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Abstract

Background. Graphical models have gained significant attention as a tool for discovering and visualiz-
ing dependencies among variables in multivariate data. Recently, attention has been drawn to situations
where domain experts are interested in differences between the dependency structures of different
populations. (e.g. differences between regulatory networks of different species, or differences between
dependency networks of diseased versus healthy populations). The standard method for recovering
these differences is to learn the structures independently and then compare them naïvely. However, this
method has achieved limited success in practice as it is prone to high false discovery rates.

Aim. In this paper, we develop sample efficient estimators which learn the differential network with low
false discovery rates.

Data. We evaluate our proposed estimators on real-data where, given samples Escherichia Coli regula-
tory network under different conditions, the goal is to recover the change in the network.

Methods. Our proposed estimators can be broadly classified into two categories; discriminative meth-
ods, which directly model the differential structure, and generative methods, which learn the structures
independently, and control for false discovery rates by an additional step.

Results. We show empirically that our proposed methods achieve higher precision than existing
techniques.

Conclusions. While in this paper we have focused on differential network analysis, the idea of differen-
tial learning can be generalized to learning semi-parametric models, where parameters of interest are
plagued with nuisance parameters. Similar techniques could be used for differential feature selection to
answer questions like “are there different bio-markers for cancer in men and women?”, or for differential
clustering to detect significant changes in cluster structures between populations.
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1 Introduction
Graphical Models or Markov Networks are a popular tool for inference, visualization, modeling and
exploratory analysis of wide-ranging applications. Two popular classes of Markov Networks are the
Gaussian Graphical Model, for continuous (Gaussian) variables, and the Ising / Potts model, for binary /
categorical variables.

A more recent use of graphical models is to identify changes in dependencies for different populations
or conditions. For example, traditionally, functional magnetic resonance imaging(fMRI) has been used to
model the dependencies between different regions of the brain as it measures the activity level in different
regions of the brain and is used to indicates regions which seem to be exchanging information. In such a
setting, domain experts also want to understand how regions of the brain share information before and
after a person acquires a particular skill. Answers to such questions help in identifying the regions of the
brain that are most influential after a skill is learned, and hence, direct current stimulation can be applied
to those regions to accelerate a person’s learning process.

Similarly for oncology studies, a critical problem is to analyze how the dependency structure of plasma
proteins changes between healthy patients and patients that have cancer. Identifying the changes helps
with the goal of understanding the cancer biology and coming up with better diagnostics.

In such differential dependency network analysis problems, traditional methods based on learning
the dependency network for each condition independently and then comparing them tend to produce a
large number of spurious differences [17]. This hampers the analysis and prevents drawing any reliable
conclusions, limiting the its usefulness significantly.

One way to control spurious differences is to learn the dependency networks for the different conditions
jointly by imposing a bias that the learned networks be similar. The more heavily this bias is enforced,
the fewer differences will be learned between networks. Algorithmically, such approaches are similar to
transfer learning and multi-task learning where a number of algorithms for joint learning of dependency
networks have been proposed and studied. One could use these algorithms for the task of providing a
reliable differential analysis.

However, despite using the same algorithms, the fundamental goal of multi-task learning and differential
analysis problems is different. Firstly, in multi-task learning, the goal is to recover the individual structures
accurately, while in differential analysis the goal is to reliably identify differences between the dependency
networks. In differential analysis, shared components of networks are essentially nuisance parameters,
and one can sacrifice accuracy on them, to improve the recovery of differential parameters. Secondly,
multi-task learning have poorer performance in cases when the networks are dissimilar, whereas, from
differential analysis, network dissimilarity should make recovery easy.

This brings the following question to the front. Is there a way to efficiently estimate the differential
network parameters?

Contributions.

2 Problem Statement
In this paper, we focus on the problem of estimating changes in dependency networks of two different
populations: given samples from each. In particular, we focus on the case where the differential network
has structure, such as sparsity or low/high degree. Note that individual networks may or may not have
such structure, and the goal is to completely characterize the estimation of the differential network on such
parameters. Our goal is to present results which answer questions like: can one design estimators where
the number of samples required to estimate the differential network depends only on the degree of the
differential network?
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3 Background and Setup.
Exponential Family. The exponential family is a widely used family of distributions which are parametrized
by a finite dimensional canonical parameter. The density function is given by:

Pθ(X) = h(X) exp(〈θ, φ(X)〉 −A(θ))

Here, θ∗ is the vector of the true canonical parameters, A(θ) is the log-partition function and φ(X) is the
sufficient statistic. Most of the standard discrete and continuous distributions used for structure modeling,
such as the Ising Models, Gaussian MRFs etc. are special cases of the exponential family.

In this paper, we consider the problem of estimating changes in the canonical parameter, i.e., given
two sets of samples Xn1

1 = {x1
i }
n1
i=1 and Xn2

2 = {x2
i }
n2
i=1, drawn from different populations(exponential

families) with canonical parameters θ∗1 ∈ Rp and θ∗2 ∈ Rp, the goal is to estimate δθ = (θ∗1 − θ∗2).
Additionally, either in a high-dimensional setting where n1, n2 << p, or using priors from domain
knowledge, one may impose and exploit additional assumptions on the parameter δθ such as sparsity,
block-sparsity. Note that the individual population parameters θ∗1 and θ∗2 may or may not have have any
specific structure. In this paper, we consider Gaussian Graphical Models as our running example, although,
as seen later, our results apply to all exponential families.

Gaussian Graphical Models. Let X = (X1, . . . , Xp) denote a zero-mean gaussian random vector; it’s
density is fully-parametrized as by the inverse covariance or concentration matrix Θ = (Σ)

−1 � 0 and
can be written as:

PΘ(x) =
1√

(2π)pdet
(

(Θ)
−1
) exp

(
−1

2
xTΘx

)
(1)

Suppose that the variables (X1, . . . , Xp) are associated with the vertex set V = {1, 2, . . . , p} of an
undirected graph G = (V,E). We say that the concentration matrix Θ∗ respects the edge structure of the
graph if Θ∗ij = 0 for all (i, j) 6∈ E. The family of Gaussian distributions with this property is known as a
Gauss-Markov random field with respect to the graph G.

4 Related Work.
In this section, we discuss the related work by dividing it into 3 broad categories.

Maximum likelihood estimation. Maximum likelihood estimation (MLE) is a commonly used parameter-
estimation technique, where one learns(fits) by maximizing the likelihood(or probability) of seeing the
given data. Maximum likelihood estimation (MLE) based estimators with `1-regularization has been
widely used for estimating the precision matrix in the Gaussian case [13]. Let {Xi}ni=1 ∈ Rp be drawn
from a multivariate gaussian Xi ∼ N (0, (Θ∗)

−1
), then the MLE estimate(Ω̂) of Θ∗ is given as:

Ω̂ = argmin
Θ�0

− 1

n

n∑
i=1

log(P(X(i)|Θ)) + λn||Θ||1,off

= argmin
Θ�0

tr(Θ, Σ̂)− logdet(Θ)) + λn||Θ||1,off (2)

where Σ̂ is the sample covariance matrix. For sake of clarity, let `Σ̂(Θ) = tr(Θ, Σ̂)− logdet(Θ)).
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4.1 Independent Learning.
The problem of recovering the structural differences between two populations has been of interest for
several years, especially in bioinformatics. de la Fuente [4] provides a comprehensive survey of the
techniques proposed in bioinformatics, in which the author claims that nearly all approaches fall in a
learn-then-compare paradigm, where each graph (Θ̂1, Θ̂2) is estimated individually disregarding any
overlapping structure. i.e. Θ̂1 is just the MLE estimate for Θ∗1 obtained by solving the optimization
problem in Equation 2. Similarly, Θ̂2 is the MLE estimate for Θ∗2. Then, the differential structure is
estimated as the the difference of the two MLE estimates. Θ̂diff = Θ̂1 − Θ̂2.

Optimization. Hsieh et al. [8] proposed a novel block coordinate descent algorithm for optimizing the
MLE(Equation 2) by carefully exploiting the underlying structure of the problem. Specifically, the blocks
to optimize are chosen via a clustering scheme to minimize repeated computations; and allowing for
inexact computation of specific components.

Guarantees. The independent learning method involves estimating the individual structures completely.
Hence, the number of samples required to estimate the differential structure is equivalent to the number
of samples required to learn each individual network. Ravikumar et al. [13] showed that the number of
samples required to learn a gaussian graphical model by solving the MLE scales as the n = Ω(d2 log p),
where d is the degree of the original graph, and p is the number of vertices. Using permutation testing
Zhang et al. [17] observed that such two-step procedures have high false discovery rate. High false
discovery rates are observed because the two-step procedure suffers from the conceptual weakness of the
structure change not being learnt directly.

4.2 Multi-task Learning.
One way to mitigate this indirect nature is to observe that the assumption of sparse differences is equivalent
to having a large shared support between different graphs. Under this assumption, one can jointly learn
the structures by explicitly encoding similarity of the graphs into the objective function and jointly learn
the two networks. Such techniques have been well-studied in past under the umbrella of Multitask
Learning[16, 3, 7]. Recently, Belilovsky et al. [2] used debiased versions of such multitask algorithms for
linear regression to obtain confidence intervals on edge differences in GGMs.

4.2.1 `1/`∞ Regularization

We have n samples per population Y = 1 and Y = 2. Using these samples one can estimate each empirical
covariance matrix, Σ̂1 and Σ̂2. Thus we have a collection of K = 2 graphical model learning problems.
Under the assumption that Θ∗diff = Θ∗1 −Θ∗2 is sparse, i.e. the two networks differ only over a few edges,
then one can set-up the learning problem as joint-estimation problem with an added regularizer which
encourages sharing of edges between the networks. This set-up suggests the use of `1/`∞ block-regularizer
for the joint estimation of Θ = (Θ1,Θ2) ∈ Rp×p×2. The block regularizer encourages an edge (i, j) ∈ E
to be either present in all graphs or be absent in all. This leads to the following optimization problem:

Θ̂ = (Θ̂1, Θ̂2) = argmin
Θ1�0,Θ2�0

`Σ̂1
(Θ1) + `Σ̂1

(Θ1) + λn
∑
i,j∈[p]
i 6=j

||
(
Θ1ij ,Θ2ij

)
||∞ (3)

Note that we do not penalize the diagonals.
Optimization. Honorio and Samaras [7] proposed a block coordinate descent algorithm for optimizing

Equation 3 by drawing connections between the multi-task structure learning problem and the continuous
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quadratic knapsack problem, for which very efficient methods exist. They prove a O(np2 + Lp3) runtime
for L iterations of their algorithm.

Guarantees. Block-regularization based multi-task algorithms have been studied in the context of
Linear Regression where the goal is to jointly learn the slopes for different populations[12]. It was shown
that `1/`∞-regularization is more sample efficient than independent learning in learning the support of the
regressors only when the overlap between supports was greater than 2

3 . We empirically show that a similar
behavior is observed for (3)(See Appendix ??.

Multi-task algorithms suffer from two issues: (1) These approaches do not work if each network is
dense but only the change is sparse. (2) When the networks are dissimilar, such joint algorithms. Most
existing network methods assume that the individual networks are sparse, whereas gene networks often
contain hub nodes[1]. Hence, learning individual networks often require more samples than what would
be needed for learning just the differences.

4.3 Direct Learning.
A complementary approach is to construct suitable loss functions which solely depend on the differential
parameters. For example, Zhao et al. [18] proposed a loss function for estimating direct sparse changes in
Gaussian graphical models (GGMs). However, their estimator is specific to GGMs and can not be applied
to say Ising models. Liu et al. [9] observed that the ratio of distributions induced by GGMs is solely a func-
tion of the difference in network parameters. Utilizing this observation, they proposed density-ratio based
estimators to directly estimate the differential parameters. They provided non-asymptotic error bounds
for the estimator along with sample complexity results for the case of sparse changes, i.e. δθ∗ ∈ Rp2 is
sparse. Recently, Fazayeli and Banerjee [6] extended the density-ratio based approach to other differential
structures e.g. block sparse, node-perturbed sparse etc. as long as the structure can be characterized by a
suitable (atomic) norm. They analyzed a norm-regularized estimator for directly estimating the change in
structure for Ising models, and provided `2 error guarantees. Since density-ratio is also a direct change
estimation technique, we describe and discuss it in detail. Note that the material discussed here is based on
[6] and [9], and we refer the reader to them for more details.

4.3.1 Density Ratio Estimation.

Consider two exponential family distributions Pθ∗1 (·) and Pθ∗2 , then the ratio of the two densities can be
written as:

r(X = x|δθ) =
Pθ1(x)

Pθ2(x)
=

exp (〈θ1, φ(x)〉)
exp (〈θ2, φ(x)〉)︸ ︷︷ ︸

r∗(x|δθ)

Z(θ2

Z(θ1)︸ ︷︷ ︸
1/Z(δθ)

=
exp (〈φ(x), δθ〉)

Z(δθ)
(4)

where Z(θ) = log(A(θ)) is the partition function, and δθ = θ1 − θ2 is the difference parameter. Also,
it can be shown that Z(δθ) = EX∼Pθ2 [exp (〈φ(X), δθ〉)] [6]. Hence, one can use samples from Pθ∗2 to
empirically estimate Z(δθ) as:

Ẑ(δθ) =
1

n2

n2∑
i=1

exp
(〈
φ(x

(2)
i , δθ

〉)
(5)

δ̂θ is obtained by minimizing the KL divergence between ̂r(X|δθ).Pθ∗2 (X) and Pθ∗1 (X). The empirical
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loss function can then be written as:

L(δθ; θ,Xn1
1 ,Xn2

2 ) =
−1

n1

n1∑
i=1

〈
φ(x1

i ), δθ
〉

+ log
1

n2

n2∑
i=1

exp
(〈
φ(x2

i ), δθ
〉)

(6)

Finally, one estimates δ̂θ by optimizing a regularized version of (6) with the regularizer encoding prior
beliefs on the change such as sparsity, block sparsity etc.

δθ̂ ∈ argmin
δθ

L(δθ; θ,Xn1
1 ,Xn2

2 ) + λn1,n2
R(δθ) (7)

Optimization. The empirical loss function doesn’t decompose over samples and hence one cannot use
stochastic gradient based algorithms. The optimization problem (7) has a smooth convex part corresponding
to the loss function and a potentially non-smooth convex part corresponding to the regularizer. Fazayeli
and Banerjee [6] gave a fast-iterative shrinkage-thresholding algorithm (FISTA) for (7) and showed an
O(1/t2) convergence rate.

Guarantees. Fazayeli and Banerjee [6] provide non-asymptotic results ||∆||2 =
∣∣∣∣∣∣δθ∗ − δθ̂∣∣∣∣∣∣

2
for differ-

ent regularizers. For example, when the change δθ∗ is sparse with s = ||δθ∗||0, Fazayeli and Banerjee [6]

proved that when n2 > s log p, then ||∆||2 = O
(√

s log p
min(n1,n2)

)
. Previously, Liu et al. [10] had established

a sample complexity of n1 = Ω(s2 log p), and n2 = Ω(n2
1) for establishing support recovery and `∞

bounds.

5 Methods.
In this section, we propose two new methods. Our first estimator improves upon the naïve learn-then-
compare estimator by performing an additional thresholding step on the difference of the individual
estimates. Our second estimator falls in the direct learning regime, and proposes a discriminative approach
to differential learning based on supervised classification.

5.1 Generative Approach: Learn-and-Threshold.
Under suitable assumptions such as irrepresentability and a sample scaling of n > d2 log(p), solutions to

the regularized MLE (2) achieve a
√

log p
n bound on the `∞ error, when λn is set to be c.

√
log p
n .∣∣∣∣∣∣Θ̂i −Θ∗i

∣∣∣∣∣∣
∞

-

√
log p

n

This means that the independent learning based empirical change estimate, δθ̂indep = Θ̂1 − Θ̂2 has an `∞

error of O
(√

log p
n

)
. To reduce the false discoveries in the difference, we perform an additional soft

thresholding step which is a solution to the following optimization problem.

δθ̂ = argmin
δθ

∣∣∣∣∣∣δθ − δθ̂indep

∣∣∣∣∣∣2
2

+ λ2 ||δ||1
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Net1 Net2 Net3 Net4 Net5 Net6

Maximum Degree (d) 9 9 9 9 9 9
Number of Edges (s) 79 79 81 82 83 83
Number of Nodes (p) 99 99 99 99 99 99
Differential Degree (ddiff) 0 8 10 14 16 16
Differential Sparsity(sdiff) 0 40 84 113 126 138

Table 1: Characteristics of Networks.

Guarantees. We know that δθ̂indep = δθ∗ + ε, where ||ε||∞ -
√

log p
n , so setting λ2 ≥ 4 ||ε||∞, will

output a δθ̂ with no false positives i.e. we’ll recover the true differential support. Moreover, assuming the

||δθ∗||0 = s, our output will have an `2-error scaling with
√

s log p
n .

5.2 Discriminative Approach: Logistic Regression.
We treat the differential parameter learning problem as a classification problem. Each distribution represents
a labeled class. i.e. Pθ∗1 corresponds to say label Y = 1 and Pθ∗2 corresponds to say label Y = 0 . Now,
suppose the two distributions, Pθ∗1 and Pθ∗2 are equally likely, then, using Bayes rule, we have that:

P[Y = 1|X] =
P[X|Y = 1]P[Y = 1]

P[X|Y = 0]P[Y = 0] + P[X|Y = 1]P[Y = 1]

=
1

1 + exp (〈θ∗1 − θ∗2 ,−φ(x)〉+ c∗)
(8)

where c∗ = A(θ∗1)−A(θ∗2). Observe that Equation 8 is just a function δθ∗ = (Θ∗1 −Θ∗2). Now, we can
estimate the difference by solving the task of learning the discriminative model given these samples via
a regularized conditional MLE. The conditional MLE is simply logistic regression with the sufficient
statistics as the features. For example, in case of GGMs and sparse differences, one would optimize
`1-regularized logistic regression with quadratic features.

(δθ̂ = (Θ̂1 − Θ̂2), ĉ) = argmin
θ,c

1

n

n∑
i=1

Y (i)
(〈〈

θ,X(i)(X(i))T
〉〉

+ c
)

+ log(1 + exp
(〈〈

θ,X(i)(X(i))T
〉〉

+ c
)

+ λn||θ||1,off (9)

6 Experiments
Setup. Using data from Roy et al. [14], we want to analyze the changes in the Escherichia coli regulatory
network under different conditions. Roy et al. [14] used a (sub)network of 99 nodes from the Escherichia
coli regulatory network[15] as the base network.(Net 1). The authors generated five other networks by
flipping 10, 30, 50, 70 and 100% of the edges of the base network. Table 6 summarizes the properties of
these networks. 1000 samples were generated per network by perturbing all transcription factor nodes and
measuring the steady state of all genes[11]. In this case we have access to ground truth networks as well.

Baseline. We use the density ratio method as our baseline1. Fazayeli and Banerjee [6] showed the
efficacy of the density ratio over independent learning of networks, hence, we omit the independent We

1Code provided by [10]
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used LIBLINEAR[5] to implement `1 regularized logistic regression with quadratic features (9).

Metric. At a fixed sample size n, for both density ratio and logistic regression, we vary the regularization

penalty λn = c.
√

log p
n and generate an ROC curve. We calculate the area under the curve (AUC) and use

that as our metric. For any sample size, we repeat the experiment for 10 trials and report the mean-AUC
along with the error bars. The higher the AUC, the better it is.
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Figure 1: Performance comparison Logistic Regression and Density Ratio as a function of decreasing
training data for six networks. Shown are mean-AUC score for inferred network structure from each
partition size. Higher is better.

Results. Figure 6 shows that our proposed approach is competitive to Density Ratio. A surprising
observation is that the so called "indirect method" of learning independently and then thresholding often
works better than "direct methods". This can be attributed to the low degree of the original graphs which
makes it easier to learn the individual graphs, but the results warrant a more in-depth analysis of the
proposed methods.

For Logistic Regression, the performance gets worse as the number of differential edges increase,
where as for Learn-and-Threshold, the performance depends on the learning of individual graphs.whilth

7 Conclusion.
In this work, we explored the problem of learning the difference between two networks. We proposed two
new methods based on "direct" and "indirect learning". We evaluated our proposed estimators based on
real-data, and found that our proposed methods perform better than the state-of-art performance.
In case of low-degree graphs, we propose a learn-and-threshold method, which after learning the graphs
individually, performs a soft-thresholding to control the outliers. We find that this method performs better
than the state of the art techniques.
In case of high-degree graphs, we propose a direct method, which uses `1 regularized logistic regression
with quadratic features to compute the difference between the two networks. We compare it to density
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ratio, and find that logistic regression is competitive. From a computational perspective, the objective for
density ratio doesn’t split over the samples, and hence requires special purpose solvers. On the other hand,
optimizing `1 regularized logistic regression is a well studied problem and large scale instances can be
easily optimized using stochastic gradient or parallel co-ordinate descent based techniques.
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