICA analysis
(Mukamel et al., 2009). However, both approaches have well known flaws. For instance, ROI
analysis does not effectively demix signals of spatially overlapping neurons, and drawing ROIs
is laborious for large population recordings (Zhou et al., 2016). As for PCA/ICA analysis, it
is a linear demixing method and therefore typically fails when the neural components exhibit
strong spatial overlaps, which is exactly the case in microendoscopic setting (Pnevmatikakis
et al., 2016).



Fortunately, one recent work - constrained nonnegative matrix factorization (CNMF) was pro-
posed to simultaneously denoise, deconvolve, and demix calcium imaging data (Pnevmatikakis
et al., 2016). Another new work constrained nonnegative matrix factorization for microendo-
scopic data (CNMF-E) improved this by making it adapted to microendoscopic data which
has a much more complex background structure (Zhou et al., 2016). It can denoise the raw
image well and get significant more accurate cellular signals from the denoised image for mi-
croendoscopic data. Thus, we apply CNMF-E to get clear neuron contours from raw dataset.

In order to get features describing the relative distance relation of neurons, we look into
strategies of shape description. A number of different strategies have been tried, e.g. nearest-
neighbor techniques after extracting principal components (Turk and Pentland, 1991; Murase
and Nayar, 1995), convolutional neural networks (LeCun et al., 1998), and support vector ma-
chines (Mukamel et al., 2009; Burges and Schölkopf, 1997). Impressive performance has been
demonstrated on datasets such as digits and faces. However, in our problem, a vector of pixel
brightness values does not help, what we want is a feature that can represent ”shape”. Belongie
et al. (2001) developed an approach called shape context that can satisfy our requirement. It
describes the coarse arrangement of the rest of the point with respect to the point. This de-
scriptor will be different for different points on a single points cloud P ; however corresponding
(homologous) points on similar points cloud P and P ′ will tend to have similar shape contexts.
It can be applied to our problem since it can describe the spatial ”distribution” (i.e. features)
of neurons in neuron clouds.

By using shape context method to extract useful features, we formalize the matching problem
into a linear assignment problem by developing a neuron shape similarity score. The Hungar-
ian method (Kuhn, 1955) is a combinatorial optimization algorithm that solves the assignment
problem (assign n tasks for n workers) in polynomial time. Later, an adaptive version of
Hungarian method (Bourgeois and Lassalle, 1971) that can solve the unbalanece assignment
problem (assign m tasks for n workers) come out. We apply this adaptive version of Hungarian
to solve our assignment problem.

1.2 Problem Statement

Now we state our problem. Figure 1 shows neuron clouds in two different sessions. Our goal
is to align neurons in these two clouds. Human can do this task by considering the neuron
shapes and relative positions to identify the same neurons appears in the two time sessions
and we want our algorithm help human on this task. In Figure 1, the matchings are 1 − 1,
2− 2, 3− 3, 4− 4, 5− 5 and neuron 6 in left should be recognized as a missing neuron in the
right plot.

1.3 Organization

In Section 2, we describe our data. In Section 1.2, we state our problem. In Section 3, we
introduce our algorithm. In Section 4, we test our algorithm with simulated data. In Section 5,
we test our algorithm on real data and we conclude in Section 6.



Figure 1: Two neuron clouds of two time sessions. All ellipses represent neurons here, numbers
on top of the ellipses are neuron indices within each neuron cloud. In this example, neuron 6
in the first cloud is missing in the second neuron cloud and all neurons change their positions
by rotation and translation and neuron shapes have tiny changes as well.

2 Data

The data we use is calcium imaging data. It is from a pharmacological experiment in which 11
male Drd1a-tdTomato mice received IP injections of either SKF38393 (D1 specific agonist) or
saline vehicle in a 2 day crossover experimental design. Mice were approximately 4 months old
at the time of the experiment. Mice received injections 500nl of AAV9.hsyn.GCaMP6m virus
into the ventro-medial striatum followed by implantation of a 0.5x6mm GRIN lens. After 4
weeks of recovery and expression time, mice were implanted with a microscope baseplate. The
mice were subsequently habituated to the open field chambers and microscopes for 3 days prior
to the experiment. They randomly received injections of either 10 m/kg SKF38393 or saline
on day 1. 48 hours later, the injections were reversed on Day 2. Calcium data was acquired
with an Inscopix nVista HD microscope with an acquisition rate of 20Hz. Mice were recorded
in the open field chamber for 10 minutes prior to injection and 30 minutes post injection.

From the raw data, we apply constrained nonnegative matrix factorization for microendo-
scopic data (CNMF-E) (Zhou et al. (2016)) that helps extract clear neuron boundaries and
give us exact coordinates of the points on the boundaries for each neuron as our input.

Below figures show how our raw data looks like and how does CNMFE get rid of noisy back-
ground and then figure out neuron boundaries. The green square in raw data shows one neuron
example which is very unclear. Besides, we use simulation data. We generate several datasets,
in which there displays a certain amount of neuron shapes.

3 Proposed Approach

Our algorithm has two stages and here we describe them at a high level. First, we consider
matching neurons by relative distance relations. Based on relative distances between neurons,
we map neurons in the second cloud to the first cloud in a rough way. When the noise level
is not large, the neuron in the second session should be mapped to a position that is close to
its corresponding neuron in the first session. Next, we refine our matching using the distances
between neuron centers and the shape similarities to decide whether to match two neurons or
not. The two stages can be summarized below:



Name Description Domain

n1, n2 number of neurons in the two neuron clouds N+

δdet threshold for the determinant of regression matrix R+

δdist threshold for neuron center distances R+

δshape threshold for neuron shape dissimilarity score R+

wdist, wshape weights for distance and shape dissimilarity score R+

dθ angle for cutting the space into sectors R+

NR # regions within each cut sector N+

{C(k)
i }

nk
i=1, k = 1, 2 coordinates of neuron centers for two neuron clouds R

2×nk

{C̃(2)}n2
i=1 coordinates of neuron centers after mapping (2nd cloud) R

2×n2

mki # points on neuron contour (kth cloud, jth neuron) N+

{Coor(k)i }
n1
i=1, k = 1, 2 coordinates of points on neuron contours R

2×m2i×nk

{C̃oor(2)}n2
i=1 coordinates of points on neuron contours after mapping (2nd) R

2×mki×nk

MP matching pairs (pairs listed by row) N
2×p
+

DDS distance dissimilarity score R+

SDS shape dissimilarity score R+

DS total dissimilarity score R+

SS total shape similarity score R+

Table 1: Variables used in the neuron alignment model and algorithm; R: real numbers; R+:
positive real numbers; N+: positive integers.

• Rough matching based on neuron center relative distances using shape context and linear

regression, computing the coordinates of neuron centers C̃(2) and neuron points on the

contours C̃oor(2) using Algorithm 2.

• Final matching according to distance and shape relations. Get matching pair results MP
and corresponding dissimilarity score DS using Algorithm 3.

3.1 Part 1: Rough Matching

Our method is based on the algorithm proposed by Belongie et al. (2006) where they used
shape context to encode shapes that allows for measuring shape similarity and the recovering
of point correspondences. We show how shape context technique works in our problem by
introducing how we compute the shape context and convert it to feature vector for each point.
Algorithm 2 lists the pseudocodes.

1. Get the coordinates of neuron centers
We use simple notations for neuron cloud here. Extract coordinates of all neuron centers
from neuron clouds of two sessions denoted by:
Neuron cloud 1:

(x
(1)
1 , y

(1)
1 ), · · · , (x(1)n , y(1)n )

Neuron cloud 2:
(x

(2)
1 , y

(2)
1 ), · · · , (x(2)m , y(2)m )

Here, neuron cloud 1 contains n neurons and neuron cloud 2 contains m neurons.

2. Create feature vector for each neuron center
For simplicity, we explain how to compute feature vector for (x

(1)
1 , y

(1)
1 ), all other points



can build their own feature vectors in the same way. Suppose (x
(1)
1 , y

(1)
1 ) is the coordinate

of neuron center with index 1 in Figure 2 and all other neurons are from the same time
session, which means they show up simultaneously in one session.

We start to construct feature vector for (x
(1)
1 , y

(1)
1 ). Firstly, we construct a local co-

ordinate system for (x
(1)
1 , y

(1)
1 ) by setting (x

(1)
1 , y

(1)
1 ) as the original point, finding the

point (x0, y0) which is the closest to (x
(1)
1 , y

(1)
1 ), connecting (x

(1)
1 , y

(1)
1 ) and (x0, y0) then

setting the line as the x-axis with the the direction from (x
(1)
1 , y

(1)
1 ) to (x0, y0) as the

positive direction, setting a line pass through the original point and perpendicular to
the x-axis anti-clockwisely as y-axis. Since we want the feature vector to be more pre-
cise, secondly we continue to cut the space from 4 parts to a larger number of parts.
In Figure 2, we cut the whole space into 8 sectors by setting the angle to partite the
space to be dθ = π

4 . In order to make feature vector more precise, we also partite the

radius (the radius is determined by the largest distance between (x
(1)
1 , y

(1)
1 ) and another

neuron center), in Figure 2, we cut the radius by 2 (NR = 2). Feature vector is created
anti-clockwisely and from inner to outer, the values in the vector are number of neurons
falling in the corresponding regions. If certain neurons are exactly positioned on region’s
boundary, we can put them in either side of the sectors as long as they are consistent.
In Figure 2, the feature vector for neuron 1 should be:

F
(1)
1 = (0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0)

Figure 2: This example shows the feature net constructed for neuron 1, which is centered on
neuron 1 and contains several regions based on cutting angles and radius. Here, angle is π/4
and radius is cut to 2 parts.

3. Combine all feature vectors by row into a feature matrix

F (1) =

F
(1)
1
...

F
(1)
n

 and F (2) =

F
(2)
1
...

F
(2)
m


Algorithm 1 lists the pseudocodes.

4. Get matching pairs



Algorithm 1 Computing the Feature Matrix (FM)

1: Input:
Parameters: dθ, NR.
Data: {Ci}ni=1.

2: Output: Feature matrix F .

3: for i = 1, · · · , n do
4: j ← index of the closest neuron with ith neuron considering the distances between neuron centers.
5: Construct a local coordinate system for Ci. Set Ci as original point, connect Ci and Cj as x-axis

and set y-axis perpendicular to x-axis. Cut the coordinate system space to 2π/dθ sectors centered
around Ci and cut the radius to NR, form 2πNR/dθ regions.

{Bj}2πNR/dθj=1 ← cut regions for Ci
6: for j = 1, · · · , 2πNR/dθ do
7: Fij ← #{neuron center points} fall into Bj
8: end for
9: end for

10: F ← [F1; · · · ;Fn]

After getting two corresponding feature matrices F (1) and F (2) for the two neuron clouds,
this step is to figure out mapping function. We first normalize the feature matrices by
row. If two normalized feature vectors are similar, then their inner product should be
close to 1, and otherwise close to 0.

We would like our mapping to be more accurate, so we first find out neuron pairs that
are most likely to be matched by an optimization problem.

max
C

∑
i,j

FijCij1{Fij≥τ} (1)

s.t.
∑
i

Cij ≤ 1 for j = 1, · · · , J∑
j

Cij ≤ 1 for i = 1, · · · , I

Cij ∈ {0, 1}

where F = F (1)F (2)T . Cij = 1 indicates neuron i in cloud 1 and neuron j in cloud 2
should be matched, otherwise not.

5. Further Refinement by Linear Regression
We further refine and test our matching using a linear regression technique. We assume
linear transformation for neuron clouds across sessions. Apply linear regression and solve
it by least squared: [

x(1)

y(1)

]
= A

[
x(2)

y(2)

]
+ b (2)

based on reliable matching pairs from the solution of the above optimization problem and
get mapping function from regression. If |det(A) − 1| > δdet, we conclude the datasets
are too noise for our algorithm to align, otherwise, we apply this linear transformation
mapping to all neurons in the second cloud.

Algorithm 2 lists the pseudocodes for all steps of rough mapping.



Algorithm 2 Roughly Mapping Based on Neuron Centers Distances between Two Neuron
Point Clouds (Rmap)

1: Input:
Parameters: dθ, NR, δdet.

Data: n1, n2, {C(1)
i }

n1
i=1, {C

(2)
i }

n2
i=1, {Coor(1)}

n1
i=1, {Coor(2)}

n2
i=1.

2: Output: {C̃(2)}n2
i=1, {C̃oor(2)}n2

i=1.

3: F (1) ← FM(C(1), dθ, NR) Using Algo 1.
4: F (2) ← FM(C(2), dθ, NR) Using Algo 1.
5: F ← F (1)F (2)T

6: Solve the linear assignment problem referring to Equation 1 with coefficient matrix F as input, Let
M denotes the result: 0− 1 matrix that represents all matching pairs.

7: I1 ← {i : Mij = 1}
8: I2 ← {j : Mij = 1}
9: Solve the linear regression problem using least squared method: C

(1)
I1

= AC
(2)
I2

+ b
10: if |det(A)− 1| > δdet then
11: return A is not close to orthogonal matrix, this case cannot be solved!
12: end if
13: for i = 1, · · · , n2 do

14: C̃
(2)
i ← AC

(2)
i + b

15: C̃oor
(2)
i ← ACoor

(2)
i + b

16: end for

3.2 Part 2: Matching neurons based on relative distances and shape simi-
larities

In this part, we decide final matching pairs based on neuron center relative distances relation-
ship and neuron shape similarities. Algorithm 3 lists the pseudocodes.

1. Compute distance dissimilarity score: DDS
Calculate all pair of distances between neuron centers of neuron cloud 1 and neuron cloud
2 after rough mapping in last step, denote it by DDS.

2. Compute shape dissimilarity score and total dissimilarity score: SDS,DS
We firstly translate two neuron contours by putting the centers of them on (0,0) and
then calculate the distances between points on two boundaries as shown in the below
figure. We made θ grids dense enough to make sure the mean of such distances can give
a reasonable dissimilarity score for the two given shapes and define the mean as shape
dissimilarity score. The final dissimilarity score contain two part:

DS = wshapeSDS + wdistDDS

w shape and w dist are weights for SDS and DDS when computing DS that sum to 1.

3. Construct adjacency matrix based on the neuron center distances
By setting up a threshold δdist, if neuron pairs are closer than δdist, the corresponding
entry in adjacency matrix should be 1 and otherwise be 0. Next, we get connected groups
from the bipartite adjacency matrix, called by clusters.

4. Locally maximize overall similarity scores within each cluster
Instead of matching neurons with highest shape similarity score, we locally optimize the
matching results within each cluster, which means we want the similarity score to be



Figure 3: Method of computing shape dissimilarity score: We uniformly choose 24 angles from
0 to 2π as θ grids and average the distances between the boundaries corresponding to the
angles (distance between two red dots).

maximized within clusters. The linear assignment problem to be solved for this is shown
below:

max
C

∑
i,j

SSijCij1{DSij≥δshape} (3)

s.t.
∑
i

Cij ≤ 1 for j = 1, · · · , J∑
j

Cij ≤ 1 for i = 1, · · · , I

Cij ∈ {0, 1}

where SS is the similarity score matrix, SSij = −DSij + maxij(DSij). Cij = 1 indicates
final matching result.

4 Simulation

Neuron alignment problem is hard since there are various kinds of noise happen to neurons in
different time sessions. We summarize them into three categories and we adjust for them to
see results in the simulation.

Firstly, neurons fire in one day may not fire in another day. Also, the distance between
camera and the brain can cause problems. For example, one neuron locates on the boundary
of one day’s images, if the camera are set closer to the brain on the second day, the neu-
ron near the boundary may not be included in the second day’s images due to range issues.
These two reasons can cause neuron missing. In our simulation, we test this noise type by drop-
ping out some neurons from the original neuron cloud and see how does our algorithm perform.

Secondly, neurons have slightly natural movement. It means neurons’ relative positions can
change up to a small degree. We test this noise type by adding Gaussian noise to neuron



Algorithm 3 Final Matching considering distance and shape relations(SM)

1: Input:
Parameters: δdist, δshape, wdist, wshape

Data: n1, n2, {Coor(1)i }
n1
i=1, {C̃oor

(2)
i }

n2
i=1, {C

(1)
i }

n1
i=1, {C

(2)
i }

n2
i=1

2: Output: MP,DS.

3: Adj ← adjacency matrix for the bipartite graph

(V: {C(1)
i }

n1
i=1, {C

(2)
i }

n2
i=1; E: {(i, j) : norm(C

(1)
i − C

(2)
j ) < δdist})

4: {CC}Kk=1 ← connected components of Adj (CCk: indices of neurons within the kth connected
component).

5: for k = 1, · · · ,K do
6: I1 ← {i1 : i1 ∈ CCk, 1st cloud}
7: I2 ← {i1 : i1 ∈ CCk, 2nd cloud}
8: for i1 ∈ I1, i2 ∈ I2 do

9: if norm(C
(1)
i1
− C̃(2)

i2
) < δdist then

10: DDSi1,i2 ← norm(C
(1)
i1
− C̃(2)

i2
)

11: else
12: DDSi1,i2 ← Inf
13: end if
14: SDSi1,i2 ← shape dissimilarity score, referring to Sec 3.2.
15: DSi1,i2 ← wdistDDSi1,i2 + wshapeSDSi1,i2
16: end for
17: SSi1∈I1,i2∈I2 ← −DSi1∈I1,i2∈I2 + 1 ·max(DSi1∈I1,i2∈I2) for non-Inf DS entries
18: SSi1∈I1,i2∈I2 ← 0 for Inf DS entries.
19: Solve the linear assignment problem referring to Equation 3 to get matching pairs MP k within

the cluster CCk using coefficient matrix SSi1∈I1,i2∈I2 .
20: end for
21: MP ← [MP1; · · · ;MPK ]

positions of the original neuron cloud and then do the whole matching process.

Finally, the algorithms that we use to extract neuron contours from the blur neuron movement
movies can not give us accurate neuron shapes. The core part of extracting contour algorithm
is looking for a closed contour that can cover more than 80% of the gray scale of each neuron.
Besides, we cannot guarantee that the camera can be placed at the same angle everyday, if the
angle changes slightly, we can imagine that a circle may turn to an ellipse so that the shapes
are not the same in two days. Also, neurons sometimes rotate up to a small degree around
their exact positions. We test shape noise by two ways: add additional rotations slightly, shape
elongations.

4.1 Noise Categories.

In summary, by putting together all kinds of noise stuff above, we adjust the following quantities
to control several noise levels.

1. prop overlap: proportion of neurons that appear in both of neuron clouds of two ses-
sions, referring to the ratio of #{correct matching pairs} and #{neurons of the larger
cloud}. Here we consider the case that neurons show up differently across sessions.

2. prop pos: ratio of the standard deviation of position noise (follows a Gaussian distribu-
tion) with the mean of closed neuron distances. To further clarify this, for each neuron,
we can find another neuron, whose center has the closest distance with the neuron we
are focusing on compared with any other neurons. For each neuron, we record such kind



of a distance. By taking the mean of all these distances, we finally get a mean distance
called ”the mean of closed neuron distances”. For the position noise, we sample from a
Gaussian distribution N(0, σ2p). So ”prop pos” is the ratio of σp and ”the mean of closed
neuron distances”.

3. µrot : mean of the rotation angle noise of neurons. We simulate the rotation angle noise
due to camera positions. For each neuron, we sample a rotation angle from Gaussian
distribution N(µrot, (π/24)2), positive angle refers to clockwisely rotation.

4. µelong : elongation noise of neuron shapes. We simulate neuron shape noise (elongations)
caused by inclination of camera. In the simulation, we remain the width of each neuron
and elongate the neuron shape along the y-axis by elcoef times, where elcoef is sampled
from the Gaussian distribution N(µelong, 0.1

2).

4.2 Simulation Procedure and Results

We generate two neuron clouds (day 1 & day 2) including 30 neurons respectively in noiseless
case and adjust for all noise types indicated in last section. In the simulation, all matching
accuracies are based on tens of simulations for each single noise case, we take the mean as our
final accuracy results.
Figure 4 shows 2 simulation neuron datasets in noiseless case. It shows that neurons are
randomly displaying within a space range and appears slightly neuron overlapping within
sessions, which is similar to real case.

(a) day 1 (b) day 2

Figure 4: Simulation: noiseless case

4.2.1 Noise cases and levels

Figure 12, Figure 13, Figure 14 and Figure 15 show how we choose the range of parameters in
the simulated data.

4.2.2 Adjusting for Four Noise Types

Next, we adjust for different types of noise levels to see how our algorithm performs. We plot
the precision and recall with different parameters for noise in Figure 5, Figure 6, Figure 7 and
Figure 8.



δdist δdet δshape wshape wdist
1 0.2 0.25 0.5 0.5

Table 2: Simulation: parameters setting for Figure 5 and Figure 6

(a) Fixed variables:
prop pos=0, µrot = 0,
µelong = 1

(b) Fixed variables:
prop pos=0.2, µrot = π/12,
µelong = 1

Figure 5: Adjust for prop overlap, plots for prop overlap v.s. recall & precision

(a) Fixed variables:
prop overlap=0.92, µrot = 0,
µelong = 1

(b) Fixed variables:
prop overlap=0.85,
µrot = π/24, µelong = 1.1

Figure 6: Adjust for prop pos, plots for prop pos v.s. recall & precision

δdist δdet δshape wshape wdist
0.7 0.2 0.25 0.8 0.2

Table 3: Simulation: parameters setting for Figure 7 and Figure 8

(a) Fixed variables:
prop overlap=0.92, prop pos
= 0.06, µelong = 1

(b) Fixed variables:
prop overlap=0.85,
prop pos=0.06, µelong = 1.1

Figure 7: Adjust for µrot, plots for µrot v.s. recall & precision



(a) Fixed variables:
prop overlap=0.85, prop pos
= 0, µrot = 0

(b) Fixed variables:
prop overlap=0.85,
prop pos=0.12, µrot = 0

Figure 8: Adjust for µelong, plots for µelong v.s. recall & precision

5 Real Data - 10 mice across two sessions

For each mouse, our dataset records the neuron contours showing up on two sessions (either
after injection of SKF or saline vehicle), so we can test our algorithm for these 10 matching
problems.

5.1 Results

We visualize the neurons showing up on two days in Appendix B for all mice and summarize
the parameters setting in Table 4, precision and recall in Table 5. We set wdist smaller than
wshape in order to let shape information help us distinguish close neurons. Based on the spatial
patterns of neuron clouds and size of neurons, we set δdist = 8, δshape = 3.

δdet δdist δshape wdist wshape
0.3 8 3 0.3 0.7

Table 4: Parameters setting for the 10 mouse neuron alignment problems

mouse ID #SKF #Saline #true matches precision recall

45 red 113 89 51 0.1351 0.0980

45 green 140 76 55 0.7500 0.9818

45 purple 63 48 28 0.8125 0.9286

46 red 111 97 77 0.8721 0.9740

46 green 130 69 30 0.5116 0.7333

46 purple 62 100 42 0.7736 0.9740

42 green 125 144 86 0.8617 0.9419

48 red 80 71 57 0.9138 0.9298

42 purple 151 141 76 0.3214 0.3554

48 green 172 116 82 0.7383 0.9634

Table 5: Precision, Recall and other descriptions for 10 mouse neuron alignment problems



5.2 Observations

Table 5 shows our algorithm works pretty well regarding to precision and recall except for
mouse ”45 red” and ”42 purple”. In order to check whether the rough mapping part is correct
or not, we compare the rotation matrix when we apply our algorithm on all neurons and only
on correctly matched neurons to see why in some cases our algorithm fails.
Also, we compute the mean of close neuron centers to see how much is the prop pos noise. Take
42 green for an example, since our algorithm performs well on it, we can get more accurate
noise levels.

meanclose centers = 3.1942

meanposition noise = 4.2651

Hence, prop pos = 4.2651/3.1942 = 1.3353. The prop pos value 1.3353 is larger than what
we test in simulation, shows that our algorithm can tolerant much larger position noise level.
Since in real data, we have more complex shapes so that we can rely on shape differences to
distinguish close neurons.

Figure 9: 42 green: Row 1: matching based on correctly matched neurons, Row 2: matching
based on all neurons. Left: SKF injection, Middle: saline vehicle injection, Right: saline af-
ter rough map. Red: true matches we find, Blue: true matches we miss, Black: unmatches.
The same indexes on neurons represent corresponding true matches. Results: determinant
of rotation matrix for row 1: 1.0121, rotation: 34.88◦; determinant of rotation matrix for row
2: 1.0206, rotation degree: 32.56◦. Conclusion: the rotation matrices in rough mapping part
are very similar and the global structures for the two neuron clouds are very similar, hence it
is reasonable for this case to perform good.

6 Conclusion

Neuron alignment across different time sessions is very hard due to severe and blur noise in
the brain and noise from the camera and the technique that we use to extract neuron contours
from raw neuron activity movies. Based on the results on our simulation data, we can see
that under reasonable noise level, our model can recover the neuron matching pairs highly
accurately. Further, from the results of real data matching process, we can still identify which



Figure 10: 42 purple: Row 1: matching based on correctly matched neurons, Row 2: match-
ing based on all neurons. Left: SKF injection, Middle: saline vehicle injection, Right:
saline after rough map. Red: true matches we find, Blue: true matches we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches. Results and
Conclusion: The rotation is roughly correct. But the regions that the camera focuses varies
a lot (row 2 left: many unmatches (black) locates outside of the true matches (blue and red),
so for SKF injection case, the camera is more far away. This case is hard to handle.

Figure 11: 45 red: Row 1: matching based on correctly matched neurons, Row 2: matching
based on all neurons. Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map. Red: true matches we find, Blue: true matches we miss, Black: un-
matches. The same indexes on neurons represent corresponding true matches. Results and
Conclusion: determinant of rotation matrix for row 1: 0.9579, rotation: 103.87◦; determinant
of rotation matrix for row 2: 0.7073, not close to a proper rotation matrix. Also, observing
row 2, the regions that the camera focuses varies a lot, camera is more far away from neurons
in SKF case. When the scale of regions varies too much, the accuracy is not good.



neurons should be paired up in multiple sessions when the scale of camera focusing regions are
similar. Our neuron alignment algorithm successfully speeds up hand aligning process with
high accuracy.
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Appendices

A Figures for determining noise levels

Figure 12: Black: Original neurons (some of them may be dropped out), Red: new added
neuronsFrom left to right: prop overlap = 1 → 0.8 → 0.6, no other noise. We see when
prop overlap achieves 0.6, the neuron cloud changes a lot comparing with the noiseless case.
So we adjust prop overlap only down to 0.6.

Figure 13: Black: noiseless, Red: adding different level of prop pos, From left to right:
prop pos = 0.1 → 0.2 → 0.3, no other noise. When prop pos achieves 0.2, the neuron cloud
changes a lot comparing with the noiseless case. So we adjust prop pos only up to 0.2.

Figure 14: From left to right: µrot = π/12, π/6, π/4, no other noise. When µrot achieves
π/6, the neuron cloud changes drastically. So we adjust µrot only up to π/6.



Figure 15: From left to right: µelong = 1.1, 1.2, 1.3, no other noise. We see when µelong
achieves 1.2, the neuron cloud changes a lot comparing with the noiseless case. So in our
simulation, we adjust µelong only down to 1.2.

B Figures of neuron visualization of 11 mice dataset

Figure 16: 45 red: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.

Figure 17: 45 green: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.



Figure 18: 45 purple: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.

Figure 19: 46 red: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.

Figure 20: 46 green: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.

Figure 21: 46 purple: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.



Figure 22: 42 green: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.

Figure 23: 48 red: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.

Figure 24: 42 purple: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.

Figure 25: 48 green: Left: SKF injection, Middle: saline vehicle injection, Right: saline
after rough map, Red: true matches that we find, Blue: true matches that we miss, Black:
unmatches. The same indexes on neurons represent corresponding true matches.



C Comparison of true matches and our matches for 42 purple

Figure 26: Our algorithm does not perform very well on ”42 purple” dataset, so we clearly
show neurons of ”true matches” that we call or fail to call in row 1, neurons of ”matches
we call” that are correct or incorrect in row 2. Row 1: Red: true matches we find, Blue:
true matches we miss, Black: unmatches according to ground truth, Numbers: same numbers
corresponding to true matches. Row 2: Red: true matches we find, Green: matches we find
but are not correct, Black: neurons not in our outputs, Numbers: same numbers corresponding
to matches of our outputs (red & green). From left to right: SKF injection, saline vehicle
injection and saline vehicle injection after rough mapping. Observations: We observe the
camera focusing regions of SKF and saline vehicle case are different, the camera is more far
away from the brain in SKF case compared with saline case, since in row 1, many unmatched
neurons (black) locates on the boundary of the image, while for saline vehicle, this does not
happen. Our algorithm does not work very when the focusing regions differ, many neurons in
left hand side in the images fail to be matched correctly.


