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Abstract

Background. We consider the problem of radiological source detection in the presence of noisy
background environments. The objective is to detect dangerous materials sources by their unique
radioactive signatures. The foundations of this problem are presented here.
Related work. There has been much research on statistical and signal processing techniques
for source detection. These methods mostly concentrate on anomaly detection when one has
little information about the target source. The most popular class of methods involves Principal
Components Analysis to learn the expected characteristics of background. There are also many
detection methods that do not involve Principal Components Analysis.
Existing methods. We describe PCA anomaly detection, Censored Energy Window, Matched
Filter, and Gaussian-Poisson MAP estimation in detail.
Uncertain Censored Energy Windows. A method is proposed for a setting in which infor-
mation about threat templates is incomplete.
Source independence experiment. An experiment is performed that simulates incomplete
knowledge of the source template.
Simultaneous estimation of source strength and background. Another method is pro-
posed that has much lesser dependence on training data.
Generalization experiment. An experiment is conducted by simulating test data that greatly
differ from training data.
Conclusion. Both new methods are empirically demonstrated to perform better than competi-
tors.

Keywords: anomaly detection, gamma-ray spectroscopy, radiation monitoring, canonical correla-
tion, Kalman filter

Word Count: 197 words
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1 Introduction

In nuclear physics, an important problem is the detection of threatening sources (Runkle et al.,
2006). We consider a mobile detector used for search, such as a vehicle that travels through an
urban environment to locate dangerous radioactive materials. The primary challenge in this domain
is a low signal-to-noise ratio (Tandon, 2016). Urban environments contain large numbers of nuisance
(benign) sources—potentially every material present—which can heavily obfuscate the signal from
the target source (Aucott et al., 2014). These nuisance sources may include ordinary objects like
concrete or bananas as well as shielding materials purposely used to hide the source. Moreover,
since the environment changes as the detector moves, the background radiation fluctuates widely,
further compounding this problem (Aucott et al., 2014). To address this challenge, the types of
research performed in this area have been twofold. The first type concerns the development of
physical sensors to detect radioactive particles such as in Ziock et al. (2004), Aucott et al. (2015),
and Miller et al. (2016). The second type employs statistical and signal processing techniques to
analyze data from sensors. In this study we focus only on the second type.

Several statistical and signal processing methods for spectral data have found success in source
detection. However, some of these references only appear in the form of internal technical reports.
Others contain unpublished details in their algorithms. Therefore, this paper aims to survey several
of these methods, provide detailed algorithmic descriptions, and document the statistical framework
used for this problem. The methods discussed are PCA-based anomaly detection, Censored Energy
Window, Matched Filter (Tandon, 2016), and Gaussian-Poisson MAP estimation. We describe the
algorithms for computing each method. Then we compare and contrast the underlying motivations
and informational assumptions. We also illustrate the differences in detection capability on a real
radiation dataset.

In addition, this work investigates how two assumptions of the methods could be violated,
significantly worsening detection performance. For each of the assumptions, we propose a novel
method that performs well when it is violated. The first method addresses the assumption that
information about the target source is complete. We simulate incomplete information by removing
the source from a known source library that is utilized by the method, thereby modeling a situation
in which a previously unknown source is encountered. The method is based on the Censored Energy
Window and extends it with Canonical Correlation Analysis (Hotelling, 1936). The second method
address the assumption that training data are available and match the test data. The method serves
as a direct improvement to the Gaussian-Poisson method by exploiting the time series nature of the
data. Specifically, it incorporates local background information through an adaptive Kalman filter.
The filter simultaneously estimates local source strength and background shape. Both methods are
applied to datasets and demonstrated to improve performance over competitors.

Low independence High independence

MF / GP / KGP CEW CCA PCA

(a) Methods ranked on the source independence scale.

Poor generalization Good generalization

PCA MF CCA CEW GP KGP

(b) Methods ranked on the generalization scale.

Figure 1: Two scales illustrating the importance of different assumptions.

We rank detection methods on two separate theoretical scales. First, methods are sorted by
their degree of independence from information about the target source. When this information is
inaccurate or incomplete, some methods lose more performance than others. We denote this the
source independence scale (Fig. 1a). Second, methods are sorted by their dependence on a training
set of background measurements. Specifically, we consider their robustness when the test set comes
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from a different distribution. We denote this the generalization scale (Fig. 1b). Each of the new
methods ranks highly on one of the scales (shown in boldface).

This paper is structured as follows: §2 introduces necessary background; §3 reviews related work;
§4 covers several existing methods in detail; §5 and §6 propose a method with less dependence on
source information and describe an experiment with that method; §7 and §8 do the same with a
method that depends less on training data; §9 concludes the paper.

2 Background
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Figure 2: Example of a background sample, in-
jected sample, and template.

This section states the foundations of the source
detection task. We consider the problem of radi-
ological source detection in the presence of noisy
background environments (Aucott et al., 2014).
The objective is to detect dangerous materials
sources by their unique radioactive signatures.
This task can be accomplished by moving a
gamma-ray spectrometer through the environ-
ment of interest, such as a city, and collecting
radiation samples. A gamma-ray spectrometer
counts photons with which it makes contact.
Each particle has its own frequency, recorded
by the spectrometer. Over an interval of time,
particles can be counted in each range of frequen-
cies, known as energy bins. The energy bins are
typically linearly or quadratically spaced and
cover the vast majority of usually observed fre-
quencies. The counts in an interval of time over
a spectrum of energy bins constitute one mea-
surement, such as in Fig. 2. By recording a sequence of measurements, a spectrometer collects
a time series of spectra. The source detection task is to score either an individual measurement
or a set of measurements according to how likely a given source is present (Tandon, 2016). The
classification is usually performed in real-time. Unlike common online learning scenarios, however,
no feedback is observed.

Every material, benign or harmful, has an energy signature that can be defined as the rate over
time of particles emitted in each energy bin. The count of particles in an interval of time and an
energy bin can be viewed as a Poisson random variable with mean given by the energy signature (Bai
et al., 2011). The Poisson counts can be sampled and added to background measurements to form
injected (source-containing) measurements, as measurements containing actual threatening sources
are otherwise difficult to obtain. An example of a source signature and injection is shown in Fig. 2.
Observe how the injected measurement is significantly higher than the background in energy bins
where the source is strongest. Furthermore, the strength of a source signature is called the intensity
and defined as the sum of rates over all energy bins. The intensity is inversely proportional to the
square of distance from the source (Miller et al., 2016). When the intensity is higher, a detection
method should be more confident that a source is present.

Although the energy signature is known for most materials, this knowledge is not especially useful
in a noisy environment because there are multiple materials at varying distances and the environment
changes depending on the spectrometer’s position. Consequently, the aggregate signature of the
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background sources is dynamic and unknown, although it is often approximated as the mean of
background spectra from a training set. The signature of the target source, on the other hand,
can be assumed to be at least partially known by many detection methods (Nelson and Labov,
2012; Tandon, 2016). Source signatures can be considered known because of libraries constructed
by domain experts: nuclear physicists have enumerated the templates of a wide array of possible
source types with different configurations of fissile material and shielding (Nelson and Labov, 2012).
Then detection methods that search for only one source type can be employed on every template
in a library (Tandon, 2016). The information about a source template is utilized by specialized
methods such as Matched Filter, Censored Energy Window, and Gaussian-Poisson MAP estimation,
although the degree of assumed knowledge can still differ between them (Fig. 1a).

In some cases, the source template might be assumed to be unknown to reduce reliance on a
source library. A common technique in this scenario is PCA-based anomaly detection (Tandon,
2016). However, the performance is much worse than source-aware methods, which leaves room for
a method that utilizes more information but is robust to the completeness of the source library. In
addition to unexpected source types, the library may overlook distortions of the source spectrum
cause by scattering of occluding objects and intentional shielding. To fill this void, we propose a
detection method based on Canonical Correlation Analysis (Hotelling, 1936). Additionally, one
requirement shared by all methods listed above is a training set of background measurements.
Typically some properties of the training background are learned, and when test measurements
deviate from those properties, they are considered more likely to have a source. However, the training
set could differ substantially from the test set, creating an opportunity to reduce dependence on
the training set by updating the model with the test observations. To accomplish this, we propose
an adaptive Kalman filter that simultaneously estimates local source strength and background
spectrum.

3 Related work

There has been much research on statistical and signal processing techniques for source detection.
These methods mostly concentrate on anomaly detection when one has little information about
the target source. The most popular class of methods involves Principal Components Analysis to
learn the expected characteristics of background. A study by Aage and Korsbech (2003) proposed
noise-adjusted singular value decomposition and a method of “stripping” away common background
features. Another technique based on Principal Components Analysis is presented by Runkle et al.
(2006). A similar method was suggested by Du et al. (2010) using k-nearest neighbors in the
principal components space of the background.

There are also many detection methods that do not involve Principal Components Analysis.
In Anderson et al. (2008), an approach was presented that computes a ratio between observed and
expected counts in key energy bins. This method may be viewed as a precursor to the Censored
Energy Window (Tandon, 2016) method reviewed below. An improved version of the ratio method
was given by Pfund et al. (2016). A method was developed by Bai et al. (2011) and Kump et al.
(2013) that uses the variable selection capability of LASSO when fitting the observed spectra to
their expected values. Other types of statistical methods were surveyed by Fagan et al. (2012),
including peak finding and discriminant analysis. The authors point out that Bayesian methods
were largely untapped at the time and could improve performance by incorporating all sources
of uncertainty. Subsequently, a Bayesian approach by Tandon et al. (2016) demonstrated how to
aggregate multiple detection methods to achieve better detection.
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4 Existing methods

This section describes several existing methods for threat detection.

4.1 PCA anomaly detection

Unsupervised anomaly detection is useful when information is limited. While libraries of source
templates exist, it may be important to limit a method’s dependence on them in case the information
is false or unavailable. If no information about the source is available, then an approach based
on Principal Components Analysis (PCA) may be used (Tandon, 2016). This approach utilizes
a training set of background measurements. It computes the top principal components of the
background and then scores new measurements by their reconstruction error. Conceptually, it
learns the most important characteristics of the background and then subtracts them from the
new measurements. If the remainder is small, then the measurement is adequately explained by
background features. If the remainder is large, however, then the measurement is not explained by
background, which indicates a separate source.

The algorithm is given in Alg. 1. The number k of principal components used is usually set
to k = 5. Here, diag(·) on a square matrix returns the main diagonal as a vector, while the same
operator on a vector returns a diagonal matrix with the vector as the main diagonal.

Algorithm 1 PCA anomaly detection

1: procedure Train(data X ∈ Rn×d, number k of components)
2: X ← Filter(X, [.3, .5, 1, 1, .5, .3])
3: X ← MovingAverage(X, 10)
4: µ← Mean(X)
5: R← 1

nX
TX − .99µµT // preserve 1% of mean

6: w ← diag(R)
7: W ← diag(

√
w + 1)

8: Vk ← k leading eigenvectors of W−1RW−1

9: T ← I −W−1VkV T
k W

10: return T
11: procedure Test(data X ∈ Rn×d, trained T ∈ Rd×d)
12: X ← Filter(X, [.3, .5, 1, 1, .5, .3])
13: S ← SumSquares(XT )/Sum(X) // element-wise division
14: return S
15: procedure Filter(X ∈ Rn×d, weights w ∈ Rk)
16: for j = 1, . . . , d do
17: for i = 1, . . . , n do
18: Yij ←

∑k−1
t=0 wt+1Xi−t,j where Xi−t,j = 0 when i ≤ t

19: return Y
20: procedure MovingAverage(X ∈ Rn×d, k ∈ R)
21: // uniform moving average with length k trailing window

22: procedure SumSquares(X)
23: // computes vector of row-wise sums of squared elements of X

24: procedure Sum(X)
25: // computes vector of row-wise sums of X
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4.2 Censored Energy Window

A benchmark method developed by Nelson and Labov (2012) is the Censored Energy Window
(CEW), which assumes partial knowledge of the threat spectrum. It takes as input a set of energy
bins in which the threat is expected to be seen most clearly, which is called the signal-to-noise
ratio-maximizing energy window. Intuitively, CEW learns how many particles to expect within
the energy window when there is no source. If an observation exceeds this expectation, then a
source is more likely. The optimal energy window can be precomputed given a source template by a
procedure shown in Alg. 2.

Algorithm 2 Energy window computation

1: procedure Optimize(source template s ∈ Rd, mean background spectrum µ ∈ Rd)
2: for k = 1, . . . , d do
3: rk ← sk/µk

4: for k = 1, . . . , d do
5: C ← set of bins with k highest rj values
6: Sk ←

∑
j∈C sj

7: Bk ←
∑

j∈C µj

8: k∗ ← argmaxSk/
√
Bk

9: return set of bins with k∗ highest rj values

Figure 3: The CEW detection algorithm.

Given the energy window, CEW is trained on background measurements, fitting a multiple
linear regression to predict the sum of counts inside the window from the spectrum of counts outside
of it. The threat detection score is a difference between the predicted and the actually observed
count in the window. The simple intuition behind this method is that if a source is present, then
more counts will probably be observed inside but not outside the energy window. The steps of
CEW, which are relatively straightforward, are displayed in Fig. 3. Note that the linear regression
step may use ridge regression with a small regularization parameter to alleviate overfitting and
collinearity. In addition, two steps are included before calculation of the score. First, after linear
regression predicts the in-window sum of counts ŷ of a test observation, the prediction is mapped to
ỹ =

√
ŷ2 + 1/4. Lastly, since the count can be modeled as a Poisson random variable, the Anscombe
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transform (Anscombe, 1948) is useful to change the distribution into an approximately Gaussian
one with unit variance. This transform is simply the function A(x) = 2

√
x+ 3/8. It is applied to ŷ

and the observed in-window sum y to stabilize their variance. The final score is A(ŷ)−A(y).

4.3 Matched Filter

Algorithm 3 Matched filter

1: procedure Train(data X ∈ Rn×d, source template s ∈ Rd, number k of components)
2: µ←Mean(X)
3: W ← diag(µ+ 0.001)−1

4: Σ← Cov(X)
5: B ← k leading eigenvectors of Σ
6: T ← sTW (Id −B(BTWB)−1BTW )
7: return T
8: procedure Test(learned parameter T , measurement x ∈ Rd)
9: return xTT/‖x‖1

If perfect knowledge of the source template is assumed, then more powerful classes of methods
can be used such as Matched Filters (MF). In general, an MF achieves the optimal signal-to-noise
ratio when there is additive noise by correlating a template with an unknown signal such as
background (Turin, 1960). Here we refer to only a specific type of MF, the Orthonormal Subspace
Projection Matched Filter (Tandon, 2016). Conceptually, MF is similar to the PCA method. In
particular, an orthonormal subspace is found from a training set using PCA. A test measurement is
projected onto the basis and back, and the residual between reconstruction and original is computed,
thereby eliminating the most discriminative background features. However, whereas PCA computes
the norm of this residual, MF computes the inner product with the source template. Thus, a higher
score is given when the residual has a similar shape to the source. The algorithm is detailed in
Alg. 3. Again, it works well to use k = 5 principal components.

4.4 Gaussian-Poisson MAP estimation

Besides the Matched Filter, there is another method available when the source template is known:
Gaussian-Poisson (GP) MAP estimation. Uniquely among the methods mentioned so far, it defines
a generative model. Through this distribution, it computes maximum likelihoods for the two
cases of when a source is present and absent. The background energy template is drawn from a
Bayesian prior, a multivariate normal distribution with fixed parameters. Simultaneously, the source
intensity is drawn from a univariate normal distribution. Although the background rates and source
intensity are not truly normally distributed, the priors capture the potential variability caused by
the changing environment and distance to the source. The background counts are drawn from
Poisson distributions whose parameters are given by the background energy template. Counts from
the source are drawn from Poisson distributions whose parameters are given by the source template
scaled by intensity. The observed combined counts are the sum of the background and source counts.
The model is depicted in Fig. 4. The parameters of the source intensity are not shown because they
are insignificant: the variance is set to a high value to create an uninformative prior.

Next we define the method. Let z(i) be the zth element of vector z. The count y
(i)
t of photons in

the ith energy bin is a Poisson distributed random variable with rate x
(i)
t + Jts

(i), where xt is the
observation-specific vector of background gamma-ray rates, s is the source spectrum, and Jt is the
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Figure 4: The Gaussian-Poisson model of radiation.

observation specific source intensity. For simplicity of presentation we omit the subscript t below. If
x and S were known, and if it were further known that the source is either present (with intensity
J) or absent (intensity zero), then the Bayes decision rule for determining the presence or absence
of the source would be given by

log(Pr(y;x+ Js))− log(Pr(y;x)) = −1T
d Js+ yT log

(
x+ Js

x

)
> τ

where τ is the decision threshold, d is the number of energy bins, 1d is a length d vector of ones,
and log(·) is taken element-wise. In practice s may be known, but x and J vary with t. In this case,
we establish a Gaussian prior belief on the background rates and take the MAP estimate for x. We
do the same for source intensity, using an uninformative prior with high variance. The resulting
score function is given by

GP (y;µ,K) =

max
x>0,J>0

{
− 1

2 (x− µ)TΣ−1(x− µ)− 1T
d (x+ Js) + yT log(x+ Js)

}
−max

x>0

{
− 1

2 (x− µ)TΣ−1(x− µ)− 1T
dx+ yT log(x)

}
where µ and Σ are mean and covariance of the background prior. The constituent optimization
problems are concave, making GP (y;µ,Σ) efficient to compute using quasi-Newton methods.

5 Uncertain Censored Energy Windows

In this section, a method is presented for a setting in which information about threat templates is
incomplete. When methods like CEW and MF are given accurate information about the threats,
they usually perform satisfactorily. In practice, however, the design of a threat could vary due to
different configurations of material, shielding, and environment (Tandon, 2016). These methods
can heavily underperform when their information is incomplete or inaccurate. For example, the
computed energy window for CEW could be inaccurate. If so, the observed in-window sum of counts
might not drastically change when a source is present. To remedy this shortcoming, we propose a
method called Canonical Correlation Analysis (CCA) detection. This method discovers a source in
the presence of background noise while tolerating imperfect knowledge of the source template. It
could be useful in practical applications when the designs of sources of harmful radiation are not
precisely known. On the source information scale, CCA detection can be placed in between PCA
anomaly detection, which uses no source-specific information, and source-type-aware methods like
Matched Filter.
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5.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a statistical method for finding correlations between two
sets of variables (Hotelling, 1936). Each correlation can be viewed as a latent factor that helps
explain the variance in both sets simultaneously. Formally, given random vectors X ∈ Rd1 and
Y ∈ Rd2 , CCA solves the optimization problem maxu,v Corr(XTu, Y Tv), in which u ∈ Rd1 and
v ∈ Rd2 are vectors of coefficients. This procedure is iterated up to min{d1, d2} times under the
constraint that XTu is uncorrelated with XTu′ for any previously found u′, with an analogous
constraint on Y Tv. When X ∈ Rn×d1 and Y ∈ Rn×d2 are centered data matrices, the solution to
CCA has a well known estimator. Let ΣXX = XTX, ΣY Y = Y TY , and ΣXY = XTY . Then the
CCA coefficients U of X are the min{d1, d2} leading eigenvectors of

Σ−1XXΣXY Σ−1Y Y ΣT
XY

with coefficients V of Y given by an analogous formula.

5.2 CCA detection

Figure 5: The CCA detection algorithm.

Our method takes as input a collection of background measurements and an energy window. This
window usually maximizes signal-to-noise ratio (SNR) for a particular source template of interest,
as in Alg. 2, but it can be arbitrary, and we vary its quality in our experiments. The first step is
to apply CCA to the training set. Here, X and Y correspond to photon counts inside and outside
the energy window respectively. Next, for each pair (u, v) of weights found, we fit a simple linear
regression of XTu on Y Tv. We compute the residuals for all samples and fit a univariate normal
distribution to them. Then given a new sample to classify, we compute the regression residuals and
find their z-scores for each pair (u, v). The sign of each score is not meaningful, unlike CEW in
which an elevated observation suggests a source. Thus, we square the z-scores and compute the
sum as the final score. In the same way that CEW finds a single-output linear relationship between
photon counts inside and outside the energy window, CCA finds arbitrary multiple-to-multiple
linear relationships. A diagram of the method is given in Fig. 5.

6 Source independence experiment

This section describes an experiment that simulated incomplete knowledge of the source template.

9 of 20



6.1 Data
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Figure 6: Example of methods’ performance on a
single source template.

Our dataset was a collection of over 86,000
gamma-ray measurements recorded in one-
second intervals by a sodium-iodide detector
mounted on a vehicle moving around an urban
area in Baltimore, MD, USA. On average there
were 2,600 photon counts per second. Each mea-
surement had d = 116 linearly spaced energy
bins. The measurements were assumed to be
background data. In preprocessing they were
randomly partitioned into training and test sets.
Along with the background, we had a library
of 67 source templates corresponding to high-
fidelity source simulation applying different con-
figurations of radioactive material and shielding.
The templates were normalized to have inten-
sities of 100 counts per second. Each template
was sampled as a spectrum of Poisson random
variables once for every test observation. These
samples were then added to the test observations to form synthetic positive measurements. This
process resulted in labeled test data for every source in the library.

6.2 Results

(a) Comparison between methods’ TPR. (b) Comparison between methods’ FPR.

Figure 7: Comparison between methods as energy windows change from common to source-specific.

The methods compared to the CCA method were MF, CEW, and PCA. MF and CEW had two
versions: in the first, the methods used the true source template; in the second, they marginalized
over every template in the library by using the maximum score (CEW-Max and MF-Max). Now
MF uses strictly more information about the source spectrum, so it approximately upper-bounds
performance as in Fig. 6, though it could possibly still be worse than CEW in some cases.
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In the first part of the experiment, we directly measured the impact of energy window quality.
Note that only CEW and CCA use energy windows. We checked how CEW-Max and and CCA
degraded as the energy window changed from an accurate, source-specific window to a common
window that maximizes average SNR across all considered sources but it was not specifically tailored
to any of them. A convex combination was taken between each source and the average source with
weights of 0, 0.25, 0.5, 0.75, and 1. The optimal energy window was computed for the combined
source. We computed the false positive rate (FPR) at the true positive rate (TPR) of 50%, and TPR
at the FPR of 1%. The results, averaged across sources, are displayed in Fig. 7b and 7a, along with
the source-optimal MF and PCA anomaly detection. With source-specific windows, CCA performed
slightly worse on average than CEW. With a common window, CCA enjoyed large, statistically
significant advantages in both metrics. TPR was higher by 0.05 and FPR was lower by 0.16.
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(a) Comparison between methods’ TPR.
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(b) Comparison between methods’ FPR.

Figure 8: Comparison between methods when target source is missing from the library.

In the second part of the experiment, a lack of information was simulated. To do so, we clustered
the threat library using K-means with K = 10. For MF-Max, CEW-Max, and CCA, we tested each
source by removing its cluster from the data set and marginalizing over the remainder. Fig. 6 shows
an example of the Receiver Operating Characteristic (ROC) of the classifiers on a particular source
template. The distribution of FPR and TPR over threats is displayed in Fig. 8. By TPR (Fig. 8a),
it is difficult to distinguish between PCA, CCA, and MF-Max. By FPR (Fig. 8b), however, the
CCA method usually does better than MF-Max, CEW-Max, and PCA.

6.3 Discussion

CCA detection has been demonstrated to be more robust to poor knowledge of the target source
template. When the source is unknown to the library, CCA detection usually performs better
than PCA detection, CEW-Max, and MF-Max. Likewise, when the energy window is suboptimally
computed—corresponding to a situation in which the source template is unknown or inaccurate—
CCA detection performs better than CEW-Max by a significant margin. We can hypothesize a
reason for why CCA detection is more independent of source information than CEW: whereas
CEW finds one relationship between in-window and out-of-window energy bins, CCA detection
finds multiple uncorrelated relationships, which reduces the chance that every relationship becomes
uninformative when the window is inaccurate. Intuitively, by taking a simple sum in the window,
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CEW only utilizes a fraction of the spectral information available. By comparison, CCA detection
utilizes much more by finding more than one relationship. Furthermore, a plausible explanation for
why CCA is more robust than MF is that CCA simply assumes weaker knowledge of the source—an
energy window instead of the exact template. Intriguingly, CCA also performs better than the
completely source independent PCA detection even though the knowledge about the source is
imperfect. In contrast, MF and CEW, which depend much more on source information, are worse
than PCA. Thus, CCA detection may represent a superior trade-off between robustness to source
information and capacity to leverage that information.

7 Simultaneous estimation of source strength and background

This section discusses a method that has much lesser dependence on training data. All previous
methods that were discussed here in detail rely on training data to learn characteristics of the
distribution of background spectra. When the training set resembles the test set, the methods
perform well. Nonetheless, in practice, training data may be scarce, or the test observations come
from a much different distribution. In these cases the methods become less useful. We suggest a
direct improvement to Gaussian-Poisson MAP estimation for the setting of perfect information
about the source template. We demonstrate how to limit dependence on training data and adapt to
the test data by exploiting the local structure of the time series of observations. In particular, we
simultaneously estimate source strength and background spectrum. The method may be categorized
as an adaptive Kalman filter, which is a class of methods that dynamically estimate covariances of
process and measurement noise when they are unknown (Mehra, 1970). On the generalization scale,
this method ranks above all others in this study.

7.1 Notation
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Figure 9: Using the Kalman filter to estimate the
background rates from noisy measurements in an
energy bin.

We consider discrete stochastic processes in-
dexed by t ∈ {1, . . . , T}. We use ai:j to refer
to {ai, ai+1, . . . , aj} in a stochastic process {at}.
Let x(i) be the ith element of vector x. Let
x(i:j) be a vector containing elements i through
j (inclusive) of x. Let diag(x) denote a diagonal
matrix with x as the main diagonal for a vector
x.

7.2 Kalman filter for radiation

The Kalman filter (Kalman, 1960) is a widely
used method for estimating an unobserved signal
underlying an observed noisy discrete time series.
In plain terms, it filters out statistical noise to
obtain more precise estimates of a signal, such
as in Fig. 9. Consequently, it is a natural candi-
date to model radiation. A Bayesian approach,
it tracks a mean and covariance of a prior over
the signal at every time step. An example of
a common application would be estimating the
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position of a vehicle using GPS. Since GPS mea-
surements contain substantial noise, they could be non-smooth. When a Kalman filter is applied,
however, one can incorporate information about the velocity and acceleration of the car, inferred
from the previous estimates of position, to refine the current estimate.

The Kalman filter estimates the state of a linear dynamical system in discrete time. Let xt ∈ Rd

be the state space and yt ∈ Rp be the observation at time t. Let A ∈ Rd×d and C ∈ Rp×d be the
transition and emission matrices respectively. Let Qt ∈ Rd×d and Rt ∈ Rp×p be the covariances
of process noise and measurement noise respectively. The parameters A, C, {Qt}, and {Rt} are
assumed to be known. In this model we allow the covariances are non-stationary, which is uncommon,
but as long as they are non-random all calculations are functionally identical to the stationary case.
The dynamical system is defined as

xt+1 = Axt + wt yt = Cxt + vt

where E(wt) = 0, Var(wt) = Q, E(vt) = 0, and Var(vt) = R. We assume the {wt} and {vt} are
independent. The update equations are well documented and thus omitted here. The state space
model can also contain a control input that affects xt, but we exclude it in this work as it does not
fit the application. The Kalman filter can be proved to give the best linear minimum mean squared
error estimator of xt given y1:t. Also, if the noise variables are Gaussian, then it is the optimal
minimum mean squared error estimator (Shimkin, 2009).

Now we discuss how the Kalman filter can be applied to simultaneously estimate source intensity
and background rates. In the GP method, the Gaussian prior on the background rates has a
time-invariant mean and covariance. The method can be improved by dynamically estimating the
background rates at each step to better estimate the parameters of the prior. To do so we apply the
Kalman filter. The state space xt ∈ Rd+1 contains the background rates in each of d energy bins
in the first d elements. Furthermore, the source intensity must be modeled in order to decouple
its effect on the measured spectra from the background radiation. Source intensity can vary with

distance and obfuscation. As a result, we model source intensity in the last element x
(d+1)
t . Next,

the observation yt ∈ Rd contains the measured counts at time t. The transition matrix A is set to
the identity matrix because we have no a priori expectation as to how the background rates change.
We propose a dynamical system given by

xt+1 = xt + wt yt = x
(1:d)
t + x

(d+1)
t s+ vt

where s ∈ Rd is the target source template. The second equation implies a form for the emission

matrix C. The Kalman filter estimates the background rates x
(1:d)
t , which are used as the mean µ

of the Gaussian prior in the GP method. In addition, the covariance K of the prior is estimated as
the covariance of the estimated background rates up to time t.

Next we explain how to set the remaining parameters, the transition noise covariances {Qt} and
emission noise covariances {Rt}.

7.3 Adaptive filtering

Conventionally, the covariances of process and measurement noise are taken as input to the Kalman
filter; in many scenarios, however, their values are unknown (Mehra, 1970). For instance, in the
radiation application it is possible that training data are scarce or differ from the test data, so it
would be infeasible to estimate the covariances beforehand. When the covariances are estimated
in real-time, the resulting method is known as an adaptive Kalman filter. This class of methods
has a large body of research. The different approaches include Bayesian, maximum likelihood,
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covariance matching, and correlation techniques (Ottersten et al., 1998; Akesson et al., 2008;
Bavdekar et al., 2011; Odelson et al., 2016). Most approaches construct estimators with desirable
statistical properties such as asymptotic normality, unbiasedness, and consistency. Yet these
approaches are often are computationally difficult and complicated to implement. Here we propose
a simple method for estimating the noise covariances by exploiting knowledge of the radiation
domain. We do not show any statistical properties of the estimators but instead showcase their
utility empirically. Although performance could be further improved by a more accurate and precise
means of covariance estimation, the aim of this work is not to compare this method to other adaptive
filters but only to show that it performs well on the task at hand.

(a) True covariance. (b) Initial covariance estimate. (c) Blurred covariance estimate.

Figure 10: Estimating the process noise covariance.

The method for computing the noise covariances is to use the previous state estimates as training
data. In the process noise covariance Qt, only the upper d× d block is estimated. For the remainder,
we assume the background rates to be independent of source intensity, and the variance of the
intensity is set to 10. The exact value is relatively insignificant. For the upper d × d block, we
first compute ∆x̂i = x̂i − x̂i−1 for i = 1, . . . , t − 1. We let Q̂0 be the sample covariance of this
variable. A heat map of one instance of this matrix is given in Fig. 10b. The values are not locally
smooth: nearby elements form a jagged surface. For comparison, Fig. 10a shows the true covariance
(whose calculation is explained in the next experiment section); nearby elements form a smooth
surface. Therefore, the next and final step is to apply Gaussian smoothing to Q̂0. We selected a
kernel length of 10 with a unit variance, but the smoothing hyperparameters were not found to be
especially important. The result is shown in Fig. 10c. In our experiments, this process produced an
effective, if potentially biased, estimator.

The measurement noise Rt can also be easily computed. Given the state xt, the measurement

noise vt = yt − xt is Poisson. In particular, v
(j)
t ∼ Poisson(x

(j)
t ). Furthermore, the elements are

known to be conditionally independent. Therefore Rt = diag(xt). However, since x̂t is not known
at time t, we instead estimate R̂t = diag(x̂t−1). In practice, this estimate performs better when
divided by 2, which causes the estimated state to track the measurements more closely.

7.4 Practicalities

Burn-in period We found it useful to enforce a burn-in period in our experiments. In particular,

we assumed that the first B = 150 time steps never contained interference, so we forced x̂
(d+1)
t = 0

when t ≤ B regardless of the output of the GP method or Kalman filter. The assumption was
justified because a spectrometer can stay in a zone known to have no source during the burn-in
period. This approach allowed the filter to calibrate to the correct noise covariances. Furthermore,
in the initial 5 time steps, we overrode the estimated rates with the mean of the observations up
to the current time step to calibrate to the correct initial state. However, the burn-in period is a
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Figure 11: Path of the sensor.
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much weaker requirement than a training set. If the burn-in period were used for training other
methods, they would still be susceptible to changes in the background distribution because they are
non-adaptive. This method, on the other hand, adapts to the local distribution and only requires
the burn-in period to ensure that the parameters are initialized correctly.

Unquantified uncertainty There is an inconsistency in the assumptions of this method. While
the conventional Kalman filter assumes Qt and Rt are non-random, the estimators in this method
depend on the output of the filter itself at the previous time steps, which is subject to random
noise. Hence, when the filter estimates the uncertainty of its prediction, it misses the additional
uncertainty contributed by the covariance estimators. We leave this issue as future work.

Negative values Intensity and background rates are always nonnegative in reality. However, the
Kalman filter has no restriction on the signs of the process. Hence, after every iteration, we enforce
nonnegativity by letting x̂t ← max(0, x̂t).

8 Generalization experiment

This section presents an experiment that simulated test data that greatly differed from training
data.

8.1 Data

Our dataset was a collection of over 11,000 gamma-ray measurements recorded in one-second
intervals by a sodium-iodide detector mounted on a vehicle moving around an urban area in
downtown Berkeley, CA, USA. On average there were 10,000 photon counts per second. Each
measurement contained d = 116 quadratically spaced energy bins. The measurements were assumed
to be background data. Also, the GPS position of the vehicle was recorded. The background rates
were estimated from the measurements and viewed as the true rates. The method used was GP
estimation over observations within 10 meters of the current measurement being estimated. We also
had the same library of 67 source templates used in the previous experiment. Unlike before, only
one template was selected: the one with minimum correlation with the mean background spectrum.
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(a) ROC with intensity at 75 counts per second.
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(b) ROC with intensity at 125 counts per second.
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(c) ROC with intensity at 175 counts per second.

Figure 13: Comparison of methods on generalization dataset.

8.2 Procedure

This experiment tested detection of a roadside source in a single pass. In each run of the experiment,
a location for the synthetic source was randomly sampled from the set of points at most 20 meters
from the path of the sensor (Fig. 11). The test set was taken to be the data points where the sensor
was at most 100 meters away from the source, along with all data points in between, forming a
contiguous window. The window was extended on either side by 450 observations. The training
set was taken to be the remaining data points. To simulate different distributions between the
training and test sets, we applied a shifting algorithm to each measurement in the training set
(Fig. 12) The counts in any particular energy bin were shifted to higher energy bins. This shift led
to Pearson correlation of roughly 50% between the mean training background spectrum and the test
background spectra. Every observation in the test set was injected with a sample from the source
distribution. The intensity was calculated to be inversely proportional to the square of distance
from the source (Miller et al., 2016). The maximum intensity was set to a given value. The methods
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were applied to score each test point. Then the maximum score for each method was recorded as
the output of the run. Next, all runs were repeated identically except with no source injection. By
this procedure we created multiple runs with positive or negative ground truth.

8.3 Results

We compared performance between six methods:

1. Oracle: Poisson likelihood ratio using perfect knowledge of the background rates and source
intensity.

2. Optimal GP: GP method using perfect knowledge of the background rates to set the prior
mean and covariance.

3. Kalman GP (KGP): GP method using the adaptive Kalman filter to set the prior mean and
covariance.

4. Moving Average GP (MA GP): GP method using a 30-point moving average of the background
rates to set the prior mean and covariance.

5. GP: GP method using the training data to set the prior mean and covariance.

6. Naive KGP: GP method using the non-adaptive Kalman filter with covariance parameters
estimated from the training data in the same manner as KGP.

Fig. 13 shows the ROCs computed over 250 positive and negative runs with maximum intensities
of M ∈ {75, 125, 175} counts per second. For every M the best methods are the Oracle and Optimal
GP, as expected. The next best is our proposed method, KGP. KGP beats the next best method,
MA GP, by a large margin in the low FPR range. GP does poorly, and Naive KGP performs the
same as random guessing.
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(a) KGP intensity estimates.
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(b) KGP scores.

Figure 14: KGP intensity estimates and scores in a positive and negative run.

In Fig. 14a, an example is given of how the adaptive Kalman filter estimates the source intensity in
a positive run and the corresponding negative run. Fig. 14b illustrates the scores over time of different
methods on the positive run. Fig. 15 shows how the adaptive Kalman filter accurately estimates the
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background rate even when the measurements contain a strong source. The measurements greatly
exceed the true rates, yet this elevation does not greatly affect the estimated rates.

8.4 Discussion
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Figure 15: Using the adaptive Kalman filter to
estimate the background rates in an energy bin in
the presence of a source.

KGP performs better than MA GP, GP and
Naive KGP when the training set is uninforma-
tive. These other competitors represent subop-
timal ways to adapt to the local data distribu-
tion. MA GP attempts to smooth the observed
counts to estimate the background rates. How-
ever, when the window size is large, it does
not track sudden changes in the background.
When the window size is small, it mistakenly
absorbs the injected source into the estimated
background. KGP has an advantage because it
allows for sudden changes to be estimated while
being robust against a source. Next, GP does
not attempt to adapt to local information at
all and therefore performs badly, although it is
still significantly better than random guessing.
Lastly, Naive KGP produces a completely unin-
formative score (indistinguishable from random
guessing in Fig. 13) This method tries to adapt
to the test data by estimating background rates and source intensity but does not adapt to the local
covariance structure. Evidently, its estimates of rates and intensity are completely inaccurate. In
this case, a poor adaptation is worse than no adaptation at all.

9 Conclusion

This study made three primary contributions. First, several existing methods for threat detection
were documented in detail. Most of these methods assumed knowledge of the target source, and all
assumed training data. Second, a method was proposed for the setting in which the assumption of
knowledge about the source is violated. Third, a method was proposed for the setting in which
the assumption of informative training data does not hold. Both new methods were empirically
demonstrated to perform better than competitors. In the future, it would be interesting to review
these methods when the spectra contain less than 100 total counts per second, which is a major
challenge facing many methods (Tandon, 2016).
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