
Greedy algorithms for Sparse Dictionary Learning

Varun Joshi

26 Apr 2017

Background. Sparse dictionary learning is a kind of representation learning where we express the
data as a sparse linear combination of an overcomplete basis set. This is usually formulated as an
optimization problem which is known to be NP-Hard. A typical solution uses a two-step iterative
procedure which involves either a convex relaxation or some clustering based solution. One problem
with the typical approach is that it may be difficult to interpret the meaning of dictionary atoms.

Aim. Present a greedy framework to solve the sparse dictionary learning problem which results in
an interpretable dictionary. Compare the performance of the resulting algorithms with the K-SVD
algorithm. Apply the greedy framework to compression and classification tasks.

Data. We use five benchmark datasets to test the algorithms: 1) ionosphere dataset - measure-
ments of radar signals returned from the ionosphere; 2) CTG dataset - fetal heart rate and uterine
contraction features derived from cardiotocograms; 3) WDBC dataset - features derived from the
image of fine needle aspirate of a breast mass; 4) MNIST database - greyscale labeled images of
handwritten digits; 5) 20newsgroups dataset - 20,000 newsgroup messages partitioned across 20
different newsgroups like politics, religion, etc.

Methods. We present three greedy algorithms named dp, dl, and dch to solve the problem in
which the sparse code is learned as a direct consequence of the dictionary learning process. The
algorithms start with a random data point as the initial dictionary and at each iteration add to
the dictionary the data point farthest from it until a specified error threshold is reached. The
algorithms dp, dl, and dch differ in how the ”distance” of a point to a dictionary is defined. The
representation of a point is then naturally given by its projection on the dictionary.

Results. dch gives the best compression ratio of 27.5% with average sparsity 2.8 using the max
stopping rule; dl gives the best compression ratio of 21.4% with average sparsity 1.8 using the
mean stopping rule. KSVD outperforms both in terms of compression ratio with an average value
of 20.1% while fares worse in terms of sparsity with an average value of 4.9.

Conclusions. The greedy framework successfully solved the sparse dictionary learning problem
with a sparser representation than KSVD; however, overall compression given by KSVD was better.
An advantage of our approach is that data points are chosen as dictionary atoms which facilitates
qualitative interpretation of the dictionary. Also, since the labels of the atoms are available we can
use the dictionary for various supervised learning tasks.

Keywords: Dictionary learning, Sparse coding, Representation learning

DAP Committee members:
Avrim Blum 〈avrim@cs.cmu.edu〉 (Computer Science Department);
Roni Rosenfeld 〈roni@cs.cmu.edu〉 (Machine Learning Department);

1

1 Introduction

Sparse dictionary learning is a kind of representation learning where we express the data as a linear
combination of a fixed set of overcomplete basis elements. This has applications in compression,
image denoising, topic modeling, etc. The sparse dictionary learning framework consists of the
following two problems: Dictionary learning: learning the set of basis elements from the data,
and Sparse Coding: learning the representation of the data in terms of the dictionary. The goal
is to get a representation that is sparse.

Sparse dictionary learning is usually formulated as an optimization problem which is known to be
NP-Hard. The typical solution of this problem involves a two-step iterative procedure in which we
solve the dictionary learning and sparse coding problem alternatively. One class of algorithms solve
the convex relaxation of the problem [Olshausen and Field, 1997], [Mairal et al., 2009]. This is done
by approximating the sparsity of the representation by the L1-norm of the representation vector.
Both the sparse coding and dictionary learning stage are then solved using one of the algorithms
for convex optimization. However, this is based on certain assumptions on the distribution of
representation matrix and noise. Another category of algorithms use a clustering based approach
to solve the problem. One such popular algorithm is K-SVD from [Aharon et al., 2006]. K-SVD uses
a similar two step optimization procedure where the sparse coding stage is solved approximately
using Orthogonal Matching Pursuit [Pati et al., 1993]. An iteration of dictionary learning stage in
K-SVD involves updating each dictionary atom sequentially by computing the SVD of the restricted
error matrix (reconstruction error matrix without using the current dictionary atom). However,
K-SVD requires us to specify the dictionary size K beforehand and is not guaranteed to converge.
One of the drawbacks of the previous approaches is that it may be difficult to provide a meaningful
interpretation to dictionary elements since they are made up of some combination of data points
e.g., when data points represent patients.

In this project, we present algorithms based on [Blum et al., 2015] to solve the dictionary learning
and sparse coding problem simultaneously. We present three variants of the algorithm named dp,
dl, and dch which do not make any assumptions on the distribution of the representation coefficients
or noise. These algorithms use a greedy approach to learn the dictionary in which the sparse code is
learned as a direct consequence of the dictionary learning process. The algorithms do not require us
to specify the dictionary size beforehand. The dictionary is made up of actual data points and each
data point is represented as a convex combination of dictionary atoms. Although, this formulation
may result in a less compact dictionary/representation it has several advantages. Choosing actual
data points as atoms facilitates qualitative interpretation of the dictionary. A representation using
convex combinations is a natural soft clustering method. Further, since the class labels for atoms of
the dictionary are available we can use the dictionary as a set of representative points in a nearest
neighbour classification/regression scheme. In addition, the algorithms require only dot product
access to data and hence can be kernelized.

2

2 Problem Statement

The goal of the project is to explore a new approach to solve the sparse dictionary learning problem.
Specifically, we adapt the algorithm presented in [Blum et al., 2015] to solve the sparse coding and
dictionary learning problem simultaneously. We then compare the resulting algorithms with the
K-SVD algorithm in terms of the dictionary size, compression ratio, and average sparsity. We also
explore the applications of these algorithms to various machine learning tasks.

3 Background and Related Work

Sparse dictionary learning is a kind of representation learning where we express the data as a linear
combination of an overcomplete basis set. There are two problems that need to be solved in order
to do this: learning the set of basis vectors from the data (Dictionary Learning problem), and
learning the representation of the data in terms of the basis (Sparse Coding problem). The set of
basis vectors is called the dictionary and each element of the dictionary is called an atom. The set
of coefficients in the linear combination for a data point form a coefficient/representation vector.
The goal is to get a representation vector that is sparse. This can be expressed via the following
optimization problem:

minimize
x∈Rk, D∈Rd×k

‖x‖0

subject to ‖y −Dx‖2 ≤ ε, k ≤ K.
(1)

where y ∈ Rd is a data point/signal, D ∈ Rd×k is the dictionary, x ∈ Rk is the representation vector
under D, ε is an error tolerance, and K is a restriction on dictionary size. Some other equivalent
ways of formulating the above problem are:

1. Get the sparsest representation vector subject to reconstructing the signal exactly with some
restriction on the dictionary size.

2. Minimize the reconstruction error subject to a restriction on dictionary size and sparsity of
representation vector.

3. Minimize a linear combination of reconstruction error and L0-norm of representation vector
with dictionary size as a constraint.

A more detailed discussion of the various formulations and how they relate to each other is available
in [Tropp, 2004].

If we fix the dictionary D in eq (1), we obtain the sparse coding problem while fixing the
representation vector x gives us the dictionary learning problem. Hence, the typical way of solving
the sparse dictionary learning problem involves a two-step iterative procedure. At each iteration,
first the sparse coding problem is solved for a fixed dictionary and then the dictionary is updated
using the obtained sparse code [Tosic and Frossard, 2011]. Therefore, in section 3.1, we first review
algorithms for solving the sparse coding problem. In section 3.2, we review algorithms for sparse
dictionary learning which utilize one of the methods from section 3.1 in the sparse coding stage.

3

3.1 Algorithms for Sparse Coding

The different formulations of the sparse coding problem, as stated above, are NP-Hard [Tropp,
2004]. This has led to the development of two main approaches to solve the problem: approximate
solutions using greedy algorithms, and solving the convex relaxation of the problem. A greedy
approach to solve the sparse coding problem is the Matching Pursuit (MP) algorithm [Mallat
and Zhang, 1993]. At each iteration, MP finds the atom with the highest correlation with signal
residual and removes from the residual its projection on the atom. This process is continued until a
stopping criterion is met. One of the problems with MP is that it may select the same atom multiple
times. Orthogonal Matching Pursuit (OMP) [Pati et al., 1993] corrects this issue by computing
the orthogonal projection of the signal on the subspace of all atoms selected so far. This procedure
ensures that each atom is selected at most once and results in faster convergence. Both MP and
OMP converge to a locally optimal solution in the general case.

A different approach to solve the sparse coding problem is by doing a convex relaxation of
the optimization problem. This is accomplished by replacing the L0-norm of the representation
vector with the L1-norm in the objective or constraints, as the case may be. This modification
makes the problem convex which could be solved in polynomial time by standard algorithms e.g.,
gradient descent, etc. Two popular formulations are the Basis Pursuit (BP) [Chen et al., 2001] and
the Lasso [Tibshirani, 1996]. BP finds that solution which reconstructs the signal perfectly and
is the sparsest in the L1 sense. Lasso minimizes a linear combination of reconstruction error and
sparsity (in the L1 sense). A variety of convex optimization algorithms exist for solving the BP and
the Lasso efficiently. There are some other approaches for sparse coding based on e.g., Bayesian
learning. More details about these approaches can be found in [Tropp, 2004].

3.2 Algorithms for Sparse Dictionary Learning

There are two main categories of algorithms for the sparse dictionary learning problem: 1) Proba-
bilistic learning methods, and 2) Clustering based methods.

The probabilistic learning methods are based on the idea of approximating the maximum like-
lihood estimate of the dictionary under sparseness priors on the coefficients. Under suitable as-
sumptions on the prior distribution of coefficients and noise (refer [Olshausen and Field, 1997] for
details), this formulation reduces to minimizing a linear combination of the representation error
and L1-norm sparsity of representation vector. This formulation was first given by [Olshausen
and Field, 1997]. The optimization problem is then solved alternatively for the dictionary and
the sparse code using gradient descent. The Method of Optimal Directions (MOD) [Engan et al.,
1999] solves the L0-norm constrained version of the same problem. The sparse code is obtained
by OMP and dictionary update is done by the following closed-form solution: D = Y X+, where
X+ represents the pseudoinverse of the representation matrix. This algorithm is not guaranteed
to converge. Further, the computational complexity of matrix inversion makes it inefficient in high
dimensions. Recently, some algorithms [Mairal et al., 2009] have been designed which update the
dictionary in an online fashion which make them more efficient for large high-dimensional datasets.

A different approach for sparse dictionary learning is based on vector quantization. K-means
clustering provides a natural solution where the cluster centers form the atoms of the dictionary and

4

sparsity is obtained by default as each data point is approximated by a single cluster center. This
has the limitation of giving an inflexible representation where each signal is reconstructed using a
single atom. The generalization of K-means clustering is the K-SVD algorithm given by [Aharon
et al., 2006]. The KSVD algorithm updates each dictionary atom sequentially by getting the best
rank-1 approximation of the restricted error matrix using the SVD. The columns of the restricted
error matrix are the signal residuals when the contribution of the current atom is removed. KSVD
uses OMP in the sparse coding stage. For a more detailed review of dictionary learning methods
refer [Tosic and Frossard, 2011].

4 Data

We use five benchmark datasets to compare the performance of the algorithms in terms of the
metrics - dictionary size, compression ratio, and average sparsity. The idea is to use data of
different types (image, text, etc.) and collected from a variety of problem domains. For all the
datasets we scale the feature values to be between 0 and 1 before performing any experiments. The
description of the datasets is as follows.

• The MNIST database consists of 8-bit greyscale labeled images of handwritten digits (ranging
from 0-9) of size 28x28 pixels. It contains 60,000 training examples and 10,000 test examples.
The data is available from this website: http://yann.lecun.com/exdb/mnist/. We work
with a random subset (of size 2000) of the training set of the MNIST database.

• The 20 Newsgroups dataset is a collection of around 20,000 newsgroup messages partitioned
across 20 different newsgroups. Each newsgroup corresponds to a topic e.g., politics, religion,
etc. The data is available from this website: http://qwone.com/~jason/20Newsgroups/

20news-bydate-matlab.tgz. For this dataset, we first remove stopwords based on the list
provided here: https://github.com/vjoshi345/dap/tree/master/data/stopwords.txt.
Then, we use the top 500 most frequently occurring words in the newsgroups to create a bag
of words model.

• The ionosphere dataset contains measurements of radar signals returned from the ionosphere
showing the presence/absence of some structure in the ionosphere. The data has 351 examples
of signals each of which is made up of 34 continuous attributes. The label is ”good”/”bad”
indicating the presence/absence of structure. The data is available from this website: https:
//archive.ics.uci.edu/ml/datasets/Ionosphere.

• The CTG dataset consists of measurements of 21 different fetal heart rate (FHR) and uterine
contraction (UC) features on cardiotocograms (CTG). There are 2126 instances of CTGs each
of which is classified into one of 10 morphologic patterns and one of 3 fetal states. The data
is available from here: https://archive.ics.uci.edu/ml/datasets/Cardiotocography.

• Each instance of the WDBC dataset contains 30 features describing different characteristics
of cell nuclei. The features are computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. There are a total of 569 instances each of which is classified as

5

malignant/benign tumor. The data is available from here: https://archive.ics.uci.edu/
ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

5 Methods

In this section we describe our approach to solve the sparse dictionary learning problem. We use a
greedy algorithm to solve the problem which is based on two main ideas from [Blum et al., 2015].
Let convex(Y) denote the convex hull of a set of points Y . Then, [Blum et al., 2015] present
an algorithm which given an error threshold ε, computes in polynomial time, a subset D of Y
such that convex(D) ε-approximates convex(Y). Further, they show that every point of Y can be
ε-approximated by a convex combination of points of D that is O(1/ε2)-sparse.

5.1 Design

We use the algorithm from [Blum et al., 2015] to learn the dictionary D as a subset of the data
points Y . A sparse representation for points in Y in terms of D is also guaranteed by the theorem
above. The general framework is presented in algorithm 1.

Algorithm 1: Greedy framework for sparse dictionary learning

Data: Dataset Y and error tolerance ε.
Result: Dictionary matrix D and representation matrix X.
begin

Choose a random data point from Y as the first atom (column) of D;
while stopping function(Y, D) > ε do

s← argmax
y∈Y

dist(y,D);

Update D by adding s as the next atom (column);

end
Project data points on D and express them as convex combinations of dictionary atoms;
Collect the coefficients of the convex combination into columns of X;

end

A specification of dist(y,D) and stopping function(Y,D) completes the description of an al-
gorithm to solve sparse dictionary learning. We present three algorithms named dp, dl, and dch
which differ in how the distance to the dictionary function dist(y,D) is defined. For a query point
y, the distance to the dictionary is defined as follows:

• dp: distance from y to the closest point in D

• dl: distance from y to the closest line segment induced by pairs of points in D

• dch: distance from y to convex(D)

The approximate distance to the convex hull of a set of points from a query point can be found
using algorithm 2.

6

Algorithm 2: Approximate distance to convex hull (dch algorithm)

input : Query point q, a set of points P , number of iterations n.
output: Approximate distance d and projection t from q to convex(P).
begin

t← argmin
p∈P

‖q − p‖2;

d← ‖q − t‖2;
for i← 2 to n do

v ← q − t;
p← argmax

s∈P
< v, s >;

Update t to be point closest to q on the line segment p t;
d← ‖q − t‖2;

end

end

In addition, we also use algorithm 3 to compute distance to convex hull from a query point.
The algorithm for sparse dictionary learning in this case is termed dchperceptron.

Algorithm 3: Approximate distance to convex hull (dchperceptron algorithm)

input : Query point q, a set of points P , number of iterations n.
output: Approximate distance d and projection t from q to convex(P).
begin

t← argmin
p∈P

‖q − p‖2;

d← ‖q − t‖2;
for i← 2 to n do

s← argmin
p∈P

‖iq − (i− 1)t− p‖2;

if ‖q − (i−1)t+s
i ‖2 < d then

t← (i−1)t+s
i ;

d← ‖q − t‖2;
end

end

end

The choice of stopping function(Y,D) reflects the constraint of our optimization problem. We
use the following two stopping criteria for the algorithms during the dictionary learning process:

• max stopping rule: stopping function(Y,D) = max
y∈Y

dist(y,D)

• mean stopping rule: stopping function(Y,D) = 1
|Y |

∑
y∈Y

dist(y,D)

7

5.2 Sparsity of representation

dp approximates each point using the nearest point in the dictionary. So, the representation is
sparse by default (sparsity=1). Similarly, for dl each point is expressed using a convex combination
of the two end points of the closest line segment formed by pairs of points in the dictionary. This
makes the representation sparse with default sparsity=2.

For dch and dchperceptron, note that in algorithms 2 and 3 the number of iterations n is the
sparsity of representation. So, in the sparse coding stage we consider the distance of points from
convex(D) for different levels of sparsity. For each y we compute dist(y,D) (at the current sparsity
level) and consider it for higher sparsity only if it satisfies the following condition:

• For max stopping rule: dist(y,D) > ε

• For mean stopping rule: dist(y,D) > max(2ε−max
p∈Y

dist(p,D), 0)

These criteria ensure that we are judicious in the use of dictionary atoms to express a point.
In particular, we greedily try to express a point with as few atoms as possible. Note that for the
mean stopping rule, the above criteria may result in violation of the constraint of our optimization
problem. However, in our experiments we found that this criteria was stringent enough that this
problem did not arise.

5.3 Computational complexity

It is interesting to consider the per iteration computational complexity of the greedy algorithms.
For each iteration of dp, we compute the distance of points outside the dictionary to the newly
added point in the dictionary to update their representation. This takes O(nd) computation for n
points of dimension d. Similarly, dl requires us to compute the distance to the newly created line
segments (due to the addition of a point) in the dictionary. This takes O(ind) computation where i
is the current dictionary size. dch (and dchperceptron) are slightly different because they have the
additional parameter of maximum allowed sparsity s for a point (denoted by number of iterations
n in algorithms 2 and 3) which would multiply the computation required by a factor. However, s
will generally be a small fixed constant which does not affect the asymptotic complexity. Hence,
each iteration of dch (or dchperceptron) involves finding (for a constant number (s) of times) the
next best dictionary atom to maximally reduce the error vector in the representation for a query
point. This takes O(ind) time for n points.

We can also consider the amount of computation required in terms of calls to the ”distance to
dictionary” function for each of the algorithms. Since, for each iteration, we need to compute the
distance to the dictionary exactly once for all points outside of it, the cost in terms of function
calls is O(n). We summarize these observations in table 1. Table 1 also lists the time required to
perform k iterations which could be obtained by summing over the per iteration complexity. For
completeness, we also include the cost of the K-SVD algorithm which can be found in [Rubinstein
et al., 2008].

8

Algorithm Per iteration ”distance” function calls k iterations

dp O(nd) O(n) O(knd)

dl O(ind) O(n) O(k2nd)

dch O(ind) O(n) O(k2nd)

dchperceptron O(ind) O(n) O(k2nd)

KSVD O(n(dK2 + d2K)) - O(kn(dK2 + d2K))

Table 1: Computational cost of each algorithm (per iteration and for k iterations), # calls to ”dis-
tance to dictionary” function per iteration for each algorithm. n=#points, d=dimension of points,
i=current dictionary size (for greedy algorithms), K=fixed dictionary size for KSVD, k=#iterations

6 Analysis

We employ the greedy framework described in section 5 to solve the sparse dictionary learning
problem. Specifically, we use the dp, dl, dch and dchperceptron algorithms (with max and mean
stopping rule) to learn a dictionary and sparse code for the five benchmark datasets. Further, we
also use the K-SVD algorithm to solve the problem and compare its performance with the above
mentioned algorithms. The metrics for comparison are dictionary size (k), avg. sparsity (s) and
compression ratio (c). Note that since KSVD requires dictionary size as an input, we experiment
with various values of k and report the one resulting in lowest avg. sparsity (s). For our problem
with the data matrix Y ∈ Rd×n, dictionary D ∈ Rd×k, and representation matrix X ∈ Rk×n, their
definitions are as follows:

• Avg. sparsity (s) = 1
n

∑
x∈X
‖x‖0

• Compression ratio (c) = dk+sn
dn

Avg. sparsity is thus the average L0-norm of the representation vector. The compression ratio con-
siders the overall compactness of the representation by combining the dictionary size and sparseness
of representation vector into a single value. We take the error tolerance ε (constraint in the op-
timization problem) to be the average distance between pairs of closest points. Our goal through
this exercise is to compare the performance of the algorithms as well as to understand the intrinsic
compressibility and sparsity of the datasets.

In addition to solving the sparse dictionary learning problem, we consider an application of the
greedy framework to active learning based classification. Specifically, we use the greedy framework
to learn the dictionary and then use the dictionary to classify the remaining points. For each point
not in the dictionary we apply the kNN algorithm utilizing only the dictionary atoms as neighbours.
The prediction is based on a weighted (by distance) majority voting over the k nearest neighbours.
This scheme requires the labels of only the chosen dictionary atoms from the training data.

9

7 Results

The implementation of the greedy algorithms (along with KSVD) and the full set of code to
reproduce the set of experiments described here is available at: https://github.com/vjoshi345/
dap.

We apply the greedy algorithms and KSVD to solve the sparse dictionary learning problem on
the five datasets. It is found that all the algorithms are able to learn a dictionary and sparse code
such that the constraint of our optimization problem is satisfied. It is instructive to look at com-
pression ratio and avg. sparsity averaged across datasets and algorithms. This helps us empirically
explore the intrinsic compressibility and sparseness of a dataset (independent of algorithm used);
and that of the algorithm (independent of the dataset). Figure 1 presents the metrics averaged
across datasets and figure 2 across algorithms.

(a) Avg. sparsity for each algorithm (b) Compression ratio for each algorithm

Figure 1: Avg. sparsity and compression ratio averaged across the datasets

A more detailed set of results are shown in table 2 and 3. Table 2 lists down the compression
ratio for each algorithm and dataset pair. Table 3 shows the dictionary size learned by each
algorithm and the average sparsity of the representation (average L0-norm of the representation
vector). Note that KSVD requires the dictionary size as an input; hence the dictionary size leading
to lowest average sparsity is reported here.

A sample of the dictionary atoms for MNIST data learned by dch-mean and KSVD algorithms
is shown in figure 3. We can see that the dictionary learned by dch is interpretable (as compared
to KSVD) since it consists of actual data points.

7.1 Classification results

We use the dictionary learning based active learning classification scheme on MNIST data. The
dictionary is learned using the greedy algorithms and the rest of the training data is classified by
weighted-by-distance kNN algorithm on the dictionary atoms. The learned dictionary size and
classification error rate for all the algorithms is shown in Table 4. Table 4 also lists the randomized

10

(a) Avg. sparsity for each dataset (b) Compression ratio for each dataset

Figure 2: Avg. sparsity and compression ratio averaged across the algorithms

Data → iono CTG WDBC MNIST 20news

dp-max 48.8% 71.4% 61.2% 68.2% 60.7%

dl-max 39.1% 37.7% 24.7% 41.4% 42.6%

dch-max 34.2% 36.9% 22.5% 22.5% 29.4%

dchperceptron-max 33.7% 33.4% 20% 21.8% 28.7%

dp-mean 39.7% 50.2% 42.3% 48.8% 47.2%

dl-mean 26.1% 22.4% 13.1% 19.4% 25.7%

dch-mean 23.3% 72.8% 32.6% 10% 8.7%

dchperceptron-mean 28.6% 68% 42% 9.9% 8.9%

KSVD 29% 23.4% 22.3% 10.8% 15.3%

Table 2: Compression ratio for each algorithm and dataset pair

Data → iono CTG WDBC MNIST 20news

Algorithm ↓ k s k s k s k s k s

dp-max 161 1 1417 1 329 1 1361 1 908 1

dl-max 120 1.7 628 1.7 106 1.8 824 1.6 635 1.6

dch-max 95 2.4 349 4.3 61 3.5 443 2.9 433 2.8

dchperceptron-max 94 2.3 314 3.9 60 2.8 428 2.8 424 2.3

dp-mean 129 1 966 1 222 1 973 1 705 1

dl-mean 73 1.8 288 1.9 38 1.9 384 1.8 381 1.7

dch-mean 34 4.6 90 14.4 20 8.7 190 3.7 113 5.6

dchperceptron-mean 34 6.4 77 13.5 18 11.7 191 2.8 116 5.6

KSVD 50 5 250 2.4 100 1.4 200 6 200 9.7

Table 3: Dictionary size (k) and average sparsity (s) for each algorithm and dataset pair

11

(a) Dictionary atoms using dch-mean (b) Dictionary atoms using KSVD

Figure 3: Sample dictionary atoms for MNIST learned by (a) dch-mean and (b) KSVD

error rate which is the error rate when we apply the weighted-by-distance kNN algorithm on a
dictionary made up of a random subset of the training data.

Algorithm Dictionary size Error rate (%) Randomized error rate (%)

dp-max 1361 0.9 4.9

dl-max 824 2.9 6.3

dch-max 443 7.1 7.8

dchperceptron-max 428 6.1 8

dp-mean 973 4.2 6.3

dl-mean 384 8.9 9.3

dch-mean 190 19.4 12.9

dchperceptron-mean 191 19.6 12.9

Table 4: Dictionary size and classification error for MNIST data using dictionary learning based
active learning classification scheme

7.2 Computational complexity

In table 5, we report the number of iterations required by the greedy algorithms and KSVD to
solve the problem for each dataset.

8 Discussion

Figure 1 shows the compression ratio and avg. sparsity averaged across the datasets for an algo-
rithm. Note that dp and dl are sparse by design since they reconstruct a point using at most one or

12

Data → iono CTG WDBC MNIST 20news

dp-max 161 1417 329 1361 908

dl-max 120 628 106 824 635

dch-max 95 349 61 443 433

dchperceptron-max 94 314 60 428 424

dp-mean 129 966 222 973 705

dl-mean 73 288 38 384 381

dch-mean 34 90 20 190 113

dchperceptron-mean 34 77 18 191 116

KSVD 3 17 5 3 3

Table 5: Number of iterations taken by each algorithm for each dataset

two atoms respectively. Hence, their low average sparsity values. dch-max and dchperceptron-max
generate a sparser representation than KSVD on average. It is interesting to note that their mean
counterparts perform worse on sparsity than KSVD. This is explained by the smaller dictionary
size learned by the mean version which might mean the dictionary misses some important atoms
and the reconstruction of some points requires larger number of atoms (poorer sparsity on average).
This is seen consistently across datasets in table 3. At the same time the compression given by
dch-mean and dchperceptron-mean is worse than their max versions. So, in this case the reduction
in dictionary size is overcompensated by the increased avg. sparsity leading to a worse compression
ratio. However, the situation is reversed for dp and dl. The compression given by mean versions is
better than the max version. This time since the algorithms constrain the sparsity the reduction
in dictionary size is able to provide better compression. In fact, dl-mean provides the best com-
pression among the greedy algorithms on average and is comparable with KSVD. At a high level,
greedy-max algorithms give better sparsity while overall compression given by KSVD is better.

From table 3, we can see that the dictionary size learned by dp is largest followed by dl and
dch (or dchperceptron) consistently across datasets. This is a direct consequence of the definition
of ”distance to dictionary” used by these algorithms. For a query point, the distance to dictionary
given by dch (or dchperceptron) is less than or equal to that given by dp. And for a dataset of
sufficient size we would expect distance given by dl to lie somewhere between the two; its dictionary
size lying between dp and dch is consistent with this observation. KSVD can solve the problem for
different dictionary sizes for a dataset; here we report the dictionary size leading to lowest average
sparsity (the objective of the optimization problem). Hence, we cannot compare the dictionary size
of KSVD directly with the greedy algorithms.

From figure 2 we see that both MNIST and 20newsgroups are compressed well while CTG is seen
to be least compressible. This may be because CTG contains features derived from cardiotocograms
which might not be made up of a small set of building blocks. In contrast, MNIST might have
a simpler structure being made up of 0-9 digits or 20newsgroups might have a natural clustering
among topics.

Table 4 shows the error rates of classification under the dictionary learning based active learning
classification scheme. The max version of the algorithms seem to perform well compared to a

13

dictionary selected randomly. dp and dl seem to work especially well. This might be because dp
and dl reconstruct a point more directly using atoms while dch involves a convex combination of
potentially many atoms (does not imply that the atoms themselves are closer to the point being
reconstructed). It is interesting to note that the mean version of the algorithms perform significantly
worse than the max versions. One possible explanation is that the greedy algorithms preferentially
choose atoms from among points which are far away (near the boundary of the dataset). So, the
extra atoms chosen by the max version (over the mean version) are from the ”center” of the dataset
and act as a better set of neighbours for a kNN classification scheme.

Table 5 lists the number of iterations required by the algorithms to solve the problem for each
dataset. Note that for the greedy algorithms the number of iterations equals the dictionary size
(since at each iteration we add a new point to the dictionary). Thus, the relationship (and reasons
thereof) described between the relative dictionary sizes for the algorithms apply directly to the
number of iterations. It is interesting to note that K-SVD requires significantly fewer iterations
than the greedy algorithms. This observation suggests that KSVD makes much more progress per
iteration than the greedy algorithms. This is also consistent with the quadratic computational cost
on dictionary size and dimensions of points for KSVD versus linear for greedy algorithms (from
table 1).

9 Conclusions

The greedy framework presented here is able to successfully solve the sparse dictionary learning
problem. We found that the representation given by the greedy algorithms is sparser on average
than KSVD; however, the overall compression given by KSVD is better. This is expected because
KSVD allows for dictionary atoms to be linear combinations of data points and represents a point
in terms of linear combinations of atoms. This results in a more compact representation. However,
the advantage of the greedy framework is that the dictionary is interpretable. Further, the labels of
dictionary atoms are available which could be used for supervised learning tasks. Another advantage
of the greedy algorithms is that they can be kernelized since they require only dot product access
to data points. Future work might include assessing the quality of the representation learned for
various machine learning tasks or developing a framework for kernelization of the algorithms.

10 Acknowledgements

I would like to thank my advisor Avrim Blum for his valuable guidance throughout the project.
Thank you to Roni Rosenfeld for being a part of my committee. I would also like to thank
Roy Maxion for discussions about datasets and for taking the DAP Prep course which was useful
in understanding how to write an experimental paper. Special thanks to Susrutha Gongalla for
insightful discussions about the DAP and Machine Learning in general.

14

References

Aharon, M., Elad, M., and Bruckstein, A. (2006). k -svd: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–
4322.

Blum, A., Har-Peled, S., and Raichel, B. (2015). Sparse approximation via generating point sets.
CoRR, abs/1507.02574.

Chen, S. S., Donoho, D. L., and Saunders, M. A. (2001). Atomic decomposition by basis pursuit.
SIAM Review, 43(1):129–159.

Engan, K., Aase, S. O., and Husoy, J. H. (1999). Method of optimal directions for frame design. In
1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings.
ICASSP99 (Cat. No.99CH36258), volume 5, pages 2443–2446 vol.5.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online dictionary learning for sparse coding.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09,
pages 689–696, New York, NY, USA. ACM.

Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37(23):3311 – 3325.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: recur-
sive function approximation with applications to wavelet decomposition. In Proceedings of 27th
Asilomar Conference on Signals, Systems and Computers, pages 40–44 vol.1.

Rubinstein, R., Zibulevsky, M., and Elad, M. (2008). Efficient implementation of the k-svd algo-
rithm using batch orthogonal matching pursuit. Cs Technion, 40(8):1–15.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288.

Tosic, I. and Frossard, P. (2011). Dictionary learning. IEEE Signal Processing Magazine, 28(2):27–
38.

Tropp, J. (2004). Topics in Sparse Approximation. PhD thesis, Univ. of Texas at Austin.

15

