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Abstract

While only recently developed, the ability to profile expression data in single cells (scRNA-Seq) has al-
ready led to several important studies and findings. However, this technology has also raised several new
computational challenges including questions related to handling the noisy and sometimes incomplete data,
how to identify unique group of cells in such experiments and how to determine the state or function of
specific cells based on their expression profile. To address these issues we develop and test a method based
on neural networks (NN) for the analysis and retrieval of single cell RNA-Seq data. We tested various NN
architectures, some biologically motivated, and used these to obtain a reduced dimension representation of
the single cell expression data. We show that the NN method improves upon prior methods in both, the
ability to correctly group cells in experiments not used in the training and the ability to correctly infer cell
type or state by querying a database of tens of thousands of single cell profiles. Such database queries (which
can be performed using our web server) will enable researchers to better characterize cells when analyzing
heterogeneous scRNA-Seq samples.

Supporting website: http://sb.cs.cmu.edu/scnn/
Password for accessing the retrieval task webserver: scRNA-Seq
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1. Introduction

Single cell RNA-seq (scRNA-seq) which profiles the transcriptome of individual cells (as opposed to

ensemble of cells) has already led to several new and interesting findings. These include the level of hetero-

geneity within a population of cells [5], the identification of new markers for specific types of cells [19], and

the temporal stages involved in the progression of various developmental processes [41].

While promising, single cell data has also raised new computational challenges. Unlike bulk expression

datasets, that often profiled only a few samples, single cell datasets can contain hundreds, and even thousands,

of expression profiles each [8, 35, 45]. In addition, single cell data is often noisier with potential ’drop

outs’ [29] making it harder to analyze. Consider for example one of the most exciting applications of single

cell sequencing: the ability to identify and characterize new cell types and cell states [7, 30]. Recent work

has used single cell expression profiles to discover new cells in developing lungs [42], new brain cells [7] and

to refine several aspects of cell state transitions in di↵erentiation studies [24, 17]. A key question that all

such studies had to address is how to determine the similarity of the expression profiles of a pair (or larger

sets) of cells? Another application for which the ability to compare single cell expression data between cell is

critical is retrieval of similar cell types. Consider an experiment in which a population of cells taken from a

diseased individual, or from a tumor, is profiled. One question that may be important for such analysis is to

identify the specific types of cells that are present in the sample that was profiled, for example to determine

which immune cells may have penetrated the diseased tissue [15]. While such analysis is often performed

using markers, a much more comprehensive solution is to compare the various cell expression profiles to a

set of curated single cells with known types.

In the above examples, comparisons or similarity analysis can either be performed using the measured

expression values or after performing dimensionality reduction which may help reduce the noise associated

with specific values. Indeed, several methods have been used and developed for performing such comparisons.

The simplest, though one of the most popular, is based on principal component analysis (PCA). PCA has

been used extensively for clustering single cells [5, 36, 45]. Other groups have developed new methods which

build on PCA and extend it to improve clustering results. These include pcaReduce [48], which uses a

novel agglomerative clustering method on top of PCA to cluster the cells. SNN-Cliq [47] constructs a shared

k-nearest neighbor (KNN) graph over all the cells with the weight of each edge being the di↵erence between

k and the highest averaged ranking of the common KNN between two cells. It then tries to find maximal

cliques in that graph in order to cluster the cells. ZIFA [29] develops a dimensionality reduction technique

that takes into account the dropout characteristics of single cell sequencing data. SINCERA provides a

pipeline for analysis of single cell gene expression data, one of whose tasks is to identify new cell types [14].

Clustering is done via hierarchical clustering with centered pearson correlation as the similarity measure.

SIMLR [46] is another open-source tool that performs dimensionality reduction and clustering based on a

cell similarity metric.

While PCA based approaches have been successful, they have so far been performed separately for each

dataset. In contrast, for problems including retrieval we would like to obtain a reduced dimension for all

cell types and experiments. In addition, PCA is an unsupervised method and so cannot find commonalities

that are unique to specific types of cells but are less common in other types of cells. This latter sets can be

very useful for grouping or retrieving single cell data.

Here we propose to replace PCA based dimensionality reduction with a supervised method based on deep

neural networks. Neural networks are universal function approximators [16] and are very scalable in terms

of training when using GPUs. These models use multiple layers, often with fewer nodes than the number of
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input values (genes), to integrate measured expression data. The networks are trained by maximizing their

ability to identify the correct cell type from the values computed at the intermediate layers (Figure 1). Thus,

the values computed for these intermediate layers can be used as a way to e�ciently represent the input

expression values. We tested various architectures for such networks, including architectures informed by

prior biological data (such as protein-protein and protein-DNA interactions) and compared their performance

to prior methods for analyzing single cell data. As we show, the learned networks captured several important

biological aspects of the data. We observed improvements in clustering performance when using the neural

networks computed values when compared to PCA, methods that use the measured expression data and

prior methods for clustering single cell data. Finally, we show that the values obtained from the neural

networks can improve the ability to retrieve the most relevant cells, for some cell types scientifically so.
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2. Methods

2.1. Datasets used in our analysis

We collected a total of 33 datasets with more than 17,000 single cell expression profiles from published

papers and from the Gene Expression Omnibus [3] (GEO). Supporting table and the supporting website

provide full details on these datasets. We used 3 of these datasets which, combined, profiled 16 di↵erent

types of cells and a total of 402 single cells for initial training, testing and evaluation of the method. We

used 31 of the 33 datasets for the retrieval analysis (to avoid using di↵erent datasets from the same lab). All

datasets are used in the retrieval application which is available from the supporting website. We curated all

33 datasets and assigned cell type labels to all single cell expression profiles.

2.2. Normalization and imputation

We tested a number of methods for normalizing data obtained from di↵erent labs and di↵erent platforms.

We initially tested a novel normalization method for single-cell RNA sequencing data which is based on

pooling across cells [26]. However, while results for the clustering analysis using this method were similar

to the results presented below (see Supporting Table 3), the method required us to manually set several

parameters (such as pool size) which made it hard to use for the larger retreival analysis. Instead, following

prior work we normalized the data by converting all datasets to the the Transcripts Per Million (TPM)

format [22, 37, 36, 35].

To combine protein-protein (PPI), protein-DNA (PDI) and single cell data (see below) we only used a

subset of 9437 genes that were present in the 3 single cell training datasets and in the PPI and PDI datasets

for training. For the much larger set of profiles used in the retrieval analysis, we used the same set of genes.

Since these datasets were generated by di↵erent platforms and groups, counts for 2% of the genes were

missing (on average) from each dataset. In order to use the NN method for analyzing these datasets we

performed imputation for these missing genes as follows. Missing values for the retrieval analysis were first

assigned the median gene expression value for the cell and then imputed with the average expression value

for the k-nearest neighbor genes (we used k=10), where nearest neighbors were computed based on overall

correlation [43]. Following TPM normalization and imputation, each gene was normalized to the standard

normal distribution across samples since this is an essential step for NN training. We choose not to do the

log-transformation because we found that it did not help the performance.

To account for the drop-outs in the imputation procedure, we tested a probabilistic model that would

randomly assign values for 0 to a specific fraction z of the imputed genes instead of relying on the nearest

neighbors for as discussed above. We tested several di↵erent values for z including 0 (no drop outs), 0.01,

0.03 and 0.05 using a cross validation strategy. Our results indicate that the best performance is achieved

using z = 0 (see Supporting Table 4) and so this is what we used for the rest of the paper.

2.3. Protein-protein and protein-DNA interaction data

We used protein-protein (PPI) and protein-DNA interaction (PDI) data to determine the architecture

of some of the NN we tested. We constructed a weighted, partially directed, protein interaction network

using several databases including BIOGRID [39], HPRD [31] and also used Post-translational Modification

Annotations from the HPRD. Protein-DNA interactions (PDI) were based on data from [34]. The data

contained 160,000 PPI edges and 60,000 PDI edges between 16,671 genes and 348 TFs. The PPI data was

weighted based on the di↵erent types of experimental evidence supporting each interaction [12].
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2.4. A Neural Network representation of single cell expression data

We evaluated 4 types of neural network architectures [13] (Figure 1), and trained 5 models in total

(detailed number of nodes for each model are shown in Table 1). All architectures include an input layer,

one or two hidden layers (more hidden layers do not help the performance in the following experiments), and

an output layer. The input layer encodes the expression values for the genes that are used in the analysis.

The output layer encodes the probability of each cell type. Hidden layers are functions of the input and

are used to e�ciently encode the inputs such that the output can be the correct cell type given a set of

expression values.

Specifically, we formulate our neural network model as follows. Let x(i) denote the output of i-th hidden

layer. We use x

(0) to represent the input of NN. To compute x

(i), we perform forward propagation: (eq: 1)

x

(i) = a(W (i)

x

(i�1) + b

(i�1)) (1)

where a is the activation function, b is an intercept term and W is the weight matrix of each edges in the

neural network. W and b are the parameters we need to learn.

We tested a number of possible activation functions including sigmoid, linear, relu, and tanh. Our analysis

indicates that the hyperbolic tangent activation function (tanh) (eq: 2) leads to the best performance among

these, and so we used it in the remainder of this paper. The tanh function is defined as:

tanh(x) =
1� exp(�2x)

1 + exp(�2x)
(2)

For the output layer, which performs discrete classification, we use the softmax activation function (eq:

3). Let x denote the input of the output layer (which is also the output of the last hidden layer), then we

have the following:

output(x) = softmax(x) =
h

exp(x1)P
c exp(xc)

...

exp(xC)P
c exp(xc)

i
T

(3)

Where C encodes indices for all the cell types in training set.

The output of each node c in the output layer represents the probability f(x(0))
c

= p(y = c|x(0)) that

the input sample x(0) is obtained from that cell type. The loss function is categorical cross-entropy function

(eq: 4):

loss = � log f(x(0))
y

(4)

where y is the true label of the input x(0).

2.5. Architectures used in our NN method

While all networks used the same input and output layers, they di↵ered in the structure and number

of hidden layers. We tested models with 1 or 2 fully connected hidden layers (for the NN with 2 hidden

layers, 796 nodes in the first hidden layer and 100 nodes in second hidden layer, Figure 1 (a)(b)). While these

models have at most 2 hidden layers (more layers doesn’t help the performance of following experiments), the

number of parameters that are fitted is very large (the architecture with the most parameters had 7.6 million

parameters). Thus, even though these networks are not particularly deep, they require special hardware and

software for training.

The above architectures do not make use of prior biological knowledge. To incorporate such information

we also tested architectures that were based on PPI and PDI. Unlike the fully connected layers in the
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architectures described above, when using the biological data we connect the nodes in the first hidden layer

to only a small subset of the input nodes. This greatly reduces the number of parameters that needs to be

learned which can help with issues related to overfitting. Specifically, we have 348 hidden layer nodes based

on the PDI data (one for each TF, connected only to genes regulated by that TF) and 348 nodes for the

PPI. To divide the PPI graph into 348 subnetworks (where each subnetwork is connected to a node in the

hidden layer) we used the ClusterOne [28] algorithm, which produces overlapping clusters so that, similar to

the dense nodes, a gene can be connected to more than one PPI node. We also added 100 fully connected

nodes (manually selected) to the hidden layer which account for missing data and TFs in the PPI and PDI.

Still, the total number of parameters for this architecture is about 1 million, an order of magnitude less than

for the fully dense architectures.

2.6. Unsupervised pre-training

The discussion above focused on supervised learning of NN (where the label is the cell type). In addition to

supervised learning NN can also use unlabeled data, a practice that has proven useful in other domains [10, 4].

One kind of this NN is termed ’autoencoder’ since the goal is to reconstruct the input layer values using

a small number of hidden layer nodes (since the target is the input expression values no labels are needed

to train such autoencoders). While unsupervised, autoencoders have been shown to successfully identify

input combinations that a↵ect the overall set of values. Given the large number of parameters in a NN the

ability to train autoencoders and use the parameters learned as priors for a supervised learning procedure

improves the initialization of the model and often leads to better generalization performance [10]. We have

thus tested the use of 1-layer denoising autoencoders (DAE) when testing the method on large datasets

(retrieval datasets). We train DAE to reconstruct the original input from corrupted input with the noise

sampled from a standard normal distribution multiplied by a noise level of 0.1. The architecture of DAE is

similar to Figure 1 (a) except that the output layer is changed to be the reconstructed input. All layers in

the DAE use the tanh activation function and mean square error as the loss function. Here we used 100 and

796 nodes in the hidden layer of the DAE, similar to the numbers used for the supervised models to make

sure that the weight of DAE can be used as pre-trained weights of supervised models.

2.7. Learning model parameters

All models were implemented in the Keras tool [6] with some modifications to accommodate the sparse

layer connections for TF and PPI nodes. The models are trained using a stochastic gradient descent optimizer

with a learning rate of 0.1, decay 10�6, momentum 0.9, and Nesterov accelerated gradient. These parameters

are manually selected for convergence. We used 100 iterations (which were manually selected and enough

for reaching convergence) to train each model with a mini-batch size of 10, which is the number of samples

to fit at each iteration. Detailed information about the dimensions of the di↵erent architectures is provided

in Table 1. It took us 30 seconds to train the largest supervised NN (7.6 million parameters, 402 cells),

40 minutes to train the largest unsupervised NN (15 million parameters, 17000 cells) on a machine with 4

Intel(R) Xeon(R) CPU E5-2620 v3 (2.40GHz each core, 24 cores in total), 4 Nvidia GTX 1080 GPUs and

128 GB RAM.

2.8. Biological analysis of learned models

To determine the biological relevance of the parameters learned from the NN we analyzed significant

gene groups for each cell type in the PPI/PDI model (Figure 1 (c)). For this we identify the top 10 most
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highly weighted (hidden layer) nodes for each output layer node (corresponding to the di↵erent cell types).

Some of the selected nodes are explained by the TF or the PPI they represent. For the other (100 nodes in

the hidden layer initially connected all input genes) we perform GO analysis based on the set of input genes

that are connected to these nodes with a high (absolute value) weight. We used gprofiler [32] to perform

GO analysis because it provides command-line interface for access.

2.9. Comparisons to prior clustering and dimensionality reduction methods

To perform dimensionality reduction based on the NN results we extract the values computed by the last

hidden layer of each architecture we tested. We next use a simple clustering method (K-means++ clustering

[1]) to perform unsupervised grouping of cells using a test set (not used in the NN training) and the results

are compared to prior methods suggested for clustering single cell expression data. For such comparisons

we perform experiments in which we leave out 2, 4, 6, or 8 random cell types of the 16 types in our analysis

set. We next cluster the left out data using the reduced representation obtained from the last hidden layer

of the NN and use the adjusted random index (ARI) to compare the clustering results with the true labels.

ARI counts the number of agreements and disagreement between two groupings while adjusting for random

performance into account. It is defined as follows. Let X = {X
1

, X

2

, ..., X

r

}, Y = {Y
1

, Y

2

, ..., Y

s

} be two

groupings. We can summarized the overlap between X and Y using a table N where N

ij

= |X
i

T
Y

j
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=
P
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We repeat the experiment for 20 times with fixed random seeds 0-19, each time with di↵erent random left

out cell type and obtain an average ARI value.

2.10. Cell retrieval method

To measure the performance of cell retrieval, the percentage of the desired cell type in the top k nearest

neighbors (here we used k=100 is calculated for di↵erent single cell expression data representations (NN,

PCA, measured values). To reduce the ability of the retrieval analysis to rely on artifacts for correctly

identifying the cell types (for example, experiments from the same lab) we only perform this analysis on cell

types that were profiled in di↵erent datasets out of the 31 used for this analysis. We thus used 9 di↵erent

cell types for this analysis though the database itself contains over 100 cell types (including subtypes). Cell

types that are not selected can thus still be in the retrieved set of k nearest cells which makes the analysis

more similar to how we envision the usage of such database. We use the mean of average precision (AP)

to evaluate the retrieval performance. AP corresponds to the area under the precision-recall curve for the

retrieved cells. The final result for all cell types is a weighted mean so that every dataset (cell type) has

equal weight.
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3. Results

We learned parameters for the di↵erent NN architectures discussed in Methods and used the resulting

models to test the method and to compare it to prior methods for dimensionality reduction of scRNA-Seq

data and for clustering and comparing such data.

3.1. Testing and comparing the NN method

To test our method and to compare it to other methods for clustering single cell time series expression

data we used 3 single cell expression datasets with 16 types of known labels (See supporting table 6 for

complete list). Data was downloaded mostly from GEO and processed as discussed in Methods (section 2.1).

We identified 9437 genes that had expression values in all training datasets and used them to learn the (deep)

NN using various architectures (section 2.4). For each architecture, input values where directly connected

to one or more hidden layers and the output layer encoded the label for each of the datasets. Thus, the goal

of the NN was to identify a reduced dimension representation of the expression values (where the number of

nodes / values is a function of the specific architecture) that leads to the most accurate assignment of cell

type for each dataset. Training and testing accuracy of all NN models reached nearly 100% (while this was

a challenging multi-label classification task with up to 16 possible labels the number of parameters is very

large as mentioned in Methods which can explain the good performance on the training set). See supporting

table 6 for the full list of the 16 cell types.

Given the ability of the method to accurately assign training data we next asked how well the resulting

representation can be used on test (unobserved) data. For this we performed a number of di↵erent analyses

in which we divided the single cell datasets using subset to learn the model and the rest to test it. For

testing, we compared the ability of a simple clustering method (k-means++ algorithm with k representing

the known number of left out cell types) to accurately sub-divide test data according to their cell types. We

first construct the deep NN using the portion of cells used for training. Next, for each of the test cells we run

them through the NN and extract the values of the smallest hidden layer (depending on the architecture)

and use these vectors in the clustering procedure. Thus, clustering is based on gene expression combinations

determined by the NN. We also note that the training and test sets are comprised of di↵erent cell types and

so this is not a supervised classification task. Instead, the goal is to see if the parameters learned using the

labeled data can improve the unsupervised analysis of the other cell types. We also calculate the performance

of pretrained models, but the result are similar to the model without pretraining. Therefore, we put the

results of clustering performance with pretraining into supplementary table 5.

We used the clustering results to compare the NN based analysis to a number o unsupervised cluster-

ing and dimensionality reduction methods that have been proposed for single cell analysis. Specifically, we

compared our method to PCA, pcaReduce, SINCERA, SIMLR and SNN-Cliq. For the PCA based methods

we tested both 100 and 796 components, similar to the dimensions of the output of our method. PcaRe-

duce generates hierarchical structure of clustering based on PCA reduced dimensions. SINCERA provides

a pipeline of analysing single cell data, including clustering. For clustering, SINCERA uses hierarchical

clustering, tight clustering [44] or consensus clustering [27]. We only show the result of hierarchical clus-

tering here because it is the default setting of SINCERA and the other clustering methods often generated

error messages when applied to our dataset. SNN-Cliq uses shared nearest neighbors (SNN) to define the

similarities between cells and then clusters them using graph based methods. SNN-Cliq sometimes generates

error messages when the number of cell types (k) is 2, so we left it out in this comparison. We also tried to

compare our results to ZIFA. However, ZIFA did not finish after running for two days when trying to cluster
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300 cells with 9437 expression values each. To improve its run time we reduced the number of genes to 1356

(selecting only genes that have non-zero values in 90% of samples) but the performance of ZIFA on this data

was not good (much lower than the results presented in the comparison table) and so we left it out. As can

be seen in Table 2, the clustering results of all the di↵erent architectures we tested outperformed all other

methods including PCA, SIMLR, SNN-Cliq and using the original (non reduced) set of expression values (see

also Supporting Figure 1). One way to explain this result is the fact that unlike other methods our method

learns the best way to represent a reduced dimension for single cell data (even though the comparison is

based on an unsupervised clustering task and learning is done on a completely di↵erent set of experiments

and cell types) whereas the other methods are fully unsupervised. While all NN architectures performed

better than other methods, the simplest NN architecture we tested (1 fully connected layer with 796 hidden

nodes) performed best, though not by much. However, as we show below, when testing on a much larger set

of data the biologically motivated architectures do better than the fully dense ones.

3.2. Functional analysis of hidden layer nodes

While NN are often treated as ”black boxes” following recent studies we attempted to characterize the

input and hidden nodes (genes / TFs) that had the highest impact on the ability to accurately classify

various cell types [40, 38]. Such analysis can provide both, functional interpretation of the parameters that

are learned for the method as well as characterization of the di↵erent types of genes and their regulators

that are most relevant to specific types of cells. To perform such analysis, we analyze the top 10 most highly

weighted groups (hidden nodes) for each cell type with the NN in Figure 1(c). To analyze the groups we

either used the known characteristics of the node (since, as mentioned in Methods (section 2.8) some of the

nodes represent groups of genes known to be co-regulated by the same TF or to be interacting (PPI)) or

GO analysis on fully connected nodes to determine the function of genes associated with that node. Table

3 presents results for a subset of the cell types and nodes which are manually identified. As can be seen,

the top scoring nodes were often very relevant for the specific functions that are performed by the cells or

the TFs that regulate these functions. For example, the learned NN correctly associated genes related to

proliferation and di↵erentiation with ES cells while nodes that scored high for immune response categories

were mainly associated with Bone Marrow-derived Dendritic Cells (BDMCs). See also Supporting Website

for tables summarizing more than 1000 significant GO categories for combinations of cell types and nodes

based on this analysis.

In addition to the analysis of connection weights for the NN that were learned using labeled data, we

also analyzed the values for the nodes obtained by the pre-trained models. Recall that for the pre-training

we are using a fully unsupervised approach where the goal is to reconstruct the input data using a small

set of highly connected nodes (100 in our case). We hypothesized that some of the values learned for these

nodes may actually reflect key genes that either regulate other genes (and so their values are enough to

reconstruct the full expression set) or important groups of co-expressed genes. We thus selected, for each of

the 100 dense nodes in the pre-trained mode, the set of 3 most similar genes based on Pearson correlation.

The results are presented in Supporting Table 7. As can be seen, many of these genes are ribosmal genes

which are indeed a large and coherently expressed group that is captured by some of the nodes. GO analysis

of the selected nodes (Supporting Table 8 shows part of the results.) indicated that a a significant category

for these is ’nucleic acid binding’ (corrected p-value = 9 ⇤ 10�9) indicating that the model captures some of

the TFs that are likely regulating the expression in the di↵erent single cell types. See Supporting Results

and website for complete details.
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3.3. Retrieval of single cells based on expression

In most single cell studies, hundreds or even thousands of cells are being profiled. In almost all cases,

including cancer [22], brain studies [18, 49, 25, 21] and more, several di↵erent types of cells are profiled in

the same experiment. In some cases these cells can be characterized using marker genes and assigned to a

specific cell type. However, in most cases at least some of the cells cannot be fully assigned since either they

do not contain any of the known markers or they contain several subsets of such markers. In most cases

researchers classify such cells using clustering allowing them to identify several groups within the sampled

cells. However, such analysis is unsupervised and so its not always clear what each of the clusters corresponds

to. Identifying the composition of cells is important, for example in cancer studies where notable di↵erences

between outcomes have been attributed to the amount of immune cells that are present in the tumor.

Thus, an important problem in single cell expression analysis is assignment. One way to address this

problem is to compare uncharacterized cells to cells that have already been characterized by prior experiments

either using follow up studies or because of their known origin. To enable such analysis we collected 31 single

cell expression datasets with more than 17000 samples and created a database in which we stored both the

expression measurements for these cells as well as the assignment for the cell from the paper / experiment in

was profiled in (if available). Using such database we can find, for each new cell profiled in an experiment,

the most similar cells in the database and based on their annotations, annotate the uncharacterized cells.

A key issue for implementing such strategy is how to identify the most similar cells in the database when

given a new query cell. A simple solution is to use the expression values themselves. However, such method

is both ine�cient (requiring us to store the actual values for all genes in the database as well as perform

a large number of operations for each pairwise comparison to compare all 20K+ genes). An alternative,

which is more e�cient and may be more robust to noise is to first reduce the dimension of the database data

and the query cell and then perform the retrieval search in the reduced dimensional space. Such reduction

can be done either using PCA or using the NN approach discussed above. By using a lower dimension

representation we drastically cut the storage requirements (by 91% to 99% depending on the architecture

used) and the query run time. Specifically, for the 14000 queries we performed on the 17000 cells in the

database we reduced the run time from 25 minutes (when using the observed expression values for 9437

genes) to less than 5 minutes when using the 796 features obtained from the NN. The datasets of the query

cell types are listed in Supporting table 2.

In addition, and most importantly, such reduced dimension greatly improves performance. To test various

ways of querying single cell expression data we held out complete datasets for which we had a similar dataset

in the database from a di↵erent lab / paper. This helps ensure that results are not e↵ected by unique lab

methods but are rather related to biological similarities. We identified 31 di↵erent datasets that, combined,

profiled close to 14K cells. For each of these held out datasets we searched for the most similar cells in our

database. As before, we compared the NN results to results obtained when using the measured expression

values and PCA with 100 or 796 dimensions. As for the NNs, since we are dealing with much more data

compared to the clustering analysis above we tested two NN variants. The first is similar to the one described

above for clustering while the second is based on using DAE to initialize the parameters of the network (using

unlabeled data) followed by supervised learning as discussed in Methods.

To evaluate the di↵erent methods, for each query cell we identify the top k most similar cells in the

database (where similarity is either based on Euclidean distance for all genes or for the reduced dimension

representation obtained by each method). We use k = 100 in this paper, though results are similar when

using k = 10. We next use the top k matches to compute the mean average precision (MAP) for the correct
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cell type for each query (Methods).

As can be seen in Table 4, all methods that relied on reduced dimensions did much better than the

method that used the measured expression values (20% average improvement for PCA and almost 40%

improvement for some of the NN methods when compared to using the measured expression values for all

genes). Comparing the reduced dimensionality methods themselves, we observe that NN with more hidden

layers (in our case 2) are doing, on average, better than NN with a single hidden layer indicating that non

linear relationships may be important for characterizing single cell expression. These multi-hidden layer NN

are also performing better than PCA.

We also observe that both, the use of prior biological knowledge to define the NN architectures (PPITF

networks) and the use of pre-training using DAE improves the overall accuracy of the retrieval. Specifically,

the best performing method (achieving an improvement of more than 11% over PCA) is the PPITF 2layer

696+100 / pretrain which combines all these features (2 layers, pre-training and the use of prior knowledge).

Other architectures that use prior knowledge are also better than their dense counterparts. In contrast, DAE

on their own (4th and 5th rows) are not as e↵ective as supervised models and so they are probably best for

initializing rather than for final model selection.

11



4. Discussion and future work

While single cell analysis holds great promise, it also raises new questions. Given the number of cells that

are profiled in each experiment, which can reach thousands [49, 23], new methods are required for accurately

and e�ciently clustering this data while overcoming issues related to the stochastic nature of gene expression

even in similar cells, noise and missing values. A related problem is the ability to compare expression profiles

from cells so that cell type assignments can be determined not just based on a few marker genes but rather

based on the overall expression of all genes in the cells profiled.

In this paper we developed and tested solutions based on deep neural networks for these problems. The

advantage of such networks is that they can learn the importance of di↵erent combinations of gene expression

levels for defining cell types and such combination are usually more robust than values for individuals genes

or markers. We tested a number of di↵erent activation functions for this data and several NN architectures,

including architectures that are constrained by prior biological knowledge. As we show, the NN achieve

very good classification performance on training data and improve upon prior methods when used to cluster

datasets from experiments that were not used in the training. We also performed functional analysis of the

set of highly weighted nodes for each cell type and showed that even though NN are often described as a

black box learning method, many of these are functionally related to the cell type they were selected for.

As a final application we used the reduced representation obtained form the NN to query a large database

of over 17K single cell expression data in order to determine the cell type of a newly profiled single cell. As we

show, using such representation greatly improved the performance of the retrieval analysis while reducing the

overall runtime and storage required. The Supporting Website provides an implementation of the retrieval

method which can be used by researchers to determine cell types for newly profiled single cells.

While the results are encouraging, there are several directions for future work which we would like to

explore. These include testing more involved (deeper) architectures, integrating additional types of prior

biological knowledge into the model and an automated tool that can download new single cell expression data

in order to increase the set used by the retrieval application. A major challenge with the latter direction is

the ability to automatically assign cell type from published expression data given the various ways in which

people define and encode such information.
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Tables

Table 1: The 5 di↵erent types of NN used in the paper

No. Model layer1#node layer2#node

1 Dense 796 X
2 Dense 100 X
3 Dense 796 100
4 PPI/TF+dense 696+100 dense X
5 PPI/TF+dense 696+100 dense 100

Note that No.1 and No.2 represent the same architecture (Figure 1 (a)) using di↵erent number of hidden layer nodes.
The 696 in the PPI/TF models is from 348 TFs + 348 PPI groups. The number of nodes in the Dense models
corresponds to the number of nodes in PPI/TF models for comparison. The additional 100 dense in each model are
manually selected.

Table 2: Average adjusted random index (ARI) for 20 clustering experiments (using di↵erent ran-

dom initializations

feature \# testing cell type 2 4 6 8 Average

original 0.943 0.687 0.651 0.613 0.723
PCA 100 0.943 0.582 0.596 0.554 0.668
PCA 796 0.943 0.691 0.600 0.549 0.696
pcaReduce 0.760 0.692 0.677 0.683 0.703
SIMLR 0.850 0.749 0.663 0.625 0.722
SNN-Cliq X 0.716 0.661 0.435 0.604
SINCERA hierarchical clustering 0.980 0.797 0.738 0.674 0.797
SINCERA tight clustering X X X X X
SINCERA consensus clustering X X X X X
Dense 1layer 100 0.978 0.882 0.755 0.656 0.817
Dense 1layer 796 0.981 0.885 0.765 0.708 0.835

Dense 2layer 796/100 0.984 0.880 0.763 0.630 0.814
PPI/TF 1layer 696+100 0.981 0.839 0.781 0.665 0.817
PPI/TF 2layer 696+100/100 0.984 0.876 0.752 0.662 0.818
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Table 3: Examples of highly ranked nodes for some of the cell types used for learning of the NN.

cell type TF/PPI/Dense node Corrected p-value GO function / reference
stem cells (ES) dense 35 3.25E-07 cell di↵erentiation
stem cells (ES) dense 24 4.44E-15 Factor: E2F-3; [20]
stem cells (ES) dense 24 5.78E-12 Factor: IRF6; [2]
stem cells (ES) dense 24 2.53E-08 system development
BMDC dense 10 1.56E-05 immune system process
BMDC dense 67 1.59E-11 positive regulation of immune system process
BMDC dense 36 2.06E-06 response to cytokine
fibroblast ppi 223 3.16E-06 Focal adhesion [33]
fibroblast ppi 301 2.85E-20 acetyltransferase complex [11]
zygote ppi 10 6.85E-07 regulation of cell proliferation
zygote ppi 280 7.36E-09 cell junction
zygote TF: foxd3 X TF: foxd3 [9]

Some of the nodes were based on TF-gene interactions and thus represent a specific TFs (Foxd3). For these we rely
on the function of the TF to characterize the node in the table. Other nodes are either based on PPI (for example
PPI223) or on groupings learned by the algorithm (for example, dense24). For these we performed GO analysis on
the set of highly ranked genes for these nodes. Several other relevant TFs and functions were found for other cell
types as well. See Supporting Website for complete list.

Table 4: Average retrieval performance across the di↵erent cell types

models HSC 4cell ICM spleen 8cell neuron zygote 2cell ESC mean
Original 0.081 0.361 0.058 0.987 0.279 0.372 0.468 0.556 0.705 0.430
PCA 100 0.299 0.508 0.01 0.996 0.351 0.646 0.539 0.616 0.722 0.521
PCA 796 0.227 0.548 0.022 0.994 0.242 0.622 0.419 0.642 0.833 0.505
DAE 100 0.236 0.411 0.016 0.973 0.503 0.628 0.193 0.728 0.544 0.470
DAE 796 0.14 0.423 0.035 0.992 0.399 0.692 0.399 0.743 0.432 0.473
Dense 1layer 100 0.102 0.662 0.038 0.953 0.739 0.485 0.522 0.717 0.604 0.536
Dense 1layer 100 pretrain 0.23 0.49 0.153 0.984 0.463 0.64 0.408 0.734 0.532 0.515
Dense 1layer 796 0.082 0.599 0.096 0.988 0.472 0.389 0.563 0.732 0.683 0.512
Dense 1layer 796 pretrain 0.116 0.515 0.073 0.991 0.463 0.702 0.423 0.714 0.446 0.494
Dense 2layer 796/ 100 0.069 0.77 0.065 0.956 0.896 0.563 0.275 0.673 0.583 0.539
Dense 2layer 796/ 100 pretrain 0.164 0.648 0.035 0.987 0.715 0.633 0.498 0.747 0.507 0.548
PPITF 1layer 696+100 0.078 0.636 0.148 0.965 0.667 0.464 0.202 0.314 0.63 0.456
PPITF 1layer 696+100 pretrain 0.168 0.557 0.028 0.982 0.55 0.647 0.447 0.665 0.569 0.513
PPITF 2layer 696+100/ 100 0.068 0.771 0.182 0.956 0.849 0.561 0.415 0.553 0.71 0.563
PPITF 2layer 696+100/ 100 pretrain 0.397 0.614 0.185 0.975 0.725 0.626 0.435 0.688 0.554 0.578
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Figures

Figure 1: Network architectures of deep learning models used in this paper (a) Single-layered fully connected network (b) Two-

layered fully connected network (c) Single-layered network with TF and PPI cluster nodes (connected only to their member

genes) and fully connected dense nodes. (d) Two-layered network that are similar to the model in (c) but with an additional

fully connected layer. Note that bias nodes are also included in each model.
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1 Supplementary Methods

1.1 Details for other clustering methods

1.1.1 SINCERA

We modify the demo.R file of SINCERA to perform clustering on whole dataset (without dimension reduc-
tion). The data processing steps before clustering are removed since they are not applicable to our dataset.
We also set the parameters for clustering algorithms the same as the default parameter in demo.R.

1.1.2 SNN-Cliq

We use default parameter for SNN-Cliq clustering on whole dataset (without dimension reduction).

1.1.3 pcaReduce

We apply pcaReduce on whole dataset (without dimension reduction). We set the starting reduced dimension
to 3 times the number of cell types. Maximum probability is selected as the merge method.

1.1.4 SIMLR

We use the python implementation of SIMLR with default parameters. The default parameter of number of
neighbors is not applicable when the number of cell is too low. In this case we set the number to be half of
the number of input cells.
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2 Supplementary Tables

Table 1: Summary of the 33 datasets
No. doi data accession# #sample #cell type tissue/cell type

1 10.1038/nature12172 GSE41265 18 1 BMDC
2 10.1186/gb-2013-14-4-r31 GSE42268 77 9 ESC
3 10.1126/science.1245316 GSE45719 317 24 embryonic cells
4 10.1038/nbt.3102 E-MTAB-2805 288 14 ESC
5 10.1186/s13059-016-0950-z GSE76483 159 14 DRG
6 10.1073/pnas.1402030111 GSE47835 71 12 ESC MEF
7 10.1038/nature13173 GSE52583 201 26 distal lung epithelium
8 10.1016/j.stem.2014.11.005 GSE55291 94 20 iPS TTF ESC
9 10.1101/gr.177725.114 GSE57249 56 20 embryonic cells
10 10.1101/gr.171645.113 GSE60297 174 16 thymus TEC
11 10.1126/science.aaa1934 GSE60361 3005 15 celebral-cortex
12 10.15252/msb.20156198 GSE60768 107 11 ESC NSC
13 10.1038/nbt.3154 GSE61470 15 14 ESC PS NP HF
14 10.1038/cr.2015.149 GSE63576 209 14 DRG
15 10.1016/j.cub.2015.01.034 GSE64960 69 18 granulosa
16 10.1016/j.cell.2015.04.044. GSE65525 8669 12 ESC
17 10.1016/j.devcel.2015.09.009. GSE66202 91 19 kidney
18 10.1038/nbt.3443 GSE70844 83 14 neuron
19 10.1016/j.cell.2015.11.009 GSE75107 166 10 CNS/Th17
20 10.1016/j.cell.2015.11.009 GSE75108 136 9 LN/Th17
21 10.1016/j.cell.2015.11.009 GSE75109 139 17 spleen LN/Th17
22 10.1016/j.cell.2015.11.009 GSE75110 130 17 spleen LN/Th17
23 10.1016/j.cell.2015.11.009 GSE75111 151 17 spleen LN/Th17
24 10.1038/ncomms10220 GSE74923 194 31 cancer
25 10.1038/nature17997 GSE67120 181 30 HSC
26 10.1186/s12974-016-0581-z GSE79510 45 21 brain
27 10.1038/celldisc.2016.10 GSE70605 145 30 embryonic cells
28 10.1182/blood-2016-05-716480 GSE81682 1920 21 HSC
29 10.1172/JCI77378 GSE66578 6 17 lung
30 10.1038/ni.3437 GSE74596 203 19 thymus
31 10.1038/ni.3412 GSE77029 64 22 bone marrow
32 10.1016/j.devcel.2016.02.020 GSE65924 70 16 embryonic cells
33 10.1038/ncomms11075 GSE70657 135 16 HSC

Table 2: The datasets for each query cell type in the retrieval analysis
cell type dataset No.

HSC (Hematopoietic stem cells) 25 28 33
4cell 3 9 27
ICM (Inner Cell Mass) 9 27
spleen 21 22 23
8cell 3 27
neuron 5 11 14 18 19 23 26
zygote 3 9 27
2cell 3 9 27
ESC (Embryonic stem cell) 4 6 8 12 13 16
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Table 5: Average adjusted random index (ARI) for 20 clustering experiments with
pretrain models (using random subsets)

feature \# testing cell type 2 4 6 8 Average

Dense 1layer 100 pretrain 0.981 0.855 0.770 0.677 0.820
Dense 1layer 796 pretrain 0.981 0.858 0.746 0.700 0.821
Dense 2layer 796/100 pretrain 0.976 0.858 0.767 0.653 0.813
PPITF 1layer 696+100 pretrain 0.984 0.806 0.742 0.695 0.807
PPITF 2layer 696+100/100 pretrain 0.981 0.883 0.772 0.676 0.828

Table 3: Average adjusted random index (ARI) for 20 clustering experiments
with data normalized (using random subsets)

feature \# testing cell type 2 4 6 8 Average

original 0.943 0.705 0.697 0.662 0.752
PCA 100 0.943 0.700 0.621 0.665 0.732
PCA 796 0.943 0.700 0.636 0.642 0.730
pcaReduce 0.744 0.696 0.723 0.677 0.710
SIMLR 0.879 0.729 0.668 0.634 0.728
SNN-Cliq X 0.785 0.684 0.570 0.680
sincera hierarchical clustering 0.980 0.799 0.722 0.662 0.791
SINCERA tight clustering X X X X X
SINCERA consensus clustering X X X X X
Dense 1layer 100 0.978 0.883 0.754 0.664 0.820
Dense 1layer 796 0.981 0.878 0.794 0.699 0.838
Dense 2layer 796/100 0.984 0.882 0.754 0.633 0.813
PPITF 1layer 696+100 0.981 0.833 0.783 0.674 0.818
PPITF 2layer 696+100/100 0.984 0.865 0.759 0.675 0.821

Table 4: Average ratio of mean absolute error compared to 0 drop-out
rate

missing rate drop-out rate ratio of mean absolute error

0.05 0 1
0.05 0.01 0.999
0.05 0.03 1.015
0.05 0.05 1.029
0.1 0 1
0.1 0.01 1.005
0.1 0.03 1.019
0.1 0.05 1.034

Note that the ratio is compared to the 0 drop-out rate with the same missing
rate. This experiment shows that applying drop-out after imputation does
not improve the performance (reduce the mean absolute error) and yields
similar results.
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Table 6: The cell types of the datasets used in training and clustering experiment
BMDC (Bone Marrow-derived Dendritic Cells)
ES (embryonic stem cells)
PrE (primitive endoderm)
late2cell
earlyblast
midblast
8cell
4cell
16cell
mid2cell
lateblast
zygote
2cell
fibroblast
C57 2cell
liver cells

Table 7: Significant gene list and repeat counts for pretrained model (100 dense nodes)
rpl27a 36 rpl23a 4 srsf7 3 rplp2 2 rps17 1 rplp1 1
rps12 24 rplp0 4 eef1b2 3 klhl7 2 s100a6 1 laptm5 1
rpl37a 21 rpsa 4 arpc1b 2 ccdc78 2 psmb8 1 lgals1 1
rpl15 12 cox7c 4 bard1 2 ncl 2 rpl26 1 mapt 1
rpl7l1 9 rps24 4 rps16 2 aak1 1 atp5b 1 mpv17l 1
loxl2 9 rps14 4 calm1 2 rps19 1 cd47 1 mrpl43 1
pwwp2a 6 rab3a 4 polr2l 2 rps29 1 coro1a 1 naca 1
ankfy1 6 stmn3 4 rps11 2 rrm2 1 cp 1 nsf 1
uba52 6 rps4x 4 rpl28 2 sec62 1 ddx5 1 pfn1 1
serinc1 6 ppia 3 itm2b 2 serinc3 1 eif3f 1 prex2 1
slc25a4 5 kif5c 3 rpl36 2 shc2 1 eno2 1 psat1 1
cd3eap 5 hsp90ab1 3 rpl18 2 sub1 1 gsn 1 rac2 1
app 5 rpl10 3 rpl34 2 syt1 1 hsp90aa1 1 rpl10a 1
fau 5 arhgdib 3 cpm 2 tecr 1 hspe1 1 ldha 1
exosc2 5 rpl4 3 gapdh 2 trim28 1 igf2bp1 1 wnk1 1
slc25a5 5
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Table 8: GO analysis results for the significant genes in pretrain models (top 50 results by p-value)
p value term id description

6.77E-32 GO:0003735 structural constituent of ribosome
6.68E-30 GO:0005840 ribosome
7.36E-30 KEGG:03010 Ribosome
1.87E-29 GO:0022626 cytosolic ribosome
5.45E-26 GO:0044445 cytosolic part
1.87E-25 GO:0044391 ribosomal subunit
1.42E-24 GO:0006412 translation
4.01E-24 GO:0043043 peptide biosynthetic process
1.49E-23 GO:0030529 intracellular ribonucleoprotein complex
1.55E-23 GO:1990904 ribonucleoprotein complex
7.69E-23 GO:0006518 peptide metabolic process
1.93E-22 GO:0043604 amide biosynthetic process
3.34E-21 GO:0003723 RNA binding
1.87E-20 GO:0043603 cellular amide metabolic process
2.65E-20 GO:0005829 cytosol
3.33E-19 GO:0005198 structural molecule activity
1.35E-18 GO:0044444 cytoplasmic part
3.69E-18 GO:1903561 extracellular vesicle
4.07E-18 GO:0043230 extracellular organelle
5.80E-18 GO:0022625 cytosolic large ribosomal subunit
2.41E-17 GO:0070062 extracellular exosome
2.76E-17 GO:1901566 organonitrogen compound biosynthetic process
9.21E-17 GO:0044822 poly(A) RNA binding
5.12E-16 GO:0043232 intracellular non-membrane-bounded organelle
5.12E-16 GO:0043228 non-membrane-bounded organelle
1.44E-15 GO:1901564 organonitrogen compound metabolic process
5.05E-15 GO:0032991 macromolecular complex
6.74E-15 GO:0015934 large ribosomal subunit
8.28E-15 GO:0005737 cytoplasm
2.44E-13 GO:0031982 vesicle
4.82E-13 GO:0043226 organelle
2.04E-12 GO:0044421 extracellular region part
5.77E-12 GO:0005622 intracellular
2.29E-11 GO:0044424 intracellular part
2.49E-11 GO:0043229 intracellular organelle
7.85E-11 GO:0005925 focal adhesion
8.98E-11 GO:0005924 cell-substrate adherens junction
1.12E-10 GO:0030055 cell-substrate junction
1.34E-10 GO:0005912 adherens junction
2.06E-10 GO:0044422 organelle part
2.16E-10 GO:0070161 anchoring junction
2.52E-10 GO:0044446 intracellular organelle part
5.96E-10 GO:0005576 extracellular region
1.17E-09 GO:0022627 cytosolic small ribosomal subunit
9.13E-09 GO:0003676 nucleic acid binding
1.92E-08 HP:0012133 Erythroid hypoplasia
3.62E-08 GO:0043227 membrane-bounded organelle
9.01E-08 GO:0015935 small ribosomal subunit
1.32E-07 GO:1901363 heterocyclic compound binding
1.98E-07 GO:0042254 ribosome biogenesis
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3 Supplementary Figures

Figure 1: The mean and standard error of the clustering results presented in Table 2 of the main paper and in
Supplementary Table 5). See Supporting Table 9 below for methods represented by F0-F6 and NN7-NN16.
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Table 9: Abbreviations used for Supporting Figures 1 and 2
F0 original
F1 PCA 100
F2 PCA 796
F3 pcaReduce
F4 SIMLR
F5 SNN-Cliq
F6 SINCERA hierarchical clustering
NN7 Dense 1layer 100
NN8 Dense 1layer 796
NN9 Dense 2layer 796/100
NN10 PPITF 1layer 696+100
NN11 PPITF 2layer 696+100/100
NN12 Dense 1layer 100 pretrain
NN13 Dense 1layer 796 pretrain
NN14 Dense 2layer 796/100 pretrain
NN15 PPITF 1layer 696+100 pretrain
NN16 PPITF 2layer 696+100/100 pretrain

Figure 2: The mean and standard error of clustering results with data normalized (correspond to Supple-
mentary Table 3)
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