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Background. FarmView is a joint project between Carnegie Mellon University, Clemson Univer-
sity and Near Earth Autonomy whose goal is to increase the bioenergy yield of sorghum, a drought
and heat tolerant grass with a diverse gene pool. Clemson University harvested a field of sorghum
in 2016 which had a ground robot and an aerial drone gather data as the sorghum grew.

Aim. I determined the predictive power of the 2016 ground robot, aerial drone, harvest, accession
and field location data in predicting the composition of the harvested sorghum.

Data. There are 698 subplots in the sorghum field with known composition. Each subplot also has
corresponding accession features (such as the country of origin), GPS field location, robot-generated
features, drone-generated features, harvest phenotypes and composition features. The dataset has
many missing values, with more than half of the samples missing at least 24% of the input features.

Methods. I trained a random forest, and other regressors, on the 2016 dataset using 10-fold cross
validation. I augmented the training set so there were more training samples with missingness
identical to the missingness in the test set. Finally, I trained on three different views of the dataset
to determine the incremental increase in predictive power from the robot-generated plus drone-
generated features, as well as the harvest phenotypes.

Results The random forest regressor preformed the best with an overall r2 score of 0.436. This
includes the 2.5% increase in r2 score from my missing value augmentation

Conclusions. The ground robot and aerial drone features improved predictive power of the com-
position features. This predictive power should also increase in the upcoming sorghum fields.

Intellectual merit. The 2016 dataset only included 698 samples, each with 29 input features that
have a significant amount of missing values. The relatively small and sparse dataset allowed for an
extensive regressor search, combined with a new missing value augmentation.

Broader impacts. Bioenergy sorghum breeders expect to double yield in the next five years alone.
The Global Harvest Initiative reported that by 2050, the demand for food will outpace production
if food productivity does not advance. FarmView can help bioenergy sorghum breeders reach their
expectations, and also help increase food productivity by translating the developed science and
technology to food crops.
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1 Introduction

Sorghum bicolor has become a preferred bioenergy candidate because it is drought-tolerant and
highly productive. It is an adaptable grass with a diverse gene pool containing over 40,000 genetic
varieties. Production of sorghum is rising, having grown by 66% in the last 50 years. Sorghum
breeders expect to double yield in the next five years alone (Schmitmeyer (2016)).

FarmView is a joint project between Carnegie Mellon University, Clemson University and Near
Earth Autonomy. In 2016, biologists at Clemson University cultivated a field of sorghum in the
clay soil of Pendleton, South Carolina. Carnegie Mellon University created a ground robot that is
able to traverse up and down the rows of sorghum. Near Earth Autonomy created an aerial drone
that also gathered data about the growing sorghum. Clemson University harvested the matured
sorghum, and then gathered phenotypic data about the plants, such as the weight of the harvested
plants. Finally, Clemson University conducted extensive composition experiments on the harvested
sorghum.

FarmView’s goals are multifaceted. From the biology side, one goal is to discover which factors
affect sorghum bioenergy composition and yield, and exploit them during the breeding process to
create higher yielding varieties. From the robotics side, one goal is to develop affordable robotic
systems for specialty crop management. For sorghum, these robots gather data as the sorghum
grows and improve composition predictions, which could be used when determining which sorghum
plants to breed. The FarmView efforts have only just begun, with the ground robot and aerial
drone producing their first features for the 2016 sorghum field.

Finally, the Global Harvest Initiative reported that by 2050, the demand for food will outpace
production if food productivity does not advance (Koba (2014)). The science and technology
developed as part of the FarmView project could be translated to food crops, and help resolve the
forecasted food shortage.

Figure 1: Ground robot created by Carnegie Mellon University, and aerial drone created by Near
Earth Autonomy. Credit: Saswati Raw from Carnegie Mellon’s AutonLab, and Paul Bartlett from
Near Earth Autonomy, respectively.
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2 Problem Statement

A primary goal of the FarmView project is to use the ground robot and aerial drone to predict
the composition of harvested sorghum. This paper analyzes the composition predictive power of
these robot-generated and drone-generated features, as well as the predictive power of the available
accession, field location and harvest features.

3 Related Work

Machine learning algorithms have already started to shape agricultural research. Heckmann et al.
(2017) published results this year on predicting photosynthetic capacity of cabbage and corn using
the reflectance spectra of mature leaves. The best performing predictor was a combination of first
performing recursive feature elimination on raw spectra data, and then least squares regression
to make the final photosynthetic capacity predictions. Unlike this cabbage and corn project, the
FarmView project has analyzed a non-food crop. Sorghum does not compete with food crop such
as corn and cabbage, because sorghum can grow in harsher ground. Also, the 2016 sorghum
dataset does not include raw spectra values, since the Carnegie Mellon Robotics team and Clemson
biologists have already processed the raw data.

The FarmView biologists at Clemson also analyzed sorghum grown in Florence, South Carolina in
2013 and 2014 (Brenton et al. (2016)). Instead of using phenotypic features to predict composition,
the Clemson biologists performed genome-wide association analysis by first creating and character-
izing an association panel of the 390 diverse sorghum varieties with 232,303 genetic markers. They
identified genes that are potentially associated with increased non-fibrous carbohydrates (NFC). If
the genes are experimentally verified to cause an increase in NFC, sorghum breeders could then
breed for those genes and thus increase sorghum bioenergy yield. Given the long-term nature of
genetic experiments, and contrasting with the short-term nature of a Data Analysis Project, this
paper does not use the genetic dataset created by the Clemson biologists. Instead, this paper uses
the newly available robot-generated, drone-generated and harvest phenotype features.

Saswati Ray from Carnegie Mellon’s AutonLab analyzed the 2014 sorghum dataset, which had
390 samples with nine input features, and four composition features as the output features. She
found that random forests performed best at predicting the four composition features, achieving
an average r2 score of 0.50. There was no 2015 dataset. Ray also analyzed a preliminary 2016
dataset. Ray used random forest regression to predict harvest features from robot generated-
features, achieving an average r2 score of 0.18. Although Ray completed an analysis of the partial
2016 dataset, this paper is the first to analyze the complete 2016 dataset with accession, field
location, robot-generated, drone-generated, harvest and composition features.

Random forest regression is an ensemble method which makes predictions by averaging the outputs
of its constructed regression decision trees. They were first formally defined by Breiman (2001).
Fernández-Delgado et al. (2014) evaluated 179 classifiers on 121 datasets and found that random
forests achieved the best overall accuracy. Caruana et al. (2008) also came to the same conclusion
when they evaluated 10 families of classifiers on 11 binary classification problems with high dimen-
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sionality. Random forests had the highest performance on average across all considered datasets,
outperforming SVMs, neural nets, logistic regression, etc. Random forests are fast and perform
well in practice.

4 Data

The 2016 sorghum dataset was created by sorghum cultivated at Simpson Farm located in Pendle-
ton, South Carolina. This field is partitioned into 5 meter by 1 meter subplots, where each subplot
contains sorghum plants that are all genetic siblings. Each sample of the 2016 sorghum dataset
describes a single subplot. The dataset contains 698 samples with accession, field location, robot-
generated, drone-generated, harvest and composition features.

Table 1: Timeline of data availability in the 2016 sorghum dataset. The 2016 field was planted on
May 26 - 27, 2016 and harvested on October 3 - 6, 2016 . Note that this is the first year the ground
robot and aerial drone produced features. So, the bold Robot and Aerial datasets are expected to
become available much sooner in the upcoming 2017 dataset.

Feature Type Description Date First Available

Accession Biological categorization of sorghum. Before planting
Field Location GPS location of subplot centers. Before planting
Robot Automatically generated features from ground robot. November 16, 2016
Aerial Automatically generated features from aerial drone. August 2, 2017
Harvest Phenotypic features of fully grown sorghum. January 12, 2017
Composition Chemical composition of harvested sorghum. July 5, 2017

Prior to planting, the accession and field location of each subplot is known. There are four ac-
cession features: accession photoperiod, accession origin, accession type, and accession race.
accession photoperiod is a boolean value for whether the subplot’s sorghum is sensitive to the
length of day or night. accession origin is the sorghum’s country of origin. accession type and
accession race are are biological classifications of the sorghum, such as Sweet sorghum and Grain
sorghum. Finally, the field location features include the GPS Easting and Northing of the center
point of the subplot.

Carnegie Mellon created a ground robot with multispectral cameras that traverses the rows of
sorghum. Members of Carnegie Mellon’s Robotics Institute then used computer vision to automat-
ically compute leaf necrosis, vegetation index, leaf area, plant height and light interception from
the raw sensor values. The ground robot traversed the field in July, August and September of 2016.
Near Earth Autonomy created an aerial drone that is able to measure macro-scale field growth.
The 2016 dataset only includes the average saturation and hue from an overhead photograph of
the field.

Generating the composition data involves conducting experiments which chemically break down
harvested sorghum. So, unlike the data generated by the ground robot and the aerial drone,
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the composition data is not expected to become available much earlier in the upcoming sorghum
datasets.

Appendix A contains a complete list of the features used in the regression analysis. The full dataset
can be found at https://raw.githubusercontent.com/bparr/dap/master/2016.merged.csv.
Note that this file includes unused features (e.g. Notes). Also, 66 of the subplots in 2016.merged.csv
file were ignored for regression analysis because they were missing composition data.

5 Methods

5.1 Training Procedure

The 2016 dataset is relatively small with 698 samples. So, I trained multiple types of regressors,
such as Random Forests, Support Vector Machines (SVM), and Kernel Ridge. For each regres-
sor, I used 10-fold cross validation, which randomly partitions the dataset into 10 equally-sized
subsamples. Each subsample is used as the test set for a regressor trained on the remaining nine
subsamples. I trained models for three different views of the 2016 dataset, so that I could com-
pute the improvements from including the ground robot and aerial drone features, as well as from
including the harvest features.

5.2 Missing Values

The sorghum dataset unfortunately has a significant amount of missing values, as shown in Figure
2. For example, more than half of the samples are missing at least 7 feature values (i.e. missing at
least 24% of the total inputs). During regression analysis, -1 was used for these missing values.

Figure 2: Missingness in the dataset. The dataset has no missing output values. So all missing
values are from the 29 input features.

5.3 String Values

The accession features are string values, which regressors can not naturally train on. Before train-
ing, each accession feature was mapped to a one-hot vector using the SciPy DictVectorizer. The
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accession features also include missing values, which are simply represented as the first dimension
in the one-hot vector. So, a missing accession feature would be mapped to a vector with a 1 in the
first dimension, and 0 for the remaining dimensions.

5.4 Apparatus and Instrumentation

I trained the regressors on an AutonLab machine with 48 cores and 500 GB of RAM. All regressors
can also be trained on much smaller machines, although slower. The AutonLab machine runs
Python v3.4.5, NumPy v1.13.0, and SciPy v0.19.1.

6 Results

Random forests performed best, with an Overall r2 score of 0.436. Figure 3 includes the final r2

score results for each composition feature, as well as the multi-dimensional Overall r2 score.

Figure 3: Final results for each composition feature, and Overall. Each bar represents three separate
dataset views, with overlapping bars. The blue part of the bar represents the r2 score when using
just Accession and Field Location. The red part of the bar represents the increase in r2 when
using the Robot and Aerial data, along with the Accession and Field Location data. And finally,
the yellow part of the bar represents the increase in r2 score when using the Harvest data, along
with the Accession, Field Location, Robot and Aerial data. Note that the y-axis only goes to 0.75
instead of the maximum r2 score of 1.0.
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These results were achieved by using my missingness augmentation along with the SciPy Random-
ForestRegressor. The random forest used 100 trees, each with a maximum depth of 10, and also
used

√
number of input features as the number of features to consider when looking for the best

split. Finally, the random forest only split if the node had at least 10 samples in it. These changes
from the default SciPy settings are based on the default settings for the AutonLab implementation
of Random Forest regressor.

6.1 Missing Value Data Augmentation

I increased the Overall r2 score by 2.5% (from 0.425 without augmentation, to 0.436 with augmen-
tation) by augmenting the training set with training samples that had selected values removed and
replaced with missing values. The idea was inspired by the image recognition improvements from
augmenting training images, by shifting the image for example. By augmenting the training set,
there were more training samples with missingness identical to missingness in the test set.

Figure 4: For the full 2016 dataset, the difference between the mean r2 scores with augmentation and
mean r2 scores without augmentation. So greater than 0.0 is an improvement from augmentation.
With augmentation and without augmentation were both run for 100 trials. The figure also includes
the 99% confidence interval for the difference in mean r2 scores. Only five individual composition
features (Ash, DCAD, NEL3x ADF, Starch and TDN OARDC) did not see a significant increase
in r2 score from augmentation. No composition feature saw a significant decrease in r2 score.
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Before training, I ran the below missingness augment() Python function (minified for readability):

def missingness_augment(X_train, y_train):

missings = set() # Set of True/False tuples.

for x in X_train:

missings.add(tuple(is_missing(value) for value in x))

augmented = [] # List of (x_train, y_train, sample_weight) tuples.

for x, y in zip(X_train, y_train):

augmented_samples = set([tuple(x)]) # Always include original.

for missing in missings:

augmented_samples.add(tuple([

(MISSING_VALUE if b else a) for a, b in zip(x, missing)]))

# Note that the sum of sample weights for each original x = 1.0.

augmented.append(x, y, 0.5 + 0.5 / len(augmented_samples))

for augmented_sample in (augmented_samples - set([tuple(x)])):

augmented.append(augmented_sample, y, 0.5 / len(augmented_samples))

return augmented

For example, consider a dataset with only three input values, and where X train only contains
three samples with values [MISSING V ALUE, 2.0, 3.0], [4.0, 5.0, MISSING V ALUE] and
[7.0, 8.0, 9.0]. Augmenting the sample with value [7.0, 8.0, 9.0] would result in three augmented
values:

• [7.0, 8.0, 9.0] with sample weight = 4
6

• [MISSING V ALUE, 8.0, 9.0] with sample weight = 1
6

• [7.0, 8.0, MISSING V ALUE] with sample weight = 1
6

Since the missingness augment() function uses sets, there are no duplicate entries when augmenting
a training sample. Since each original training sample results in training samples with sample
weights that sum to one, the original weight of a sample remains unchanged. Without using
sample weights, samples with fewer missing values and thus more augmented samples would have
a larger effect in test predictions. In practice, this caused worse results in the 2016 dataset when
compared to running without augmentation. I experimented with a few different sample weight
schemes, and saw no significant difference. So I settled on simply preallocating 0.5 of the sample
weight to the original sample, and evenly distributing the remaining 0.5 sample weight among the
augmented samples.

The 2016 sorghum dataset has only 71 different missingness patterns. On average, there are about
69 different missingness patterns in the training set. The augmented training set was on average 32
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times larger than the original training set. Regardless, the augmented training set is still relatively
small, with an entire 10-fold cross validation still taking less than a minute to complete.

6.2 Feature Importance

The SciPy implementation of random forests includes feature importances. See Figure 5 for the
mean and standard deviation of each feature’s importance across all trees. For the full dataset,
harvest height and accession features were the most important.

(a) Before-Planting Dataset (b) Before-Harvesting Dataset

(c) Full Dataset

Figure 5: Mean and standard deviation feature importances across all trees in random forests
trained on the 2016 dataset. Feature importance is computed relative to all features, so that the
sum of all importances is 1.0.
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6.3 Regressors Besides Random Forests

My final results use random forests because they performed the best with an Overall r2 score of
0.436 on the full 2016 dataset. I also tried other regressors available in SciPy, including Support
Vector Machines (SVM), Nearest Neighbors, Kernel Ridge and other decision tree regressors. How-
ever, with only 698 samples and a relatively large amount of missing data, many of the regressors
performed poorly. After the random forest regressor, the next best four regressors were Gradient-
BoostingRegressor, ExtraTreesRegressor, AdaBoostRegressor and KernelRidge, which respectively
achieved an Overall r2 score of 0.407, 0.346, 0.345 and 0.330 on the full 2016 dataset.

6.4 Reproducibility

All input files, source code and output files can be found at https://github.com/bparr/dap/.

7 Discussion

As previously mentioned, 2016 was the first year that the ground robot and aerial drone produced
features. So there were some unexpected difficulties. For example, the aerial features available in
2016 are only the tip of the iceberg. Near Earth Autonomy also produced elevation maps, infrared
maps and RGB maps of the 2016 sorghum field. Unfortunately, these maps could not be segmented
into subplots because of GPS differences between Near Earth Autonomy’s data and the rest of
the dataset. The 2017 field should not have this problem, and thus there will be more aerial-
generated features that will need to be incorporated into the 2017 sorghum composition regression.
By incorporating these upcoming features, aerial-generated predictive power should increase.

Predictive power in 2017 should also increase from improvements in the ground robot. For example,
the 2017 dataset should include hyperspectral data of the sorghum leaves gathered by shining a
broadband light source directly on the leaves. These raw spectra features could be incorporated into
2017 composition regression similar to Heckmann et al. (2017), and thus the chemical composition
of the sorghum leaves could be more accurately predicted.
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Appendix A: Description of Dataset Features

Feature Type Feature Name Description

Accession accession photoperiod Boolean value for whether the subplot’s sorghum is
sensitive to the length of day or night.

accession type Predominant type for sorghum germplasm (e.g. Grain).

accession origin Country of origin (e.g. Ethiopia).

accession race Taxonomic rank below subspecies (e.g. Durra-bicolor).

Field Location gps eastings UTMzone17N
gps northings UTMzone17N

GPS Easting and Northing of the subplot’s center
(in UTM).

Robot 2016 07 13-14 Leaf Necrosis Cell death or degeneration in leaves. Measure of plant
stress, calculated as a ratio of healthy/unhealthy pixels.

2016 07 13-14 vegetation index
2016 08 05-08 vegetation index

Measure of live green vegetation.

2016 07 13 BAP Leaf Area Exposed leaf area.

2016 07 13 laser plant height Plant height according to the ground robot.

2016 07 light interception
2016 08 light interception
2016 09 light interception

Ratio of Leaf Area / Area of Sky, using an upwards
facing camera.

Aerial aerial average hue
aerial average saturation

Average hue and saturation of the subplot, using
an overhead photograph of the entire field.

Harvest SF16h TWT 120 Plant weight, in kilograms.

SF16h WTP 120 Weight without panicle, in kilograms.

SF16h WTL 120 Weight without leaves, in kilograms.

SF16h HGT1 120
SF16h HGT2 120
SF16h HGT3 120
SF16h HGT 120 MEAN
SF16h HGT 120 STD

Plant height, in cm, measured from ground to apex
of panicle. Three plants were measured. MEAN
and STD are calculated from these three
measurements.
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SF16h PAN1 120
SF16h PAN2 120
SF16h PAN3 120
SF16h PAN 120 MEAN
SF16h PAN 120 STD

Length of panicle, in cm. Three panicles were
measured. MEAN and STD are calculated from
these three measurements.

Composition ADF Acid Detergent Fiber.

AD-ICP Acid Detergent Insoluble Nitrogen.

Adj CP
Adjusted Crude Protein (e.g. adjusted for
excessive heat damage).

Ash Total mineral content.

Cellulose C6 carbohydrate found in cell walls.

Crude Protein Approximate amount of protein.

DCAD Dietary Cation-Anion Difference.

Dry Matter Weight with water removed.

EE Fat Crude fat content.

Hemicellulose C5 carbohydrate found in cell walls.

Lignin Strengthening material in the cell walls.

NEG OARDC
Net Energy of Gain. Energy available to
produce a weight gain.

NEL3x ADF Net Energy of Lactation.

NEL3x OARDC OARDC Net Energy of Lactation.

NEM OARDC Net Energy Maintenance.

NFC Non-Fiber Carbohydrates.

SPCP Water soluble protein.

Starch
A non-fiber carbohydrate mainly used
for storing energy.

TDN OARDC Total Digestible Nutrients.

WSC Sugar Water Soluble Carbohydrates.

aNDFom Ash free natural detergent fiber.
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