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1 Abstract

Background. Applications of deep convolutional neural networks (CNN) have been overwhelmingly success-
ful in all aspect of perception tasks, ranging from computer vision to speech recognition and understanding,
from biomedical data analysis to quantum physics. In the past couple of years, we have seen the evolution
of many successful CNN architectures such as AlexNet, VGG, Inception, and ResNet. However, training
these networks end-to-end with fully learnable convolutional filters (as is standard practice) is still very
computationally expensive and is prone to over-fitting due to the large number of parameters. To alleviate
this issue, we have come to think about this question: can we arrive at a more efficient CNN in terms of
learnable parameters, without sacrificing the high CNN performance?

Aim. In this paper, we aim at reducing the computational complexity of CNNs while maintaining comparable
performance with standard CNNs. We introduce the polynomial convolutional modules as a weight-learning
efficient replacement for the standard convolutional module in a deep convolutional neural networks. The
resulting CNN is called the polynomial convolutional neural networks (PolyCNN).

Data. We have experimented with 4 large-scale visual datasets, MNIST, SVHN, CIFAR-10, and ILSVRC-
2012 ImageNet classification challenge. MNIST contains 70K 32×32 gray-scale images showing hand-written
digits from 0 to 9. SVHN contains 630K 32 × 32 color images showing house number digits. CIFAR-10
contains 60K 32 × 32 color images across 10 object categories. The ILSVRC-2012 ImageNet classification
dataset consists of 1000 classes with over 1.33 million 224× 224 color images.

Methods. The core idea behind the PolyCNN is that at each convolutional layer, only one convolutional
filter is needed for learning the weights, which we call the seed filter, and all the other convolutional filters
are the polynomial transformations of the seed filter, which is termed as an early fan-out. Alternatively, we
also perform late fan-out on the seed filter response to create the number of response maps desired to be
input into the next layer.

Results. Both early fan-out and late fan-out allow the PolyCNN to learn only one convolutional filter at
each layer, which can dramatically reduce the model complexity by saving 10× to 50× parameters during
learning. While being efficient during both training and testing, the PolyCNN does not suffer performance
due to the non-linear polynomial expansion which translates to richer representational power within the
convolutional layers. We have verified the on-par performance between the proposed PolyCNN and the
standard CNN on several visual datasets, such as MNIST, SVHN, CIFAR-10, and ImageNet.

Conclusions. We have proposed the PolyCNN as a weight-learning efficient alternative to the standard
convolutional neural networks. The PolyCNN module enjoys significant savings in the number of parameters
to be learned at training, at least 10× to 50×. PolyCNN has much lower model complexity compared to
traditional CNN with standard convolutional layers. The proposed PolyCNN demonstrates performance on
par with the state-of-the-art architectures on four image recognition datasets.

Keywords: Convolutional Neural Networks
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2 Introduction

Applications of deep convolutional neural networks (CNNs) have been overwhelmingly successful in
all aspect of perception tasks, ranging from computer vision to speech recognition and understand-
ing, from biomedical data analysis to quantum physics. In the past couple of years, we have seen
the evolution of many successful CNN architectures such as AlexNet [1], VGG [2], Inception [3], and
ResNet [4, 5]. However, training these networks end-to-end with fully learnable convolutional filters
(as is standard practice) is still very computationally expensive and is prone to over-fitting due to
the large number of parameters. To alleviate this issue, we have come to think about this question:
can we arrive at a more efficient CNN in terms of learnable parameters, without sacrificing the high
CNN performance?

In this paper, we present an alternative approach to reducing the computational complexity of
CNNs while performing as well as standard CNNs. We introduce the polynomial convolutional
neural networks (PolyCNN). The core idea behind the PolyCNN is that at each convolutional
layer, only one convolutional filter is needed for learning the weights, which we call the seed filter,
and all the other convolutional filters are the polynomial transformations of the seed filter, which
is termed as an early fan-out. Alternatively, we could also perform late fan-out on the seed filter
response to create the number of response maps desired to be input into the next layer. Both
early and late fan-out allow the PolyCNN to learn only one convolutional filter at each layer, which
can dramatically reduce the model complexity. Parameter savings of at least 10×, 26×, 50×, etc.
can be realized during the learning stage depending on the spatial dimensions of the convolutional
filters (3× 3, 5× 5, 7× 7 etc. sized filters respectively). While being efficient during both training
and testing, the PolyCNN does not suffer performance due to the non-linear polynomial expansion
which translates to richer representational power within the convolutional layers. We have verified
the on-par performance between the proposed PolyCNN and the standard CNN on several visual
datasets, such as MNIST, CIFAR-10, SVHN, and ImageNet.

3 Problem Statement

Deep convolutional neural networks (CNNs) have been overwhelmingly successful in all aspect of
perception tasks. Over the past couple of years, we have seen the evolution of many successful CNN
architectures such as AlexNet [1], VGG [2], Inception [3], and ResNet [4, 5]. However, training these
networks end-to-end with fully learnable convolutional filters (as is standard practice) is still very
computationally expensive and is prone to over-fitting due to the large number of parameters. To
alleviate this issue, we have come to think about this question: can we arrive at a more efficient
CNN in terms of learnable parameters, without sacrificing the high CNN performance?

4 Data

We have experimented with 4 publicly available visual datasets, MNIST [6], SVHN [7], CIFAR-10
[8], and ImageNet ILSVRC-2012 classification dataset [9]. The MNIST [6] contains a training set
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of 60K and a testing set of 10K 32 × 32 gray-scale images showing hand-written digits from 0 to
9. SVHN [7] is also a widely used dataset for classifying digits, house number digits from street
view images in this case. It contains a training set of 604K and a testing set of 26K 32× 32 color
images showing house number digits. CIFAR-10 [8] is an image classification dataset containing a
training set of 50K and a testing set of 10K 32 × 32 color images, which are across the following
10 classes: airplanes, automobiles, birds, cats, deers, dogs, frogs, horses, ships, and trucks. The
ImageNet ILSVRC-2012 classification dataset [9] consists of 1000 classes, with 1.28 million images
in the training set and 50K images in the validation set, where we use for testing as commonly
practiced. For faster roll-out, we first randomly select 100 classes with the largest number of images
(1300 training images in each class, with a total of 130K training images and 5K testing images.),
and report top-1 accuracy on this subset. Full ImageNet experimental results are also reported in
the subsequent section.

5 Related Work

Given the proliferation and success of deep convolutional neural networks, there is growing interest
in improving the efficiency of such models both in terms computational and memory requirements.
Multiple approaches have been proposed to compress existing models as well as to directly train ef-
ficient neural networks. Approaches include pruning unnecessary weights in exiting models, sharing
of parameters, binarization and more generally quantization of model parameters, transferring the
knowledge of high-performance networks into a smaller more more compact network by learning a
student network to mimic a teacher network.

The weights of existing networks can be pruned away using the magnitude of weights [10], or the
Hessian of the loss function [11, 12]. Ba and Caruna [13], showed that it is possible to train a
shallow but wider student network to mimic a teacher network, performing almost as well as the
teacher. Similarly Hinton et al. [14] proposed Knowledge Distillation to train a student network to
mimic a teacher network. Among recent approaches for training high-performance CNNs, PolyNet
[15] is most similar to our proposed PolyCNN. PolyNet considers higher-order compositions of
learned residual functions while PolyCNN considers higher-order polynomials of the weights and
response-maps.

6 Proposed Method

6.1 Inspiration

Two decades ago, Mahalanobis and Vijaya Kumar generalized the traditional correlation filter
and created the polynomial correlation filter (PCF) [16], whose fundamental difference is that the
correlation output from a PCF is a nonlinear function of the input. As shown in Figure 1, the input
image x undergoes a set of point-wise nonlinear transformation (polynomial) for augmenting the
input channels. Based on some pre-defined objective function, usually in terms of simultaneously
maximizing average correlation peak and minimizing some correlation filter performance criterion
such as average similarity measure (ASM) [17], output noise variance (ONV) [18], the average
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The corresponding filter structure is shown in Figure 6.10.

6.4.1 Derivation of the solution

The objective is to find the filters hi(m, n) such that structure shown inFigure 6.10

optimizes a performance criterion of interest. We have shown earlier that, for

correlation purposes, a useful approach is to maximize the OT performance

criterion

J hð Þ ¼ mþhj j2

hþBh
(6:97)

where h is the filter vector in the frequency domain, B is a diagonal matrix

related to a spectral quantity, and m is the mean image vector, also in the

frequency domain. For example, MACH filter design involves maximizing the

metric in Eq. (6.66). The polynomial correlation filter can also be designed in a

similar way. Of course, the premise is that a higher-order (nonlinear) solution

will yield higher values of J(h) than the corresponding linear solutions.

For simplicity, we will firstly discuss the derivation of a second-order filter.

In this case, the polynomial has only two terms and the output is given by

g m; nð Þ ¼ x m; nð Þ � h1 m; nð Þ þ x2 m; nð Þ � h2 m; nð Þ (6:98)

The expression for J(h) is obtained by deriving the numerator and the denomi-

nator of Eq. (6.97). In vector notation, the average intensity of the correlation

peak for a second-order filter is given as follows:

average peakj j2¼ hþ1 m
1



 

2þ hþ2 m
2



 

2 þ 2 hþ1 m
1m2þh2 (6:99)

where h1 and h2 are vector versions of the filters associated with the first and

second terms of the polynomial, and m
k is the mean of the training images xi,

1� i�L, raised to the kth power. For illustration purposes, the denominator
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Figure 6.10 Nth-order polynomial correlation filter

232 Advanced correlation filters

Figure 1: Image taken from [18]: polynomial correlation filter.

correlation energy (ACE) [18], or any combination thereof, the filters h1,h2, . . . ,hN can be solved
in closed-form [16, 18, 19].

6.2 Polynomial Convolutional Neural Networks

We draw inspiration from the design principles of the polynomial correlation filter and propose the
polynomial convolutional neural network (PolyCNN) as a weight-learning efficient variant of the
traditional convolutional neural networks. The core idea of PolyCNN is that at each convolutional
layer, only one convolutional filter (seed filter) needs to be learned, and we can augment other
filters by taking point-wise polynomials of the seed filter. The weights of these augmented filters
need not to be updated during the network training. When convolved with the input data, the
learnable seed filter and k non-learnable augmented filters result in (k + 1) response maps. We
call this procedure: early fan-out. Similarly, one can instead fan-out the response map from the
seed filter to create (k + 1) response maps for the subsequent layers. We call this procedure: late
fan-out. The details of both early and late fan-out are shown below.

6.3 Early Fan-Out: Filter Weights

At any given layer, given the seed weights wi for that layer, we generate many new filter weights.
The weights are generated via a non-linear transformation f(wi) of the weights. the convolutional
outputs are computed as follows:

y = f(w) ∗ x (1)

y[i] =
∑
k

x[i− k]f(w[k]) (2)

where xj is the jth channel of the input image and wj
i is the jth channel of the ith filter. During the

forward pass weights are generated from the seed convolutional kernel and are then convolved with
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the inputs. During the backward pass, we need to compute ∂l
∂w and ∂l

∂x which is shown as follows:

∂l

∂w[i]
=
∑
j

∂l

∂y[j]

∂y[j]

∂w[i]
(3)

=
∑
j

∂l

∂y[j]

∂y[j]

∂f(w[i])

∂f(w[i])

∂w[i]
(4)

=
∑
j

∂l

∂y[j]
x[j − i]f ′(w[i]) (5)

∂l

∂w
=

(
∂l

∂y
? x

)
� f ′(w) (6)

For example if our weights are transformed by a function z[i] = fj(w[i]) = w[i]j are then normalized

to zero-mean and unit norm, ŵ[i] =
z[i]− 1

n

∑
i z[i](∑

i(z[i]−
1
n

∑
i z[i])

2
) 1

2
.
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(7)
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)2) 1
2

−
(
1− 1

n
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)
(∑
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(
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)2) 3
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(8)

∂z[i]

∂w[i]
= f ′(w[i]) = jw[i]j−1 (9)

Now we compute the gradient with respect to input x as follows:

∂l

∂x[i]
=
∑
j

∂l

∂y[j]

∂y[j]

∂x[i]
=
∑
j

∂l

∂y[j]
f(w[j − i]) (10)

∂l

∂x
=

∂l

∂y
? f(w) (11)

The resulting feature maps from these weights are then combined using 1 × 1 convolutions into a
few feature maps and the process repeats again for the next layer.

6.4 Late Fan-Out: Response Maps

At any given layer, we compute the new feature maps from the seed feature maps via non-linear
transformations of the feature maps. The forward pass for this layer involves the application of the
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following non-linear function z[i] = fj(x[i]). The backward propagation can be computed as:

∂l

∂x[i]
=

∂l

∂z[i]

∂z[i]

∂x[i]
=

∂l

∂z[i]

∂fj(x[i])

∂x[i]
(12)

For example, if z[i] = fj(x[i]) = x[i]j , then ∂l
∂x[i] = ∂l

∂z[i](jx[i]j−1). To prevent the gradients from
vanishing or exploding, it is important to normalize the response maps. We use batch normalization
in our implementation for this purpose.

6.5 Design of the Basic PolyCNN Module

The core idea of the PolyCNN1 is to restrict the network to learn only one convolutional filter at
each layer, and through polynomial transformations we can augment the convolutional filters, or the
response maps. The gist is that the augmented filters do not need to be updated or learned during
the network back-propagation. As shown in Figure 2, the basic module of PolyCNN (early fan-out)
starts with just one learnable convolutional filter Vl, which we call the seed filter. If we desire m
filters in total for one layer, the remaining m − 1 filters are non-learnable and are the polynomial
transformation of the seed filter Vl. The input image xl is filtered by these convolutional filters
and becomes m response maps, which are then passed through a non-linear activation gate, such
as ReLU, and become m feature maps. Optionally, these m feature maps can be further lineally
combined using m learnable weights, which is essentially another convolution operation with filters
of size 1× 1.

Compared to the CNN module under the same structure (with 1× 1 convolutions), the number of
learnable parameters is significantly smaller in PolyCNN. Let us assume that the number of input
and output channels are p and q. Therefore, the size of each 3D filter in both CNN and PolyCNN
is p · h ·w, where h and w are the spatial dimensions of the filter, and there are m such filters. The
1 × 1 convolutions act on the m filters and create the q-channel output. For standard CNN, the
number of learnable weights is p · h ·w ·m+m · q. For PolyCNN, the number of learnable weights
is p · h · w · 1 + m · q. For simplicity let us assume p = q, which is usually the case for multi-layer
CNN architecture. We call q the number of intermediate channel because it is both the number of
channels from the previous layer and the number of channels for the next layer. Then we have the
parameter saving ratio

τ =
# param. in CNN

# param. in PolyCNN
=
p · h · w ·m+m · q
p · h · w · 1 +m · q

=
h · w ·m+m

h · w +m
(13)

and when the spatial filter size h = w = 3 and the number of convolutional filters desired for each
layer m � 32, we have the parameter saving ratio τ = 10m

m+9 ≈ 10. Similarly for spatial filter size

h = w = 5 and m� 52, the parameter saving ratio τ = 26m
m+25 ≈ 26. For spatial filter size h = w = 7

and m� 72, the parameter saving ratio τ = 50m
m+49 ≈ 50.

1In this paper we assume convolutional filters do not have bias terms.
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Figure 2: Basic module in traditional CNN and PolyCNN (both early fan-out and late fan-out).
Wl and Vl are the learnable weights for each module.

If we do not include the 1× 1 convolutions for both standard CNN and PolyCNN, and thus make
m = q = p, readers can verify that the parameter saving ratio τ becomes m. Numerically, PolyCNN
saves around 10×, 26×, and 50× parameters during learning for 3×3, 5×5, and 7×7 convolutional
filters respectively. The aforementioned calculation also applies to late fan-out of the PolyCNN.

6.6 Training of the PolyCNN

The training of the PolyCNN is quite straightforward, where the back-propagation is the same for
the learnable weights and the augmented weights that do not update. Gradients get propagated
through the polynomial augmented filters just like they would with learnable filters. This is similar
to propagating gradients through layers without learnable parameters (e.g., ReLU, Max Pooling
etc.). However, we do not compute the gradient with respect to the fixed filters nor update them
during the training process.

The 3D non-learnable filter banks of size p× h×w× (m− 1) (assuming a total of m filters in each
layer) in the PolyCNN can be generated by taking polynomial transformations from the seed filter,
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by raising to some exponents, which can either be integer exponents, or fractional exponents that
are randomly sampled from a distribution.

7 Experimental Results

7.1 Implementation Details

Conceptually PolyCNN can be easily implemented in any existing deep learning framework. Since
the convolutional weights are fixed, we do not have to compute the gradients nor update the weights.
This leads to savings both from a computational point of view and memory as well.

We base the model architectures we evaluate in this paper on ResNet [5], with default 3× 3 filter
size. Our basic module is the PolyCNN module shown in Figure 2 along with an identity connection
as in ResNet. We experiment with different numbers of PolyCNN units, 10, 20 and 75, which is
equivalent to 20, 40, and 150 convolutional layers (with the 1× 1 convolutions).

For PolyCNN, the convolutional weights are generated following the procedure described in Sec-
tion 6.6. We use 511 randomly sampled fractional exponents for creating the polynomial filter
weights (512 convolutional filters in total at each layer), for all of our MNIST, SVHN, and CIFAR-
10 experiments. Spatial average pooling is adopted after the convolution layers to reduce the spatial
dimensions of the image to 6 × 6. We use a learning rate of 1e-3 and following the learning rate
decay schedule from [5]. We use ReLU nonlinear activation and batch normalization [20] after
PolyCNN convolutional module.

7.2 Baselines

For a fair comparison and to quantify the exact difference between our PolyCNN approach and
traditional CNN, we compare ours against the exact corresponding network architecture with dense
and learnable convolutional weights. We also use the exact same data and hyper-parameters in
terms of the number of convolutional weights, initial learning rate and the learning rate schedule.
In this sense, PolyCNN enjoys 10×, 26×, 50×, etc. savings in the number of learnable parameters
because the baseline CNNs also have the 1× 1 convolutional layer.

7.3 Results on MNIST, SVHN, and CIFAR-10

The best performing PolyCNN models in terms of early fan-out are:

• MNIST: 150 convolutional layers (75 PolyCNN modules), 512 convolutional filters, 256 inter-
mediate channels, 128 hidden units in the fully connected layer.

• SVHN: 80 convolutional layers (40 PolyCNN modules), 512 convolutional filters, 256 inter-
mediate channels, 512 hidden units in the fully connected layer.

• CIFAR-10: 100 convolutional layers (50 PolyCNN modules), 512 convolutional filters, 384
intermediate channels, 512 hidden units in the fully connected layer.
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PolyCNN PolyCNN Baseline BinaryConnect BNN ResNet Maxout NIN
(early) (late) [21] [22] [4] [23] [24]

MNIST 99.37 98.77 99.48 98.99 98.60 / 99.55 99.53
SVHN 93.29 90.11 95.21 97.85 97.49 / 97.53 97.65

CIFAR-10 90.56 85.98 92.95 91.73 89.85 93.57 90.65 91.19

Table 1: Classification accuracy (%). PolyCNN columns only show the best performing model and
the Baseline column shows the particular CNN counterpart.
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Figure 3: (L) Accuracy of the best performing PolyCNN (early fan-out) and PolyCNN (late fan-out)
on CIFAR-10. (R) Accuracy and loss on full ImageNet classification.

Table 1 consolidates the images classification accuracies from our experiments. The best performing
PolyCNNs are compared to their particular baselines, as well as the state-of-the-art methods such
as BinaryConnect [21], Binarized Neural Networks (BNN) [22], ResNet [4], Maxout Network [23],
Network in Network (NIN) [24]. The network structure for the late fan-out follows that of the early
fan-out. As can be seen, performance from late fan-out is slightly inferior, but early fan-out reaches
on-par performance while enjoying huge parameter savings.

7.4 Results on Early Fan-Out vs. Late Fan-Out

Table 2 compares the accuracy on CIFAR-10 achieved by various PolyCNN architectures (both early
and late fan-out) as well as their standard CNN counterparts. We can see that for a fixed number
of convolution layers and filters, the more intermediate channels q leads to higher performance.
Also, PolyCNN (early fan-out) is on par with the CNN counterpart, while saves 10× parameters.
As can be seen from Table 2 and Figure 3 (L), the early fan-out version of the PolyCNN is quite
comparable to the standard CNN, and is better than its late fan-out counterpart.
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q 32 64 128 192 256 384

Baseline 86.30 88.77 90.86 91.69 92.15 92.93
PolyCNN (early) 83.49 86.11 88.60 89.47 90.01 90.06
PolyCNN (late) 79.23 81.77 84.01 85.36 85.44 85.50

Table 2: Classification accuracy (%) on CIFAR-10 with 20 convolution layers and 512 convolutional
filters in each layer.

Filter Size 3×3 5×5 7×7 9×9 11×11 13×13

Baseline 65.74 64.90 66.53 65.91 65.22 64.94
PolyCNN 60.47 60.21 60.76 61.16 60.98 60.32

Table 3: Classification accuracy (%) on 100-class ImageNet with varying convolutional filter sizes.

7.5 Results on 100-Class ImageNet Subset

We report the top-1 accuracy on 100-Class subset of ImageNet 2012 classification challenge dataset
in Table 3. The input images of ImageNet is much larger than those of MNIST, SVHN, and
CIFAR-10, which allows us to experiments with the convolutional filter sizes. Both the PolyCNN
and our baseline share the same architecture: 48 convolutional layers (24 PolyCNN modules), 512
convolutional filters, 512 intermediate channels, 4096 hidden units in the fully connected layer. For
this experiment, we omit the late fan-out and only use the better performing early fan-out version
of the PolyCNN.

7.6 Results on Full ImageNet

We train a PolyCNN version of the AlexNet [1] to take on the full ImageNet classification task. The
AlexNet architecture is comprised of five consecutive convolutional layers, and two fully connected
layers, mapping from the image (224× 224× 3) to the 1000-dimension feature for the classification
purposes in the forward pass. The number of convolutional filters used and their spatial sizes
are tabulated in Table 4. For this experiment, we create an PolyCNN (early fan-out) counterpart
following the AlexNet architecture. For each convolutional layer in AlexNet, we keep the same input
and output channels. Replacing the traditional convolution module with PolyCNN, we are allowed
to specify another hyper-parameter, the intermediate channel q. Table 4 shows the comparison
of the number of learnable parameters in convolutional layers in both AlexNet and its PolyCNN
counterpart, by setting intermediate channel q = 256. As can be seen, PolyCNN saves about
6.4873× learnable parameters in the convolutional layers. What’s important is that, by doing so,
PolyCNN does not suffer the performance as can be seen in Figure 3 (R) and Table 5. We have
plotted accuracy curves and loss curves after 55 epochs for both the AlexNet and its PolyCNN
counterpart.
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Layers AlexNet [1] PolyCNN (AlexNet)

Layer 1 96*(11*11*3)=34,848 (11*11*3)+96*256=24,576
Layer 2 256*(5*5*48)=307,200 (5*5*48)+256*256=65,536
Layer 3 384*(3*3*256)=884,736 (3*3*256)+384*256=98,304
Layer 4 384*(3*3*192)=663,552 (3*3*192)+384*256=98,304
Layer 5 256*(3*3*192)=442,368 (3*3*192)+256*256=65,536

Total 2, 332, 704 (∼ 2.333M) 359, 579 (∼ 0.3596M)

Table 4: Comparison of the number of learnable parameters in convolutional layers in AlexNet and
AlexNet with PolyCNN modules. The proposed method saves 6.4873× learnable parameters in the
convolutional layers.

PolyCNN AlexNet (ours) AlexNet (BLVC) [25]

ImageNet 51.9008 56.7821 56.9

Table 5: Classification accuracy (%) on full ImageNet.

7.7 Summary

We have shown the effectiveness of the proposed PolyCNN. Not only can it achieve on-par perfor-
mance with the state-of-the-art, but also enjoy a significant utility savings. The Torch implemen-
tation of the PolyCNN will be made publicly available.

8 Discussion

In this section, we discuss the advantages of the proposed PolyCNN over CNN from several aspects.

Computational: The parametrization of the PolyCNN layer reduces the number of learnable
parameters by a factor of 10× to 50× during training and inference. The lower memory requirements
enables learning of much deep neural networks thereby allowing better representations to be learned
through deeper architectures [2, 4, 5]. Also, PolyCNN enables learning of deep CNNs on resource
constrained embedded systems.

Statistical: PolyCNN, being a simpler model with fewer learnable parameters compared to a
CNN, can effectively regularize the learning process and prevent over-fitting. High capacity models
such as deep CNNs with a regular convolutional layer typically consists of a very large number
of parameters. Methods such as Dropout [26], DropConnect [27], and Maxout [23] have been
introduced to regularize the fully connected layers of a network during training to avoid over-
fitting. As opposed to regularizing the fully connected layers [26, 27, 28] of a network, PolyCNN
directly regularizes the convolutional layers, which is also important as discussed in [26, 29].

Sample Complexity: The lower model complexity of PolyCNN makes them an attractive option
for learning with low sample complexity. To demonstrate the statistical efficiency of PolyCNN, we
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Figure 4: (1) Results on overfitting experiments. (2-4) Results on the FRGC 10-class, 50-class, and
100-class experiments respectively.

perform an experiment on a subset of the CIFAR-10 dataset. The training subset randomly picks
25% images (5000 × 0.25 = 1250) per class while keeping the testing set intact. We choose the
best-performing architecture on CIFAR-10 described in Section 7 for both the CNN and PolyCNN.
The results shown in Figure 4 (1) demonstrates that PolyCNN trains faster and is less prone to
over-fitting on the training data. To provide an extended evaluation, we perform additional face
recognition on the FRGC v2.0 dataset [30] experiments under a limited sample complexity setting.
The number of images in each class ranges from 6 to 132 (51.6 on average). While there are 466
classes in total, we experiment with increasing number of randomly selected classes (10, 50 and
100) with a 60-40 train/test split. Across the number of classes, our network parameters remain
the same except for the classification fully connected layer at the end. We make a few observations
from our findings (see Figure 4 (2-4)): (1) PolyCNN converges faster than CNN, especially on small
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datasets and (2) PolyCNN outperforms CNN on this task. Lower model complexity helps PolyCNN
prevent over-fitting especially on small to medium-sized datasets.

9 Conclusions

Inspired by the polynomial correlation filter, in this paper, we have proposed the PolyCNN as an
alternative to the standard convolutional neural networks. The PolyCNN module enjoys significant
savings in the number of parameters to be learned at training, at least 10× to 50×. PolyCNN have
much lower model complexity compared to traditional CNN with standard convolutional layers.
The proposed PolyCNN demonstrates performance on par with the state-of-the-art architectures
on four image recognition datasets.
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