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Background. Understanding and modeling high-order chromatin organization is a fundamental
problem in computational genomics. Chromosome fold into complex shapes by itself mostly by
following rules written in the genomic sequence. People have been studying the process closely
trying to discover the rules from measured interaction frequencies in Hi-C matrix. Following recent
success in using deep learning to model point interactions such as enhancer-promoter interactions
directly from genomic sequence, there seems to be similar pathway from genomic sequence to general
Hi-C interactions, which leads to modeling general rules behind high-order chromatin interactions.

Aim. We consider the problem of identifying high-order chromatin interactions from human ge-
nomic sequence solely. Concretely, we seek to explore how we can use genomic sequence alone to
predict pairwise interaction frequencies of loci that forms Hi-C matrix and whether we can identify
high-order interaction patterns such as topologically associating domains (TADs) from it.

Data. The dataset we use consists of two main parts, raw genomic sequences and the their pairwise
Hi-C interaction measurement. The raw genomic sequence dataset is from GRCh37/hg19 produced
by Genome Reference Consortium. The Hi-C measurement data is from GM12878 repository.

Methods. We take a deep learning approach taking genomic sequences as input and perform
regression on Hi-C interaction measurements. The deep neural network use a combination of
convolution and recurrent neural network LSTM to predict interaction frequency. Once trained,
the model can be used to predict Hi-C matrix for any given region and the predicted interaction
matrix can be analyzed for higher-order interaction structures.

Results. Our model is capable of extracting sequence interaction patterns and predict interaction
matrix visually similar to Hi-C measurement. According so some metrics we define, the level of
structural agreement is high and TAD structures are recovered with good accuracy.

Conclusions. We show for the first time that we can use a deep neural network to model inter-
action between genomic sequences that can predict interaction matrix where high-order chromatin
structures, such as TADs, are highly identifiable.

Keywords: Hi-C interaction, computational genomics, chromatin interaction, deep learning.
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1 Introduction

The human genome consists of over 3 billion nucleotides and is contained in 23 pairs of chromosomes.
If the chromosomes are aligned end-to-end, the genome would measure roughly 2 meters long.
However, the genome functions within the cell nucleus in sphere shape smaller than 10 µm. This
suggests that the genome folds into a complex compact 3D structure. It has been increasingly
appreciated that understanding how chromosomes function (e.g. gene expression and replication)
heavily rely on detailed knowledge of the 3D structure, which boils down to studying the interaction
patterns of genomic sequence. Recent studies Lieberman-Aiden et al. (2009), Fudenberg and
Mirny (2012), Gibcus and Dekker (2013), Lajoie et al. (2015) suggest 5 main types of interaction
patterns in decreasing level of scale: Cis/Trans interaction ratio, distance-dependent interaction
frequency, genomic compartments, topologically associating domains and point interactions. The
first 4 are considered higher order and in this work we mainly focus on topologically associating
domains (TADs). TADs are sub-Mb (million base pair) structure where interaction frequencies
within are elevated and they are heavily associated with gene regulation, according to Shen et al.
(2012), Symmons et al. (2014).
To study the shape of human genome, we need to have some ground truth information on how
loci on chromosomes interact. Hi-C measurements from Lieberman-Aiden et al. (2009) is a widely
used measurement of chromosome conformation capture method that records interaction frequen-
cies between all pairs of loci in the genome. It can be thought as a proximity measure of loci pairs
in space with a higher interaction frequency usually indicating a closer distance. If we plot out all
interaction frequencies between all loci pairs in chromosomes, we get a interaction map backed by a
matrix of interaction frequency values. If we analyze the Hi-C interaction matrix map of a chromo-
some, we can visually identify some high-order chromatin structures, from genomic compartments
to TADs. And more programmatically there are algorithms Lieberman-Aiden et al. (2009), Dixon
et al. (2012), Crane et al. (2015) that can identify them from such matrices.
At the same time, we do know those high-order chromatin interaction structures are eventually
governed by the underlying genomic sequence. In other words, there should be a direct path
from raw genomic sequence to high-order chromatin interactions. Or equivalently, taking the Hi-C
interaction matrix as an intermediate step, we should be able to use raw genomic sequence to
predict interaction frequencies in the Hi-C matrix and use the predicted Hi-C interaction matrix
to discover high-order chromatin interactions.

2 Problem Statement

In this work, we consider the problem of predicting values in Hi-C matrix from raw genomic
sequence alone using machine learning with the ultimate goal of predicting high-order chromatin
interactions.
The purpose of predicting Hi-C matrix is to help predict high-order chromatin interaction struc-
tures. We know from previous sections that once we have a Hi-C matrix, identifying high-order
structures just involves running some algorithm on the Hi-C matrix. So according to this problem
definition, we can evaluate the quality of Hi-C matrix prediction from 1) the overall agreement
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between predicted Hi-C matrix and measurement matrix and 2) the quality of high-order structure
that is identifiable from the predicted Hi-C matrix. And in similar way, a good model for Hi-C
matrix prediction will in turn contribute to good high-order chromatin interaction discovery.

3 Related Work

Chromatin interaction prediction has been a hot topic in the computational genomics community.
Over the past years, there has been extensive research effort into chromatin interaction modeling,
especially using machine learning techniques. On the subject of enhancer-promoter interaction,
we see Singh et al. (2016) develop convolutional and recurrent deep neural networks to predict
interaction types. For more general point interactions, a locus-specific support vector machine
is developed by Nikumbh and Pfeifer (2017) to predict genome-wide interaction partners. Such
methods using modern machine learning techniques have all received good results and boosted our
confidence in using machine learning to model chromatin interactions.
One key difference in our problem, though, compared to above methods, is that we wish to model
beyond point interactions to identifying high-order interaction patterns. We wish to learn broader
features that can help determine higher-order chromatin organizations. This difference can pose
more challenge to our problem.
Another recent study aiming at chromosome structure prediction that is similar in scope with our
problem is Di Pierro et al. (2017). In their work, a neural network is employed to model the
relations between epigenetic markers to predict Hi-C interaction frequency. Next, the predicted
information is used to model genomic organization along with an energy model to infer spatial
conformation of chromosome. Our problem differs with it in that we do not assume epigenetic
information to predict Hi-C as we believe those epigenetic signals can be picked up by our machine
learning model. In other words, we are addressing a more fundamental problem: what are the
patterns and processes in genomic sequence lead to all the spatial organization we are observing.

4 Data

Data for this work is comprised of 2 parts, broadly contributing to source of input and output
target to our modeled prediction problem.

Raw genomic sequences.
The dataset for genomic sequence is the February 2009 human genome reference sequence assembly
(GRCh37/hg19) produced by Genome Reference Consortium. It contains a sequenced reference
human genome for approximately 3 billion base pairs and covers 23 pairs of chromosomes. The
raw sequences are marked with the source chromosome and are presented in plain text form from
an alphabet of ATCG and N, where ATCG represent the four nucleotide types found in DNA
and N denotes unresolvable nucleotide from sequencing step. The dataset if publicly available at
https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19.

Hi-C measurement.
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The Hi-C measurement of interaction frequency data is from the three-dimensional map of the
human genome used by Rao et al. (2014). Specifically, we use the raw observed contact matrices
for the combined (primary+replicate) intra-chromosome interaction map for GM12878 cell line. For
our use case, we choose the version with 5kb (kilobase) measurement resolution and MAPQ>30
readings. The measurements are divided according to chromosomes and each row in a chromosome-
specific file contains three space delimited values (locA, locB, freq). locA and locB are base pair
offset locations of two sequence fragment that are interacting and freq is a positive floating point
value of interaction frequency. The Hi-C matrix of a region of interest can be constructed combining
the interaction freuqncies freq of all pairs of locA and locB in the region. The data files can be
found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525.

5 Method

Methods like SPEID Singh et al. (2016) in prediction enhancer-promoter interaction have shown
the power of deep learning models in modeling sequence interaction patterns. As our problem
of predicting general interaction anywhere in the Hi-C matrix is effectively a generalization of
enhancer-promoter interaction formulation in SPEID, we learn from the architecture of SPEID and
adopt a similar deep learning approach.

5.1 SPEID

Figure 1: Architecture of deep learning model SPEID introduced for enhancer-promoter interaction
prediction. Figure from paper Singh et al. (2016).

SPEID is an excellent model providing good sequence pattern extraction and long-range feature
combination capabilities as shown in its high prediction accuracy in enhancer-promoter interac-

5 of 17 12-3-2017 at 01:20

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525


Final Version

tion. It extracts general sequence features (such as CTCF motifs) from using one-hot encoding of
sequence inputs in conjunction of 1D convolution. Sequence features from two input branches are
concatenated after dimensionality reduction introduced by max-pooling layer and fed into a LSTM
Hochreiter and Schmidhuber (1997) where they are scanned bidirectionally. The LSTM processes
the condensed sequence features by linearly sweeping the combined input features and identify
long-range dependencies between them. This LSTM step is responsible for combining interaction
signals at various positions in the sequences and are compared to ‘regulatory grammar’ Quang
and Xie (2016). The last dense layer serves as final step combining of interaction signals across the
extent of sequences before making probabilistic prediction.
Besides the elegant architecture, it also includes various techniques such as batch normalization
Ioffe and Szegedy (2015) and dropout Srivastava et al. (2014) to make the model easier to train
and more robust to overfitting.
All the above aspect of SPEID suggests it is a promising starting point for developing models for
our problem.

5.2 Our Model

We start by taking the general framework in SPEID and make adaptations to it. Similar to SPEID,
the sequences at the interacting loci of interest are passed to the deep learning model as sequence
inputs. Instead of performing classifications of whether two sequence interact, we remove the last
logistic mapping in the output layer and perform regression on the Hi-C interaction frequencies.
We initially start with such simple adaptation, only to find the model struggle to produce similar
patterns displayed in Hi-C measurement matrix. We suspect it is due to the much elevated modeling
complexity of general interaction in addition to the fact that regression is naturally harder than
classification. It seems that the model can benefit from more direct help from other features
attainable from sequence. Hence we consider augmenting the model with 3 more branches of
auxiliary input:

1. genomic distance between two input sequences.
One key aspect where our problem extends from enhancer-promoter interaction prediction
is that we have extra spatial information in the Hi-C matrix we are predicting. This sug-
gests in order to reconstruct the Hi-C matrix of high accuracy, we need to incorporate some
spatial information between the two input sequences. From the theory in polymer-physics
De Gennes (1979), Fudenberg and Mirny (2012), we know the interaction frequency between
two sequences decreases, on average, as their genomic distance increases. This suggests extra
information of the genomic distance between the input sequences might be a helpful indicator
of the interaction frequency, especially when the large distance provides negative signal that
cancels out many positive signals identified by other parts of the model, making prediction
much easier for many off-diagonal entries in the Hi-C matrix.

2. CTCF counts in the sequence between two input sequence locations.
One major type of high-order chromatin interaction prevalent in Hi-C matrix is TADs. It
has been discovered that CTCF motif bindings sites are usually enriched at TAD boundaries

6 of 17 12-3-2017 at 01:20



Final Version

Dixon et al. (2012), Van Bortle et al. (2014). As TADs are an important type of contributor
to sub-Mb structures and interaction frequency fluctuations, CTCF information that tend to
co-occur with TADs seems helpful for our model as well. We choose to include the counts of
CTCF motifs that lies in the sequence between the two input sequences as another auxiliary
input and hope that it shed light on the how many TADs are between the input sequence
pair and in turn help determine the interaction frequency between the pair.

3. helper sequence at genomic middle of two input sequence locations.
We realize after much trials after including the above 2 auxiliary inputs that our model still
predict relatively poorer for input pairs across TAD boundaries. It reflects that CTCF count
alone might not be enough to provide adequate hints on TADs. We propose to add another
branch of helper sequence that lies in the genomic middle of the two input sequences. The
helper sequence (seq3) goes into feature extraction as well and its extracted features are fed
into LSTM along with the features from two input sequences (seq1 and seq2). As a result,
the LSTM will be learning interaction relations between triplet (seq1, seq3, seq2). Due to the
processing order of (seq1, seq3, seq2) in LSTM, the LSTM can leverage long range interaction
signals between (seq1, seq3) and (seq3, seq2) to help with predicting (seq1, seq2).

The introduction of helper middle sequence essentially expands the view of model that includes
more sequence features to make use of. In perfect scenario we can include the entire middle
sequence of variable length, however, it impose too much computational burden and require
heavy make-over of the overall architecture. We instead choose the middle sequence that has
the same length as the input sequence to simplify computation and model complexity.

Figure 2: Architecture of our model. Compared to SPEID, it is augmented with components to
take auxiliary helper inputs from sequences that serve as more direct hints to the model. Similar
rectification, batch normalization and dropout omitted in the graph.

After adding auxiliary inputs, the full model now looks like Figure 2. The extra two layers of dense
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neurons right after CTCF and distance input layers are for modeling necessary normalization or
preprocessing of the two new input branches. The processed CTCF and distance are merged with
the flattened output of the LSTM and form an augmented feature vector. The augmented vector
is treated as input to a multi-layer perceptron with one hidden layer and single floating point value
output layer representing the final predicted interaction level.

5.3 Training and Testing

Dataset Generation.
From the way we formulate the problem, the model needs to train and test on tuples of data (seq1,
seq2, seq3, dist, ctcf , y). Since such form is not readily available from the original datasets, we
perform sampling from the Hi-C matrix for interaction values of y and extract sequences seq1, seq2,
seq3 from corresponding locations in the raw sequence dataset and calculate dist and ctcf . dist is
directly computed as the difference of the genomic locations of seq1 and seq2 and is measured in kb.
ctcf is computed by feeding the genomic sequences between seq1 and seq2 to FIMO Grant et al.
(2011) (a software that identifies motif occurrences by matching motif sequence patterns with input
sequence) and extract the count of occurrences. The human CTCF motif sequence pattern defini-
tion is downloaded from http://meme-suite.org/doc/download.html. We use chrA:Bm-Cm:Dk

to represent sampling from B Mb - C Mb region of chromosome A for D thousand sample tuples
of data. We also notice almost all significant values in the Hi-C matrix are no more than certain
distance apart from the diagonal. So instead of randomly sample interactions from the entire square
matrix of the region, we only sample uniformly from positions within a diagonal band with width
w. This directly suggests that we only train on seq1, seq2 can not be more than w apart and it can
be thought as a way to boost training efficiency – since for pairs that are more than w apart, we
are very likely to deduce low interaction frequencies just from the dist input itself. We determine
w = 2.5Mb to be a good value since it is just enough to cover most significant interactions.

Training Configurations.
We implement the model in Section 5.2 in Tensorflow/Keras and use GPUs to speed up convolution
and dense layer calculation. We use MSE (mean squared error) as loss function, Adam Kingma
and Ba (2014) as optimizer with initial learning rate of 1e-5 and train for 50 epochs. We employ a
learning rate decay policy of reducing learning rate by a factor of 5 once the training loss plateaus
for 3 epochs.
We also leverage a trick to train on log(y) instead of y directly. It has the advantage that the log(y)
will be almost normally distributed rather than previously highly skewed and this normality helps
lower the difficulty of optimization.

Testing scenarios.
Testing in our problem is defined as using the trained model to predict for pairs of loci that are not
seen in the training set. As our ultimate goal beyond prediction is to identify interaction structures
from predicted Hi-C matrices, we need to produce predicted Hi-C matrices for some testing regions
in the testing step. From the spatial correspondence of training region and testing region, there
can be two types of tests we can perform.
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1. Testing on part of training region. The test data essentially comes from some region of the
training set but does not include exact loci pairs in the training set. We call it in-region
testing. This type of test validates the capability of the model to reconstruct the Hi-C matrix
from a small fraction of values in matrix. It is effectively a summarization task where the
model learns key features to summarize the interaction patterns.

2. Testing on a different region outside the training region. The test data comes from either
a different region but same chromosome or some region in another chromosome. We call it
out-region testing and it can be out-region-in-chromosome or out-region-out-chromosome.
This type of test challenges the capability of the model to predict on sequences that are
potentially drastically different from training sequences. It is a generalization task where the
model needs to learn transferable features that can work well on unseen inputs.

Out-region tests are considered harder than in-region tests since it requires the learned features to
be highly transferable. Such tests are thus thought to be stretch tests.

6 Analysis

In this section we describe how we measure the performance of our model. We hold the general
purpose to predict Hi-C matrix from sequence so that we can use the predicted Hi-C matrix
for interaction structure prediction. Despite our model effectively predict the Hi-C matrix from
predicting point interactions between sequence pairs, the usual error metric for point predictions
such as MSE no longer fit in our context. Instead, we propose two metrics that are more indicative
of overall agreement of predicted Hi-C matrix and truth Hi-C matrix in terms of the high-order
interaction patterns it identifies. We believe they are quite indicative of high-order interaction
patterns are reasonably interpretable.

1. Trend score: agreement in insulation score profile.
We want to quantify the general spatial shapes that can be identified in the Hi-C matrix.
For this purpose, we make use of insulation score profile. Insulation score profile Mizuguchi
et al. (2014) is a useful 1-dimensional summarization of the interaction frequencies close to
the diagonal of the 2-dimensional Hi-C matrix. It is computed as average of all interaction
frequencies in square sliding along the matrix diagonal and generate a set of local interaction
aggregations at various locations. In mathematical terms, for contact matrix C, insulation
score Rj(s) quantifying the relative frequency of contacts occurring over a bin j at a distance
s is:

Rj(s) =

k=j+s2∑
k=j−s2

Ck,k+s

means(
∑k=j+s2

k=j−s2Ck,k+s)
(1)

This carries more intuition if we consider in terms of sequence – the score profile assigns a
value for each locus, representing the aggregated interaction frequencies between it and all
its neighboring locus within the a certain window size. The profile is usually presented as
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a curve (example in Figure 3 with high and low values where the higher values indicating
the locus is in a strongly interacting neighborhood. This matches our purpose well in that
the changes in insulation score profile can help indicate strongly interacting regions and their
boundaries.

We can compute insulation score profiles for both predicted Hi-C matrix and truth matrix
and get two profile curves. Now we only need to measure the agreement of the profile curves,
in particular their trends as trends directly affect matches in the strongly interacting regions.
We report a commonly used statistical measurement of trend similarity between curves called
Spearman’s rank correlation.

For two curves Xi and Yi with their rank rgXi, rgYi, the Spearman’s rank correlation rs
is defined as follows: (ρ is the Pearson correlation coefficient, cov(rgX , rgY ) is covariance of
ranked variables and σ denotes standard deviation):

rs = ρrgX ,rgY =
cov(rgX , rgY )

σrgXσrgY
. (2)

Spearman’s rank correlation rs measures the degree of monotonicity between Xi and Yi. In
simpler terms, it assesses how the values in two profile curves go up or down together. It
ranges from -1 to +1 with +1 indicating a perfect match in trends. In later sections, we refer
to this metric as trend score.

Since we can get different insulation score profiles with different window sizes of aggregation,
we report rs agreement score in insulation profiles in different scales for the following window
sizes {200kb, 400kb, 800kb}.

2. TAD score: agreement in TADs discovered.

Another way to quantify matches in interaction structures is to directly measure the TADs
that can be discovered in both Hi-C matrices. We pick TADs as our primary interaction
structure type of interest because TAD contributes to the majority of interaction shapes
in Hi-C matrices. Since TADs can be directly obtained from insulation profile curve by
extracting local minima as TAD boundaries, we can run TAD calling from insulation profile
curves of predicted and truth Hi-C and compare the quality of match between two sets of
discovered TADs. The boundary determination process is illustrated in Figure 3.

In particular, if we have predicted TADs X = {(Xs
1 , X

e
1), . . . , (Xs

m, X
e
m)} and ground truth

TADs Y = {(Y s
1 , Y

e
1 ), . . . , (Y s

n , Y
e
n )} where (Xs

1 , X
e
1) denotes a mathematical interval of base

pair offsets from start to end, we define a quality of match t, representing the fraction of
ground truth TADs discovered by prediction:

t =
k

n
(3)

k =

n∑
i=1

1
{
∃(Xs

j , X
e
j ) ∈ X s.t.

(Xs
j , X

e
j ) ∩ (Y s

i , Y
e
i )

(Xs
j , X

e
j ) ∪ (Y s

i , Y
e
i )

> 0.95
}

(4)
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In this definition, k is the number of matches in the predicted TADs. The intersection-over-
union criterion accounts for the positions and sizes of TADs being compared and is analogous
to how bounding boxes are matched in object detection tasks in computer vision. The 0.95
threshold is chosen empirically so that it gives an the appropriate amount of slack for slight
mismatch of interval boundaries. This metric t is referred as TAD score in later sections.

Technically, the number of TADs extracted from insulation score profile depends on a cutoff
insulation score level of choosing. In our experiments, we always make sure we choose proper
thresholds so that same number of TADs are extracted from two insulation profile curves.

Figure 3: TAD boundaries can be extracted as local minima in the insulation score curve.

7 Results

We present results from 3 key models we have trained. They all use the same neural network
architecture described in Section 5.2 but differ in the training data, respectively:

• model 1: chr22:40m-50m:120k

• model 2: chr22:25m-50m:300k

• model 3: chr22:0m-50m:300k + chr20:0m-50m:300k

We use three main testing regions:

• chr22:40m-45m, to show in-region performance for all 3 models.

• chr22:35m-40m, to show out-region-in-chromosome performance for model 1 and in-region
performance for model 2 and 3.

• chr21:35m-40m, to show out-region-out-chromosome performance for all 3 models.
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Table 1: Performance metrics of trained model on different test regions.
In-region tests are marked green and out-region tests are marked red.
(1: ws means window size for the trend score. 2: when #TADs in ground truth is discovered.)

trend score 1 TAD score
model test region ws=200kb ws=400kb ws=800kb (#TAD) 2

chr22:40m-45m 0.96 0.98 0.99 0.86(7), 0.83(6)
chr22:40m-50m:120k chr22:35m-40m -0.14 -0.07 0.15 0(6), 0(5), 0(4)

chr21:35m-40m 0.13 0.54 0.61 0.16(6), 0(5)

chr22:40m-45m 0.69 0.81 0.95 0.57(7), 0.66(6), 0.6(5)
chr22:25m-50m:150k chr22:35m-40m 0.79 0.94 0.97 0.4(5), 0.5(4)

chr21:35m-40m 0.31 0.58 0.64 0(5), 0(4)

chr22:0m-50m:300k chr22:40m-45m 0.51 0.72 0.93 0.33(6), 0.4(5), 0.5(4)
+ chr22:35m-40m 0.64 0.92 0.96 0.33(6), 0.4(5)

chr20:0m-50m:300k chr21:35m-40m 0.15 0.61 0.63 0(6), 0(5)

Following the setup, we present results as following:

1. Numeric results in terms of trend score and TAD score are summarized in Table 1:

2. Besides metrics, we also plot the predicted matrix along with ground truth Hi-C matrix for
the test regions for more visual feedback on the matching of interaction shapes in the matrix.

Figure 4 shows an in-region test chr22:40m-45m prediction from all 3 models and the ground
truth Hi-C matrix, showing good match in visual shapes. Figure 5 shows an out-region test
chr21:35m-40m for all 3 models, showing little structure discovered.

3. To show that the visual feedback and metrics we defined agree, in Figure 6 we plot a com-
parison of prediction vs truth matrix generated from model 1 with TADs identified in the
matrices along with the insulation score profiles. We see that visually similar matrices have
similar insulation profiles and can extract similar TADs.

8 Discussion

We can see a natural division of performance between in-region tests and out-region tests.

8.1 In-region tests.

For in-region tests, the trend score is usually significantly greater than 0.5, showing a strong positive
match in trends. The TAD score also high for many cases, at least identifying half of TADs with
high precision. Both metrics indicate a good agreement in high-level interaction patterns between
prediction matrix and truth matrix. Such agreement is also visually confirmed in Figure 6 and 4.
We tribute these good performance to the ability of the deep learning model to summarize well
from relatively small number of samples. For example in Figure 4, model 1 and 2 reconstruct the
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(a) model 1: trained on chr22:40m-50m. (b) model 2: trained on chr22:25m-50m.

(c) model 3: trained on chr22:0m-50m+
chr20:0m-50m.

(d) ground truth Hi-C.

Figure 4: It-region test chr22:40m-45m. Predicted Hi-C matrices from 3 models,
compared with ground truth.

(a) model 1: trained on
chr22:40m-50m.

(b) model 2: trained on
chr22:25m-50m.

(c) model 3: trained on
chr22:0m-50m+
chr20:0m-50m.

(d) ground truth Hi-C.

Figure 5: Out-region test chr21:35m-40m. Predicted Hi-C matrices from 3 models,
compared with ground truth.
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(a) Insulation profile curve and extracted TADs
from predicted Hi-C matrix from model 1.

(b) Insulation profile curve and extracted TADs
from ground truth Hi-C matrix.

Figure 6: Agreement between high trend score, high TAD score and visual similarity of Hi-C
matrices. Example shown on test region chr22:40m-45m. Trend score=0.98, TAD score=5/6.

target matrix very well despite only seeing 6% of data points from the test region; model 3 has
produced decent results with only seeing 3%.
It appears the model is very effective in learning the long range interaction patterns and produce
a Hi-C matrix that is highly indicative of high-order chromatin interaction patterns. We have
established empirical proof that we can build a model to predict high-order interaction patterns
from only sequence inputs with high accuracy. This should be a new learning for the research field.

8.2 Out-region tests.

For all the out-region tests, we see much lower trend score than in-region and TAD scores are
almost always 0. The visual similarity between predicted Hi-C matrix and true Hi-C matrix is not
strong either. We do see the positive trend score in out-region tests and it suggests the model has
learned some features at least to produce positively correlated trends, yet it is insufficient. The
performance degradation is very likely due to the fact that the models failed to learn a transferable
sequence interaction pattern to apply to unseen regions. And by the comparison of model 2 and
model 3, it seems increasing the amount of training data (adding more samples from more regions)
does not help with either metrics.
From the perspective of machine learning and optimization, the fact that the features learned from
training set can not effectively transferred to test set indicates our model has been trapped in local
minimum. We have tried a few ways to counter it including 1) tuning model architectures (reducing
number of neurons, changing activation functions, etc) 2) increasing the amount of training data to
the maximum the server can hold in memory 3) trying to increase the variance of training samples,
and they have all failed to suggest significant improvement. This make us think, as a suggestion
for future work, that maybe we need to work on a better formulation of the problem. So far the
work is all based on a pairwise point interaction prediction framework, and thus in optimization
steps the model gets feedback on how to produce closer interaction frequencies for points in the
Hi-C matrix. However, the ultimate goal of our problem is to perform structural prediction and
feedback from structural disagreement has not been properly incorporated into training the model.
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As a future direction, we suggest:

• building a better error measure for structural difference into the objective of the model so
that the model can use back propagation improve towards structural similarity.

• devising a new framework beyond pairwise point prediction that can include more direct
structural elements in the model setup.

9 Conclusion

In conclusion, we have explored the task of predicting Hi-C matrix directly from sequence and
extract high-order chromatin interaction structures from the predicted Hi-C matrix. Our proposed
deep learning method has shown good ability to extract complex sequence features and work well
in reconstructing Hi-C regions it has been trained on and can show strong structural agreement
in predicted Hi-C matrix both from visual confirmation and from 2 metrics we propose. It has
answered the questions we proposed and generated empirical evidence that high-order chromatin
interaction patterns can be extracted from raw genomic sequence. At the same time, we do admit
that this deep learning approach lacks adequate generalization ability to work well on all Hi-C
matrix prediction cases. We have suggested directions for future work and certainly welcome other
researchers in this field to join force on this fundamental challenge.
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