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Abstract

Background. Undirected graphical models or Markov random fields (MRFs)
are very popular for modeling multivariate probability distributions. A consid-
erable amount of work on MRFs has focused on modeling continuous variables
and unordered categorical variables also called as nominal variables. However,
data from many real world applications involve ordered categorical variables
also called as ordinal variables (e.g., movie ratings on Netflix which can be
ordered from 1 to 5 stars). While one can model ordinal variables using models
designed for continuous or nominal variables, this can result in incorrect infer-
ences about the variables. While, recent work has designed graphical models for
modeling ordinal data, the proposed estimator for learning this model involves
optimization of a difficult non-convex problem which is both computationally
expensive and doesn’t come with statistical guarantees.
Aim. Given multivariate ordinal data, we aim to estimate the joint probability
distribution and the conditional dependency structure in the data. To this end,
we provide a new estimator for ordinal probit model (a graphical model for or-
dinal data), that is computationally efficient and which comes with statistical
guarantees.
Data. We analyze HINTS-FDA dataset, which is a survey on how people ac-
cess and use smoking and cancer related information and how they perceive
risks of smoking.
Results. We apply our estimator on HINTS-FDA data to understand the
smoking behavior of people and their perceptions of smoking risks. Our anal-
ysis suggests that people who smoke, perceive smoking as less harmful than
people who don’t smoke and the lack of awareness of smoking risks could be a
reason why many people smoke.
Conclusion. We have proposed a new estimator for learning ordinal pro-
bit model that is computationally tractable and can be easily scaled to large
datasets. We empirically corroborated the superior performance of our estima-
tor for the probit model.
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1 Introduction

With the modern big data era, there has been considerable interest in learning joint
distributions over a large number of variables. As a primary tool for handling joint
distributions, graphical models (Lauritzen, 1996) not only provide us an efficient way
of representing joint distributions compactly, but also use graphs to represent the
interactions among the random variables, which is an object of additional interest
in many scientific disciplines. Undirected graphical models, also known as Markov
random fields (MRFs), represent joint distributions as the product of compatibility
functions on cliques of a graph. This factorization of a distribution encodes the
conditional independences among random variables, identified with reachability in
the corresponding graph structure.

MRFs are extensively used in a variety of fields, including natural language
processing (Manning and Schütze (1999)), biology (Friedman (2004)) and medicine
(Allen and Liu (2012)). Given their wide applicability, MRFs have been extensively
studied by researchers. The two most popular instances in the family of undirected
graphical models are Gaussian graphical models (Speed and Kiiveri, 1986; Rue and
Held, 2005) for continuous (and bell-shaped) data, discrete graphical models such
as Ising model (Ising, 1925; Jalali et al., 2011) for nominal data (an example of
a nominal variable is the religious affilication: Catholic, Muslim, Jewish, other),
or mixed cases of these two instances (Lauritzen and Wermuth, 1989; Yang et al.,
2014). However, variables that occur in many real world applications have ordered
categorical scales. For example, in medical data, diseases are graded from mild to
fatal, severity of an injury is rated from mild injury to death, stages of a disease is
rated from I to III. Ordinal variables also occur very commonly in data collected
from surveys. For example, each subject taking a survey could be asked to respond
to a question using categories such as strongly disagree, disagree, undecided, agree,
strongly agree, users of an online service could be asked to rate their experience from
one star to five star. These examples clearly show that ordinal data is pervasive in
many real world applications.

While there has been considerable work on both learning and inference with
discrete graphical models, there has been very limited work on designing graphi-
cal models for ordinal variables. In a recent work Guo et al. (2015) introduced a
graphical model for ordinal variables, called probit graphical model, which is based
on the assumption that the ordinal variables are generated by discretizing a latent
multivariate Gaussian random vector. They proposed a Maximum Likelihood (ML)
Estimator for the probit model. However, learning the estimator involves optimiza-
tion of a difficult non-convex problem. The authors propose an approximate EM
algorithm for learning the estimator from the data. Consequently, their estimator
doesn’t come with optimization and statistical guarantees. Moreover, the EM algo-
rithm presented in the paper is computationally expensive. In this work we present
a new estimator for learning the probit model. Instead of solving the global Maxi-
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mum Likelihood Estimation (MLE) problem, we solve multiple local MLE problems
which can be solved very efficiently. Moreover, these local problems can be solved
in parallel and as a result our estimator can easily scale to large datasets.

We apply our estimator to analyze HINTS-FDA dataset, which is a survey on
how people access and use smoking and cancer related information and how they
perceive risks of smoking. Through this analysis, we aim to identify the key social
indicators that are associated with smoking, understand how the perceptions of
smoking risks vary from people who smoke to who do not smoke and how people who
smoke access health information. Such an understanding can be helpful in designing
strategies to communicate smoking related health information more effectively.

2 Background and related work

As pointed out in Section 1, ordinal data is common in practice, especially in ap-
plications throughout biomedical and social sciences. One possible approach for
modeling multivariate ordinal data is to ignore the order in categories and treat it
as nominal data and use the models that were developed for nominal data. How-
ever ignoring the structure in the data has many disadvantages : a) this requires
us to estimate complex models with huge number of parameters b) this can lead
to incorrect inferences about the variables. Another possible approach for modeling
ordinal data is to treat the ordinal variables as continuous variables and use the
models that were developed for continuous data. This approach requires us to first
convert the ordinal scale to a continuous scale. Unfortunately, there is no unique
way to perform this conversion. For instance, consider the movie ratings example
in which users rate movies as one of awful, bad, not bad, good, excellent. Here is one
possible mapping of categories to the continuous scale: awful-1, bad-2, not bad-3,
good-4, excellent-5. Another possible mapping is as follows: awful-0, bad-2, not bad-
5, good-8, excellent-10. However there is no reason to prefer one mapping over the
other and both these mappings can result in different inferences about the variables.
This shows that there is a need for graphical models that can model ordinal data
by taking into consideration the structure in the data.

Before presenting the related work on ordinal MRFs, we first review relevant
literature on univariate ordinal distributions. A popular category of univariate
ordinal distributions are based on the natural generative assumption that the ordinal
variable is a quantization of a real-valued latent variable. Common distributions
imposed on the latent variable include the logistic distribution, in which case it
reduces to the classical cumulative ratio model (Agresti, 2010), as well as the more
popular standard normal distribution, in which case it is called the ordered probit
model (Becker and Kennedy, 1992).

Extensions of the univariate latent quantized model to multivariate distributions
have been considered in the literature. Here the ordinal random vector is naturally
modeled as a quantization of a real-valued latent random vector. Here, the efforts
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have focused on the use of the multivariate normal distribution for the latent ran-
dom vector, due plausibly to its more convenient mathematical nature; the resulting
model is also known as the multivariate probit model (Ashford and Sowden, 1970;
Amemiya, 1974). But even with this modeling assumption, the likelihood of the ob-
served ordinal random vector is not available in closed-form, is considerably complex
due to the presence a multi-dimensional integral, and in particular is non-convex,
so that learning the model given just the ordinal observations is typically compu-
tationally intractable. There have been some efforts to propose computationally
amenable approximations of the MLE, including MCMC based estimates (Chib and
Greenberg, 1998), and expectation maximization Guo et al. (2015). However these
approximations are still computationally expensive and do not come with statistical
guarantees.

3 Probit Graphical Model

In this section, we formally describe the Probit graphical model and present our
estimator for estimating the model from data. Suppose Y := (Y1, . . . , Yp) is a p-
dimensional ordinal random vector, with each variable Ys taking values from an
ordinal set Ys := {0, . . . ,M} (Note that to simplify the notation we use the same
number of categories for all variables. The algorithm and analysis we present here
are valid even with differing numbers of categories). In the probit model, the random
vector Y is assumed to be generated from a latent multivariate Gaussian random
vector Z = (Z1, . . . , Zp), where Z ∼ N (0,Σ∗) and Zi ∼ N (0, 1) ∀i ∈ [1, p] (i.e, the
diagonal entries of Σ are equal to 1). Each Yi is obtained through discretization of Zi

as follows: Yi = k, iff Zi ∈ [θ
(i)
k−1, θ

(i)
k ), where {θ(i)

k }
M
k=−1 is the set of thresholds,

θ
(i)
−1 = −∞, θ

(i)
M =∞. Then the density function of Y , P(Y ; Σ∗,Θ∗), is given by:

P(θ
(1)
Y1−1 ≤ Z1 < θ

(1)
Y1
, . . . , θ

(p)
Yp−1 ≤ Zp < θ

(p)
Yp

; Σ)

=

∫
z∈C(Y,Θ∗)

1√
(2π)p|Σ|

exp

(
−1

2
zΣ−1zT

)
dz (1)

where Θ∗ = {θ(j)
k : j ∈ [1, p], k ∈ [−1,M ]} and C(Y,Θ∗) is the hypercube defined by

[θ
(1)
Y1−1, θ

(1)
Y1

)× . . .× [θ
(p)
Yp−1, θ

(p)
Yp

).

Let {yi}ni=1 be n i.i.d realizations of the random vector Y . Then the `1-regularized
MLE estimator to learn the parameters Σ, Θ from observed data {yi}ni=1 takes the
form:

minimize
Σ,Θ

−
n∑
i=1

logP(yi; Σ,Θ) + λn‖Σ−1‖1,off (2)

where ‖ · ‖1,off is the element-wise `1 norm excluding diagonal entries. It can be seen
that the objective is non-convex, and intractable to optimize in general. Accordingly,
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approximate estimates such as those based on MCMC (Chib and Greenberg, 1998),
and expectation maximization Guo et al. (2015) have been proposed for learning
the model parameters, but these are still relatively computationally demanding, but
also does not come with the strong statistical guarantees of the actual regularized
MLE solutions.

3.1 A Direct Estimation Method

We now propose an alternative estimator of the parameters in the probit graphi-
cal model distribution in (1). Given {yi}ni=1, our aim is to estimate the unknown
parameters Σ∗, Θ∗.

3.1.1 Estimation of Θ

We define Θ̂, our estimator of Θ as follows:

Θ̂
(j)
k =


−∞ if k = −1

Φ−1( 1
n

∑n
i=1 I(yi,j ≤ k)) if k = 0, . . . ,M − 1

∞ if k = M

(3)

where Φ(.) is the CDF of standard normal distribution, I(.) is the indicator function,
yi,j is the jth coordinate of vector yi. It can be seen that Θ̂ consistently estimates
Θ∗.

3.1.2 Estimation of Σ and latent graph structure

We present a two step approach for estimation of covariance matrix Σ. In the first

step, we compute a raw estimate Σ̃ of Σ using the approach we describe below. In

the next step we plugin the estimated covariance matrix Σ̃ into the graphical lasso
estimator (Friedman et al., 2008) to estimate the sparse latent graph structure and

a smoothed estimate Σ̂ of Σ∗.
Step 1: To estimate each entry of Σ̃ we solve an independent optimization problem.
Lets suppose we want to estimate Σjk, for j 6= k. The joint distribution of (Yj , Yk)

is multinomial with probabilities: P(Yj , Yk; Θ,Σjk) = P(θ
(j)
Yj−1 ≤ Zj ≤ θ

(j)
Yj
, θ

(k)
Yk−1 ≤

Zk ≤ θ
(k)
Yk

; Σjk). Note that the joint distribution of random variables Zj , Zk is bivari-

ate normal with mean [0, 0] and covariance

[
1 Σjk

Σjk 1

]
. For a fixed Θ, one could

estimate the unknown parameter Σjk by maximizing the log likelihood function,
which has the following form:

`jk(σ; {yi}ni=1 ,Θ) =

M∑
a=0

M∑
b=0

nab
n

logP(Yj = a, Yk = b; Θ, σ)

=

M∑
a=0

M∑
b=0

nab
n

log φa,b(σ; Θ), (4)
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(a) Data sampled from a Probit model with
chain graph structure, with ω = −0.3.
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(b) Data sampled from a Probit model with
chain graph structure, with ω = −0.9.

Figure 1: The top plots show the ROC curves for n = 50, 100. The bottom plots
show the performance on Entropy Loss and Frobenius Loss metrics.

where nab =
∑n

i=1 I(yi,j = a, yi,k = b) and φa,b(σ; Θ) is defined as: P(θ
(j)
a−1 ≤ Zj ≤

θ
(j)
a , θ

(k)
b−1 ≤ Zk ≤ θ

(k)
b ;σ). However, the thresholds Θ∗ are unknown. So to estimate

Σjk, we replace Θ∗ with its estimator Θ̂ and maximize the following log likelihood:

Σ̃jk = arg max
σ∈M

`jk(σ; {yi}ni=1 , Θ̂).

where M is the domain of σ, which is (−1, 1) unless no additional constraint on
covariance is placed.

Step 2: In this step we plug-in Σ̃ into a parametric Gaussian graphical model
estimator to obtain the sparse graph structure and the final covariance matrix.
While any consistent parametric Gaussian estimator (e.g., graphical lasso estima-
tor (Friedman et al., 2008), CLIME (Cai et al., 2011), graphical Dantzig selector
(Yuan, 2010)) can be used to estimate the latent graph structure, in this work we
focus on the graphical lasso estimator (glasso), which involves solving the following
optimization problem:

Σ̂ = arg min
Σ−1�0

〈〈Σ−1, Σ̃〉〉 − log det
(
Σ−1

)
+ λn‖Σ−1‖1,off (5)

where 〈〈A,B〉〉 denotes the trace inner product of A and B. Note that this step also
acts a model selection step. The `1 penalty in the objective gives us sparse graphs in
the high dimensional setting. For complete details about the consistency properties
of glasso, refer to (Ravikumar et al., 2011).

4 Synthetic Experiments

In this section we compare the performance of our new estimator for Probit Graph-
ical model (which we call ProbitConsistent) with various baselines, on synthetic
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datasets. We present more comparison results on HINTS-FDA dataset in Section 5.
Baselines: In these experiments we compare the performance of our estimator with
the following estimators:

◦ ProbitEM: Expectation Maximization algorithm proposed by Guo et al. (2015)
for learning Probit model.

◦ Discrete model: This model treats each ordinal variable as a nominal variable.
For learning this model, we use the approach proposed by Jalali et al. (2011),
which learns the graph structure by estimating the neighborhood at each node.

◦ Oracle: When the data is generated from a Probit model, we also compare
with an oracle estimator which has access to the latent variables of the model.
Here we run graphical lasso on the latent variables to estimate the graph
structure.

Evaluation Metrics: To evaluate the accuracy of the estimated graph structure,
we generate ROC plots for all the approaches. TPR in ROC plots is the proportion
of correctly detected edges and FPR is the proportion of the misidentified non
edges. Since Oracle, ProbitEM and ProbitConsistent estimate the same model, we
compare them using two other metrics, namely Frobenius Loss and Entropy Loss

which are defined as: Frobenius Loss = ‖Σ−1−Σ̂−1‖F
‖Σ−1‖F , Entropy Loss = tr(ΣΣ̂−1) −

log det(ΣΣ̂−1) − p, where Σ is the true covariance matrix and Σ̂ is the estimated
covariance matrix.

Model Selection: To compare Oracle, ProbitEM and ProbitConsistent using
Frobenius Loss and Entropy Loss, we need a criteria to pick the tuning parameter λ
used in each of these estimators. For ProbitEM we use the cross validation technique
proposed in Guo et al. (2015) and for Oracle we use the standard cross validation
for glasso.

For ProbitConsistent we use the following k-fold cross validation technique. We
partition the data set into k subsets. Each time, we use one of the k subsets as
the validation set and the remaining k-1 subsets as training set. Let Σ̂−i be the
covariance matrix output by Step 2 of ProbitConsistent, when trained using all the
subsets except ith subset. And let Σ̃i be the raw estimate of Σ obtained from Step
1 of ProbitConsistent, using ith subset. We pick a λ which maximizes the following
score:

∑k
i=1 log det(Σ̂−1

−i )− 〈〈Σ̂
−1
−i , Σ̃i〉〉.

Experiment Settings: In all our experiments we fix the number of nodes in
the graph to 50 and set number of categories for each random variable to 5. To
reduce the variance, we average results over 10 repetitions.

4.1 Results

In our experiments we generate ordinal data from a Probit model. We simulate data
from a chain graph. The inverse covariance matrix of the latent variables is chosen
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as follows:

Σ−1j,k =

{
ω|j−k| if |j − k| ≤ 1

0 otherwise
. (6)

We pick an ω ∈ (−1, 1) in our experiments and set the thresholds (θ) at node j
as : θ(j) = [−Inf,−10,−0.7, 0.7, 10, Inf]. Finally we scale the covariance matrix so
that all the variances are equal to 1. Figures 1a, 1b show the results obtained using
ω = −0.3,−0.9 respectively. More results for large n and grid and random graphs
can be found in Appendix A.

4.2 Discussion

When the correlations between latents are high (Figure 1b), it can be seen that
ProbitConsistent performs much better than ProbitEM. In this case the Frobenius
norm of ProbitEM doesn’t go down as n increases. This could be because of the mean
field approximation that is made by Guo et al. (2015) to speed up the EM algorithm.
In the E-step of their algorithm they approximate E[ZjZk|Y ; Θ̂, Σ̂] as E[Zj |Y ; Θ̂, Σ̂]×
E[Zk|Y ; Θ̂, Σ̂]. This decouples the interactions between any two random variables.
In the presence of high correlations, this turns out to be a poor approximation. In
general, we can also see that ProbitConsistent has better Frobenius and Entropy
losses than ProbitEM, when the sample complexity is low.

5 HINTS-FDA Data Analysis

5.1 Dataset Description

The Health Information National Trends Survey (HINTS)1 is a nationally represen-
tative survey conducted by the National Cancer Institute (NCI) every few years.
HINTS collects data on how American public accesses and uses cancer related in-
formation. The survey evaluates public’s cancer related knowledge and perception
of cancer risks.

In this work we analyze HINTS-FDA data which is a special data collected by
NCI in partnership with the Food and Drug Administration (FDA) and is made
publicly available by NCI. This survey collected data on the public’s use of tobacco
products and assessed public’s knowledge of perceptions of tobacco product harm,
tobacco product claims. This survey was conducted by mail from May 29 through
September 8, 2015. A total of 13,001 households have been selected for the survey,
out of which 3738 households have mailed back the completed questionnaire (a
response rate of 28.7%). For complete details on survey methodology and sampling
strategy please refer to (National-Cancer-Institute, 2017b).

The survey questionnaire has approximately 350 questions. It collected detailed
information on the following topics:

1https://hints.cancer.gov/
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Figure 2: Summary statistics of the HINTS-FDA dataset.

◦ Tobacco Product Use, Beliefs about Tobacco Products, Beliefs About Cigarette
Claims, Beliefs About Cancer, How do people access Health Information?, So-
cio Demographic Indicators.

Information related to other topics such as use of dietary supplements was also
collected through the survey. However, we do not use that information in our
analysis. Almost all the questions in the survey (except for ∼ 10 questions) have
either ordinal or categorical responses. For the complete survey questionnaire please
refer to (National-Cancer-Institute, 2017a). Figure 2 shows some summary statistics
of the data.

5.2 Data Preprocessing

Missing values: The original data collected through the survey has missing re-
sponses for a number of questions. Some of these missing responses have already
been imputed in the data that was made publicly available through the HINTS
website. In our analysis, we impute the rest of the missing responses using median.
If a question has more than 50% missing responses then we don’t use the responses
for that question in our analysis.
Categorical Data: Some of the questions in the survey have categorical responses
(e.g., Marital Status). We use one hot encoding technique for such responses to
convert them into binary format.
Count Data: For responses which are neither categorical nor ordinal (such as age,
how many hours does a person watch TV etc.,) we binned the responses into a
fixed number of categories and converted them into ordinal variables. For example,
for number of hours of TV watched per week we created 5 buckets : <1hr, 2-3hrs,
3-5hrs, 5-10hrs, >10hrs.
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5.3 Comparison with Baseline Models

Before we move onto the data analysis, we present more experimental results com-
paring the performance of our estimator with other baselines, on HINTS-FDA
dataset.

Tasks: In this experiment we compare the performance of estimators on various
ordinal regression tasks (note that although we train a graphical model, we can use
the trained model for regression tasks):

◦ Predict IncomeRange: In this task, the goal is to predict the Income Range (an
ordinal variable with 9 categories) of an individual given various sociodemo-
graphic indicators of that individual. The specific explanatory variables used
are as follows: Education, Marital Status, Have Health Insurance?, Occupation
Status.

◦ Predict SmokeNow : Here the goal is to predict whether an individual smokes
or not (an ordinal variable with 3 categories : smoke very often, smoke very
rarely, don’t smoke) using explanatory variables related to sociodemographic
indicators (described above).

◦ Predict SmokeNow2 : Here the goal is to predict whether an individual smokes
or not from the individual’s smoking perceptions. The specific explanatory
variables used are as follows: CigarettesHarmHealth, TobaccoSaferNow, LowN-
icotineHarmful, LowNicotineAddictive, NicotineCauseCancer.

◦ Predict PreventionNotPossible: The goal of this task is to predict if an individ-
ual thinks prevention of cancer is possible or not (which is an ordinal variable
with 4 categories: from Strongly Agree to Strongly Disagree). We again use
the sociodemographic indicators as the explanatory variables for this task.

Models: We fit a Probit model for HINTS-FDA data using both our approach and
the EM approach of Guo et al. (2015) (we call these estimators ProbitConsistent
and ProbitEM respectively as in Section 4) for each of the tasks described above.
We treat the explanatory variables and the dependent variable as nodes in the graph
and individuals as samples drawn from the graph. We learn the graphical model
from training data and use the same cross validation strategy described in Section
4 to pick the best tuning parameter. In the testing phase, given the explanatory
variables we perform MAP inference to predict the dependent variable.

We also compare performance of our estimator with two other baseline regres-
sion models: Multinomial Logistic regression model(MultLogi), Proportional Odds
Logit model (PropOdds) Peterson and Harrell Jr. (1990). MultLogi is a model for
classification which ignores the order of categories in the dependent variable and
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treats it as nominal variable. Note that we do not compare with Multinomial Pro-
bit model because, the probit link in Probit model and logit link in MultLogi model
have similar shapes and in practice, both usually have similar performance. Denot-
ing y ∈ {0, . . . ,M} as the dependent variable and x as the vector of explanatory
variables, the model can be summarized as follows:

log
P (y = j)

P (y = M)
= αj − βTj x, ∀j ∈ {0,M − 1},

where α, {βj}M−1
j=0 are the parameters of the model. PropOdds is a popular model

for ordinal regression . The model can be summarized as follows:

log
P (y ≤ j)
P (y > j)

= αj − βTx, ∀j ∈ {0,M − 1}.

Note that PropOdds is a more frugal model that MultLogi model. More impor-
tantly, PropOdds takes the ordering of categories in the dependent variable y into
consideration.

Performance Metric: Note that accuracy, which is commonly used to measure
performance of classification tasks, is not a good performance metric for ordinal
regression. So we use Kendall’s Tau-b correlation measure between predicted and
true responses, a popular metric for measuring the performance of ordinal regres-
sion. It is defined as follows. Let (x1, y1) . . . (xn, yn) be a set of observations of the
joint random variables X and Y . Then Kendall’s Tau-b between {xi}ni=1, {yi}ni=1 is
proportional to:

τB ∝
∑
i<j

sign[(xi − xj)(yi − yj)].

Note that τB ∈ [−1, 1], with 1 corresponding to perfect positive association.
We generated a random 80/20 train-test split from the overall dataset and fit

the models described above using the training split. Table 1 shows the τB corre-
lation between predicted and true responses on test dataset. It can be seen that
ProbitConsistent has a better performance than ProbitEM in almost all the tasks.
PropOdds, MultLogi seem to have a slightly better performance than ProbitConsis-
tent. This is expected, because PropOdds, MultLogi are specifically trained for the
regression task, whereas ProbitConsistent is not.

5.4 Analysis Methodology

In this section we outline the methodology we used for analyzing HINTS-FDA
dataset. We treat each question in the survey as a node in the graph and responses
of individuals to these questions as samples drawn from the graph. We selected 114
questions from the dataset,that are relevant for our analysis, on the following top-
ics: Tobacco Product Use, Beliefs about Tobacco Products, Beliefs About Cigarette
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Task ProbitEM ProbitConsistent PropOdds MultLogi

Predict IncomeRange 0.487 0.499 0.503 0.494

Predict
SmokeNow

0.176 0.341 0.347 0.343

Predict
SmokeNow2

0.117 0.126 0.1 0.084

Predict
PreventionNotPossible

0.239 0.393 0.411 0.415

Table 1: Performance comparison of ProbitEM, ProbitConsistent, PropOdds, Mult-
Logi models on various regression tasks. The numbers in the cells represent the
Kendalls’s Tau-b correlation between the predicted and the true responses on test
dataset.

Claims, How do people access Health Information?, Socio Demographic Indicators.
We fit the probit model using ProbitConsistent on the selected questions. To choose
the best tuning parameter we use 10 fold cross validation technique described in
Section 4. We obtain 95% confidence intervals for the edge strengths (i.e., par-
tial correlations) of the latent graph through jackknife re-sampling technique. The
HINTS-FDA dataset comes with jackknife replicates, which we use to compute con-
fidence intervals. We place an edge in the graph only if its confidence interval doesn’t
intersect with [−0.1, 0.1].

5.5 Results

Next, we present the results from our analysis. We first consider the question of
how various variables related to sociodemographic indicators are associated with
smoking behavior of a person. Figure 3 shows the estimated graph structure for
these variables. Table 2 describes some of the relevant nodes in the graph. For a
more complete list of variables, please refer to Table 3 in Appendix B. Of particular
interest to us is the variable SmokeNow, which asks people how often they smoke.
Specifically, we are interested in how this variable is associated with other variables.
From the graphs, we can see that the variable that has a very significant association
with SmokeNow is Education. This indicates that if a person is well educated then
conditioned on all the other variables, there is lower chance that the person smokes.
The other two significant associations of SmokeNow are with Mexican and White. If
a person is Mexican, it can be seen that conditioned on rest of the variables, there is
a lower chance that the person smokes. The opposite is true if the person is White.

Next, we try to understand how the perceptions of smoking risks vary with
smoking behavior. Figure 4 presents the estimated graph. Table 3 describes some
of the relevant nodes in the graph. It can be seen that SmokeNow and FewCi-
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Node Name Question Possible Responses

Education
What is the highest grade or level

of schooling you completed?

1-’Less than 8 years’, 2-’8 through 11 years’ ,
3-’12 years or completed high school’,

4-’Post high school training’
5-’Some college’, 6-’College graduate’,

7-’Postgraduate’

FewCigarettesHarmHealth
How much do you think people harm

themselves when they smoke
a few cigarettes every day?

1-No harm, 2-Little harm,
3-Some harm, 4 - A lot of harm

HealthInsurance Do you have any kind of health care coverage? 1-Yes, 2-No

Mexican Are you a Mexican? 1-’Yes’, 2-’No’

NoticeHealthInfoInternet Have you read such health information on the Internet? 1-’Yes’, 2-’No’

SmokeNow
Do you now smoke cigarettes every day,

some days or not at all?
1-Everyday, 2-Some days, 3-Not at all

TobaccoEffects TV
how often have you seen,

heard, or read a message about
the health effects of tobacco use on TV?

1-’Never’, 2-’A couple of times’, 3-’Lot of times’

UseInternet Do you ever go on-line to access the Internet? 1-’Yes’, 2-’No’

White Are you a White? 1-’Yes’, 2-’No’

Table 2: Description of questions corresponding to key nodes in Figures 3, 4, 5.

garettesHarmHealth have a positive partial correlation between them. It indicates
that, conditioned on the rest of the variables, people who smoke, perceive smoking
as less harmful than people who don’t smoke. The observations from Figures 3, 4
suggest that, it is the lack of proper awareness about the risks of smoking that causes
more people to smoke (which also agrees with our natural belief). So, strategies for
communicating smoking related health information should focus more on the less
educated stratum of the population.

We now study how people access their health information, to see if people who
smoke use a different medium than people who don’t smoke to access health infor-
mation. Figure 5 shows the graph with variables relevant to how people get their
health info. It can be seen that their is a strong negative relation between Education
and UseInternet, NoticeHealthInfoInternet indicating that people who are less edu-
cated don’t use internet to access health information. The negative edges between
TobaccoEffects TV and Education, SmokeNow suggests that people who smoke and
who are less educated get their tobacco related health information through TV
more than others (the opposite is true with TobaccoEffects Newspaper). All these
observations possibly suggest that TV is a more effective way than Newspapers and
Internet to communicate health information to less educated stratum of the pop-
ulation. Note that this last statement needs further analysis, as our analysis only
focused on identifying associations and not causal relations.

5.6 Limitations

In this analysis we only focused on identifying associations between various variables
of interest. However, an analysis that identifies causal relationships would be much
more helpful in understanding what factors cause people to smoke. Such an analysis
can help us in designing schemes to effectively reduce smoking prevalence.

The probit model we used in the analysis, assumes that the latent variables are
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Figure 3: The estimated latent graph structure corresponding to SmokeNow and
sociodemographic indicators. The graph is generated from the marginal distribution
of the corresponding variables. Green edges represent positive partial correlations
and red edges represent negative partial correlations. Edge thickness is proportional
to the magnitude of the partial correlation.

Figure 4: The estimated latent graph structure for variables corresponding to per-
ceptions of smoking risks and SmokeNow. The graph is generated from the marginal
distribution of the corresponding variables.
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Figure 5: The estimated latent graph structure for variables corresponding to how
people access health information.The graph is generated from the marginal distri-
bution of the corresponding variables.

normally distributed. While we didn’t verify the correctness of this assumption, we
believe that any choice of latent distribution will lead to similar inferences about
the data (as long as the latent distribution is flexible enough to model both negative
and positive associations). This can be clearly seen in the univariate case, where
any choice of latent distribution leads to the same class of models.

6 Conclusion

We have proposed a new estimator for learning ordinal probit model that is com-
putationally tractable and can be easily scaled to large datasets. We empirically
corroborated the superior performance of our estimator for the probit model. We
applied our estimator on HINTS-FDA dataset to analyze the smoking behavior of
people and their perceptions of smoking risks. We found that people who smoke,
perceive smoking as less harmful than people who don’t smoke and the lack of
awareness of smoking risks could be a reason why many people smoke.

7 Future Work

The probit model we considered in this work can’t be used to model mixed data
(i.e., data in which different kinds of variables occur together). We don’t often see a
dataset that only has ordinal variables. So, one direction for future work would be
to extend the probit model to handle mixed data efficiently. Missing data is another
issue that is common in many real world datasets. In our analysis, we imputed
the missing data using the median. Another direction for future work would be to
handle the missing data problem in a more sophisticated way.
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Appendix

A Synthetic Experiments

Here we present results from simulations when the data is generated from a Probit
model with grid and random graph structures. We first describe the graphs and
exact model parameters that were used in these simulations.

◦ Grid Graph: We select a 10 × 5 grid graph, with 10 rows and 5 columns.
For all the vertical edges we set the corresponding entries in inverse co-
variance matrix as −0.25 and for all the horizontal edges we set the corre-
sponding entries as 0.25. We set the thresholds (θ) at node j as : θ(j) =
[−Inf,−10,−0.7, 0.7, 10, Inf]. Figure 6 presents the results from this simula-
tion.

◦ Random Graph: We use the same graph generation procedure as Liu et al.
(2012). For each node j in the graph we associate a bivariate random variable
Uj = (U1,j , U2,j) ∈ [0, 1]2 uniformly sampled from a unit square. An edge is
included between (j, k) with probability:

1√
2π

exp−‖Uj − Uk‖
2
2

0.15
.

If an edge is added between (j, k) then the corresponding entry in the inverse
covariance matrix is set to ω ∈ (−1, 1). We use the same thresholds (θ) as
in grid graph, to convert the latent variables to ordinal variables. Figure 7
presents the results for ω = 0.8,−0.65.

B HINTS FDA
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Node Name Question Possible Responses

CigarettesHarmHealth
How long do you think someone

has to smoke cigarettes
before it harms their health?

1-’< 1 year’, 2-’1 year’
3 - ’5 years’, 4 - ’10 years’

5 - ’20 years or more’

DailySmokelessHarm
How much do you think people harm

themselves when they use
smokeless tobacco every day?

1-No harm, 2-Little harm,
3-Some harm, 4 - A lot of harm

HealthInsurance
Do you have any kind of

health care coverage?
1-Yes, 2-No

Education
What is the highest grade or level

of schooling you completed?

1-’Less than 8 years’, 2-’8 through 11 years’ ,
3-’12 years or completed high school’,

4-’Post high school training’
5-’Some college’, 6-’College graduate’,

7-’Postgraduate’

FewCigarettesHarmHealth
How much do you think people harm

themselves when they smoke
a few cigarettes every day?

1-No harm, 2-Little harm,
3-Some harm, 4 - A lot of harm

HealthInsurance
Do you have any kind of

health care coverage?
1-Yes, 2-No

Homemaker Occupation Status 1-Not Homemaker, 2-Homemaker

IncomeRanges IMP
what is the combined annual

income of your family?

1-’$0-$9,999’, 2-’$10,000-$14,999’ ,
3-’$15,000-$19,999’, 4-’$20,000-$34,999’
5-’$35,000-$49,999’, 6-’$50,000-$74,999’,

7-’$75,000-$99,999’, 8-’$100,000-$199,999’
9- ’$200,000 or more’

PhoneInHome
Is there at least one telephone

inside your home?
1-Yes, 2-No

Retired Occupation Status 1-Not Retired, 2-Retired

SmokeNow
Do you now smoke cigarettes every day,

some days or not at all?
1-Everyday, 2-Some days, 3-Not at all

TobaccoEffects TV

how often have you seen,
heard, or read a message about

the health effects of tobacco
use on TV?

1-’Never’, 2-’A couple of times’, 3-’Lot of times’

Mexican Are you a Mexican? 1-’Yes’, 2-’No’

White Are you a White? 1-’Yes’, 2-’No’

Table 3: Table describing the questions corresponding to some of the nodes in
Figures 3, 4, 5.
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Figure 6: Data sampled from a Probit model with grid graph structure. The top
plots show the ROC curves for n = 50, 100. The bottom plots show the performance
on Entropy Loss and Frobenius Loss metrics.
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Figure 7: Data sampled from a Probit model with random graph structure. Left 4
plots correspond to ω = 0.8 and the right 4 plots correspond to ω = −0.65. The top
plots show the ROC curves for n = 50, 100. The bottom plots show the performance
on Entropy Loss and Frobenius Loss metrics.
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