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Abstract

Background. Recent major advances in the understanding of galaxy owe a great deal to highly
successful galaxy surveys conducted with the Sloan Telescope. With massive amount of data,
modern techniques such as machine learning comes in naturally for efficient handling. While many
applications focused on characterizing and classifying astronomical objects within a predefined area
of interest, unsupervised learning has great potential in processing newly obtained data without
much human intervention.

Aim. The goal of this project is to harvest the recent breakthrough of deep learning in both
methodologies and computing resources, to build an automated system to generate embeddings of
a manageable size to represent the immense astronomical spectroscopic data, and further detect
unintended outliers that bear potential interest.

Data. The Mapping Nearby Galaxies at APO (MaNGA) dataset provides a 3D data cube for each
galaxy in its catalog, which consists of a series of spectral flux at different wavelengths for each
spatial pixel. It is superior to many of its predecessors not only in range of galaxies included but
also in the abundance of details within each galaxy.

Methods. The original galaxy data is far too large to handle for most existing anomaly detection
algorithms to operate on, due to both curse of dimensionality and memory constraints. We thus first
seek to map the galaxy observations to some low-dimensional representation using autoencoder, and
then apply various manifold learning techniques and anomaly detection algorithms to find suspicious
outliers. Convolutional layers are also introduced to further capture the internal correlation both
along the spatial and spectral axes.

Results. We found that in general, after being compressed to low dimension, we can reconstruct
back most of the shapes of the original spectra with spatial pattern retained, at the price of losing
many important peak signals.The embeddings proved to contain high level features and could be
used to successfully predict some attributes of the galaxy. Several instances of interesting outliers
are detected due to their uniqueness in various aspects.
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1 Introduction

Modern astronomical surveys are capable of producing immense amount of data. The Sloan Digital
Sky Survey (SDSS) has collected rich features for millions of astronomical objects covering almost
one-third of the sky. This creates a platform with huge potential for us to better explore and
understand our universe. In spite of the automated pipelines currently being used, it is still hard
for human experts to inspect the data manually in order to discover particular phenomena to their
interest.

Machine learning algorithms naturally fit in such context to provide automated solutions. For ex-
ample, [1] used machine learning methods to successfully detect contaminated redshift estimations,
while [2] classified quasar from stars with high accuracy. Though such supervised approaches could
generally achieve satisfactory results, especially in many binary object classification applications,
they either require a priori knowledge of the dataset for labelling, or take huge computation time
to manually simulate synthetic instances for training, thus limiting their ability to scale.

A random-forest based method is proposed in [3] to automatically detect outliers of different classes
without supervision, and picked out many interesting objects that have never been closely examined
before. However, they treated spectra from the same galaxy as separate individuals, which makes
little use of the spatial correlation within the galaxy.

In this project, we aim to use unsupervised machine learning to examine a newly released astro-
nomical spectroscopic dataset for thousands of galaxies. We approach the problem by first building
low-dimensional representations from the huge original inputs using convolutional autoencoders,
which are able to capture both the spatial and spectral correlation within a galaxy, to enable
further application of visualization and anomaly detection.

2 Data

The Mapping Nearby Galaxies at APO (MaNGA) [4] is one of the latest programs in the Sloan
Digital Sky Survey (SDSS). Unlike a traditional survey that usually has the capacity of a few
hundred of target galaxies and samples only a small sub-region at the center for each galaxy, the
MaNGA survey aims at ultimately 10,000 nearby galaxies, and also investigate a galaxy as a whole
using 17 simultaneous ‘Integral Field Units’ (IFUs), providing rich and complex internal structure.

Up to the most recent SDSS Data Release 14, the MaNGA dataset contains data cubes for 2,812
galaxies (indexed by [plate]-[ifudesign]) in total, before some duplication and commissioning plates
are removed. Each galaxy has a map from spatial pixels (spaxel) of a 2D image to the spectrum at
that location, resulting in an N×N×4563 cube. The size of spatial dimension depends on the IFU
design used for the observation, and varies across the dataset. The spectral dimension contains the
flux at 4563 different wavelengths, ranging from 3621.6Å to 10353.8Å with equal space. Along with
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the raw observation data, we also have metadata references that include the buildout of the fiber
bundles and summary of the targets observed.

During pre-processing, we first clipped all the flux values to be positive, since there exists several
rare negative flux values due to instrumental error. In order to unify the shape of input to our model,
we discarded a tiny portion of cubes that are smaller than 34× 34 in the spatial dimension, as well
as some observations that were flagged as ‘DO NOT USE’ due to poor measurement quality. The
remaining cubes are resized to a fixed size in the spatial dimensions using linear interpolation. The
spectral dimension are cut to have the length of an order of 2 to make pooling and unpooling easier,
where the last few flux are removed with little information loss as they frequently contains huge
noise. We further replaced all the flux between 5574Å to 5585Å with interpolation of their neighbors,
where an instrumental noise occurs across all the observations due to residual sky emission. This
finally leads to 2,627 data cubes of size N ×N × 4096.

Figure 1 shows the galaxy images and spectra at two typical spaxels for two random MaNGA
galaxies. The spectra at boundary are usually close to 0 and noisy, while the spectra near the
center generally demonstrate more information of the galaxy. Different galaxies might have very
different flux values due to its brightness, slopes due to red/blue-ness, peak locations due to redshift,
and even jiggling patterns. The common peak of the two galaxies are commonly referred to as the
H-α emission line, which always appears at 6562.8Å after deredshifting. However, we did not shift
the spectra back to rest-frame as most astronomer would do, since this will almost double the length
of the spectra and cause severe memory issues. This means that the flux at a wavelength are what
we have observed directly on earth, instead of what we would see if we were in the target galaxy.
We hope the model can learn the redshift itself by identifying the relative shift of the peaks, but
in general we do believe that the result will be better with deredshifting.

3 Method

Autoencoders (AE) are neural networks that aim to reconstruct the input with minimum distortion.
The encoder transforms an input into a lower-dimensional representation, and the decoder tries to
map it back. By comparing the reconstructed output from decoder against the original input, the
whole model can be trained in an unsupervised way, and learn to extract important features and
compose an latent embedding, providing an aggregated view of the input data that is of manageable
size for subsequent tasks like clustering and anomaly detection. The general idea of the AE family
is that the unique pattern of a single instance could be extracted as the embedding, while the
general distribution and other global information can be stored in the model parameters. The
mapping in both the encoder and the decoder are typically done by stacks of fully connected layer.
Figure 2a shows an one-layered AE, where x is the input vector, z is the output of encoder, i.e.
the low-dimensional embedding, and x′ being the output of decoder, i.e. the reconstruction. The
encoder and decoder in this simple case is just two weight matrices. We refer interested readers to
[5] for more details.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Galaxy 8261-9102 and 8391-9101’s (a,d) images; (b,e) spectra at the center; (c,f) spectra
near boundary.

Deep convolution-based neural network has remarkably outperformed traditional artificial neural
networks, and many of its other competitors in most image-related tasks in the past few years. It
is natural to replace the fully connected layers in the auto-encoder with convolutional ones to get
convolutional auto-encoders (CAE). When applied to image-like inputs, CAE can better capture the
spatial correlation between neighbor pixels, while AE can only treat each pixel as an independent
feature. CAE also greatly reduce redundancy in model parameters when the input size is large as
filters are only applied locally instead of globally, thus can be scaled well to large inputs such as
MaNGA cubes.

3.1 Architecture

We mainly focused using CAE for dimensionality reduction. In the encoder, we incorporated
convolution layers to detect local pattern, followed by a pooling layer to downsample and combine
information in a neighborhood. Multiple blocks of such combination were stacked together to
extract high-level features, gradually reducing the dimensionality of the input cubes to finally get
a desired low-dimensional representation vector.
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(a) (b) (c) (d)

Figure 2: (a) Demonstration of an one-layered AE. (b,c) Illustration of convolution and transposed
convolution with kernel size of 3× 3, with the bottom blue image being input and top green image
being output. The convolution operation maps the 5 × 5 input to 2 × 2 without padding, while
the transposed convolution does the opposite. As shown, transposed convolution can be seen
equivalently as convolution with a fractional stride, where zeros are inserted between input pixels.
(d) Illustration of pooling, in this case the output is the numerical average of a neiborhood in the
input.

The vector was then passed to the decoder, where we performed the exact opposite of the operations
in the encoder. Transposed convolution, sometimes referred to as deconvolution, was performed.
With a large stride, it would act like an unpooling layer to get back the lost neighboring information
during pooling. However, such reconstruction, although enlarged in size, would be rather sparse.
As pointed out in [6], such unpooling would result in low-resolution checkerboard artifacts, so we
adopted their solution to use a nearest-neighbor interpolated resize layer followed by a convolution
layer to further blend the sparse pixels and densify the outputs, which has shown success in super-
resolution problems [7]. Normal deconvolution were used in decoder to reverse the convolution in
encoder. Figures 2b to 2d [8] illustrates and compares the difference of these operations.

The depth of the MaNGA cubes is much larger than that of a typical image which has only 3
channels (RGB). This leaves us multiple choices in terms of how to best utilize its internal correlation
in both the spatial dimensions and along the spectral axis. We experimented several different flavors
of CAE, where each variants has its own advantage in some aspect of the reconstruction. Detailed
model specifications are shown in Figure 3.

2D CAE The first and simplest model we tried is the traditional CAE that have been widely
used on regular image data. Each slice of the cube along the spectral dimension, representing the
mapping from spaxels to their flux at a certain wavelength, is treated as an independent ‘channel’.
The convolution kernels will have the same depth as the input to the layer, and the depth of
output for a layer will be the number of different filters used. Convolution in this case will only be
performed along the two spatial dimensions only, and the operation we performed on the spectral
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(a)

(b)

(c)

(d)

Figure 3: Model specifications for (a) 2D CAE; (b) 3D CAE; (b) 1D-2D CAE; (b) 2D CAE on
compressed spectra.
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dimension will be somewhat similar to fully-connected layers. With such a large input size, this
inevitably requires a huge number of parameters, but the output depth after each convolution
layer can be tuned by number of filters used, thus we can easily compress the cube to a desired
low-dimensional representation.

3D CAE A major drawback in the previous design is that the spectrum at a spaxel is obviously
not independent features. To further utilized the continuity and order information that lie within,
we want to do convolution along the spectral dimension as well. This leads to CAE with 3D-
convolution. The MaNGA cube can be imagined as a four-dimensional tesseract, where the last
dimension is of size 1, representing channel. The convolution kernels will now be tiny cubes that
convolve along all three dimensions. At a given point, the filters will not only captures information
at nearby spaxels, but also at nearby wavelengths.

Although this seems like an ideal model to solve the problem, in practice the 3D convolution will
generate outputs that have almost the same size as their inputs. Multiple stacks of 3D convolution
layers near the top of the encoder will take up a huge amount of memory. This add constraints on
the model size itself, as well as some hyperparameters such as the batch size during training, which
we found lead to sub-optimal solution at convergence.

1D-2D CAE A 3D convolution kernel can extract both spatial and spectral correlations, but
one may argue that these two correlations might be orthogonal to each other. For example, in a
3 × 3 × 3 cube, the center block should have high correlation with the 6 blocks that are directly
adjacent to it, but might not depend as heavily on its diagonal neighbors. This inspired us to
take turns to perform 2D convolution along the spatial dimension only, treating the wavelengths
as totally separate examples in a batch, and 1D convolution along the spectral dimension. This is
equivalent to doing 3D convolution, with constraints such that all subsequent channels of a kernel
must be a reweighted duplicate of the first channel. This further reduce the model complexity.

2D CAE on compressed spectra Instead of doing alternating 1D and 2D convolution, we
divide the whole process into two stage. In the first stage, spectra within a given cube are treated
as individual examples, and traditional dimensionality reduction techniques are performed to get
a rather compressed representation for each spectrum. PCA and shallow AE are two common
choices. Then in the second stage we convolve along the spatial dimension using 2D CAE. Note
that after the compression, each element in the compressed spectral dimension represents a high
level feature of the original spectrum, such as mean, slope and location of its peak, thus there
won’t be any ordered information and features are indeed independent, making it unnecessary to
convolve along the spectral dimension.
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4 Experiments

4.1 Training

In our experiment, we picked N = 32 so that the input MaNGA cubes would have the shape of
32 × 32 × 4096. Activation function is chosen to be ELU [9], which appears to work better than
ReLU. We used average pooling to downsample the input, which turned out to work better than
max pooling in our case. After the encoder, we would obtain a 4 × 4 cube to be our desired low-
dimensional representation. We calculated the reconstruction error by comparing the output of
decoder and the original input, and used the mean error to be reconstruction loss. Mean absolute
error turned out to produce reconstruction with more accurate mean and slope, but totally ignore
the peak locations that are of great importance, while mean square error seemed to cause the whole
curve to be dragged up by the peaks as it is less robust, so we chose to go with MAE. The first
2,000 examples were selected as training set, and the rest as validation set to monitor the training
performance. The models were re-trained on the whole dataset for the usage of downstream outlier
detection, since we will not be applying it to new data. We optimized the model for 50 epochs
using the ADAM [10] optimizer, with learning rate shrinking to half every 10 epochs. Batch size
was set to 50 for 2D CAE, and 10 when the memory complaints for the rest cases.

We applied batch normalization [11] after each convolution/transposed-convolution, which normal-
izes the layers to follow the standard Gaussian distribution. There has been a heated debate around
whether the trick works besides the internal-covariate-shift theory proposed by the original authors,
but empirically we found that adding such operation indeed helps the network converge to a much
better optimum during training.

We polished the loss function to better fit the MaNGA dataset semantics. The IFUs are in fact of
a hexagon shape, so that the values in the four corners of the spatial square are often very weak,
with excessive noise near boundary as shown in Figure 1f. Also, since the sensors are intentionally
aiming at the center of the target galaxy, most useful signals describing the galaxy will lie in the
center spaxels. Thus we multiplied the errors in the loss function with a pre-defined mask, weighting
up the cost of making wrong reconstruction in the center, and down weighting that near boundary.

In addition to the reconstruction loss, we attached another stream of network after the encoder,
which takes in the output embeddings of the encoder, and uses two layers of fully-connected layer
to make a single prediction of the average redshift. The regression MSE loss will be reweighted by
a λ and added back to form the final loss function. This also gives us a more intuitive metric to
evaluate how well the model (encoder part) is learning.

For PCA-2D, besides computing loss by comparing the flux, we also tried another approach by
computing MSE on reconstructed principal components. The principal components are normalized
to balance their contribution to the total reconstruction loss. We also find it useful to manually
boost up the weight for the first two principal components, which account for the mean and slope
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(a) (b)

(c) (d)

Figure 4: Reconstructions of the spectrum at the center spaxel for galaxy 8261-9102 by (a) 2D
CAE; (b) 3D CAE; (b) 1D-2D CAE; (b) 2D CAE on compressed spectra.

of the original spectrum, over the rest which each controls the peak or jiggling pattern at certain
wavelength. However, this turned out to be not working as well, due to the volatility in the principal
components.

4.2 Evaluation

We evaluated the model mainly by the quality of their reconstruction. Figure 5 shows the recon-
struction of the center spaxel for a typical galaxy using the four models discussed. The 2D CAE can
generally put the reconstruction around the correct mean, while the 3D CAE can fit the original
curve much more accurately. The 1D-2D CAE seems to be consistently repeating a certain local
jiggling pattern to form the whole spectrum, which might be a result of using too few parameters.
PCA-2D is equivalent as fixing a pre-trained fully connected layer on the top for 2D CAE, and it
turned out to reduce the training difficulty a bit. However, some occasional noise pattern can often
be observed for PCA-2D, mainly due to the volatility mentioned earlier. Unfortunately none of
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Model Recon MAE Loss Pred MSE Loss

2D CAE 49831 0.00486

3D CAE 44387 0.00158

1D-2D CAE 48742 0.00478

PCA-2D CAE 43978 0.00190

Table 1: Performance of different models. The reconstruction loss is the mean absolute difference
between the reconstructed cube and the original, summed across the whole cube with the spaxels
within 2 spaxels to the boundary down-weighted by a factor of 5. The prediction loss is the mean
squared error between the prediction and actual average redshift.

these models has captured the emission peak, though, since we are using MAE in the first place.
A MSE reconstruction loss, however, would fail to get even the mean right.

As shown in Table 1, the 3D CAE outperformed others in the both metrics. We further looked into
its reconstruction performance in the spatial dimensions. The predictions generally lies around the
red reference line of perfect prediction, and performing much better than just guessing the mean,
which shows that our encoder is indeed extracting high-level information. In Figure 5b, we take
out a slice from the cube at a certain wavelength to see the spatial distribution of flux. It can be
seen that the reconstructed slice can capture spatial pattern of this particular galaxy regardless of
its irregular shape.

(a) (b)

Figure 5: Further results for 3D CAE: (a) predicted v.s. truth average redshift for all galaxy cubes;
(b) Original, reconstructed and residual (difference between original and reconstructed) spatial flux
map for galaxy 8338-12702 at 5739.8 Å, under same color mapping scheme.

4.3 Outlier detection

With the dimensionality reduced to an acceptable range, we experimentally tried many widely-used
manifold learning techniques, including from Isomap to multidimensional scaling, to visualize the
distribution and identify outliers. We also performed distance based outlier detection algorithm,
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(a) (b)

Figure 6: Images and spectra at the weird/center spaxel of example galaxies detected as outliers:
(a) a star in the foreground at top right corner; (b) a blazar.

such as the k-NN based method, where a galaxy is scored by the its average distance to its top-
k nearest neighbors. We found that several galaxy are consistently far away from the majority
clusters regardless of the method used, showing high probability of being an outlier.

There are also some galaxies that all models failed to reconstruct well. In this context, this in fact
might be a good thing as it actually gives us a more straightforward way to classify them as outlier
based on the reconstruction loss. Those reconstructed with large error might well have different
distribution from the rest and are likely to be weird.

During our initial runs of outlier detection, many of the observations that have foreground stars
lying in between the IFU and the target galaxy are identified as outliers. These cubes will have
unexpected large flux values at a certain spatial patch near its boundary, thus triggering the model
to treat them as abnormal samples. Figure 6a is an example, where a foreground star triggers huge
flux with downward slope (indicating it’s blue) at the top right corner. While this is indeed an true
outlier, we in fact already have the knowledge of the star’s existence. In order to let the model
extract more ‘unknown unknowns’ that haven’t been discovered before, we mask out these patches
in the input data, as well as in the reconstruction loss used during training.

We continue to manually inspect the galaxy cube and identify the source of their weirdness. Figure 6
shows several typical examples. Figure 6b is one of the mostly picked galaxy, which turned out to
be an blazar, one of the most energetic phenomena in the universe.

5 Conclusions

This projects mainly attempted to build low-dimensional representation for the MaNGA dataset,
which contains spatial maps of astronomical spectroscopic data for galaxies, using convolutional
autoencoders in an unsupervised fashion. Multiple variants of CAE with different focus and thus
different architectures have been experimented and evaluated. Current results still have huge
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space for improvement, thus possible directions are discussed. From the dimensionality-reduced
summarizing embeddings, preliminary outlier detection is performed to locate weird galaxies among
the whole dataset. A potential future work is to detect outlier spaxels within a single galaxy cube.
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