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Abstract

Background. The last few years have seen much success of applying deep networks in
many important applications in Natural Language Processing: sentiment analysis, document
classification, machine translation, conversational/dialogue modeling, automatic Q&A. An im-
portant trait of all of these models is that they read all the text available to them. While it is
essential for certain applications, such as machine translation, this trait also makes it difficult
to apply these models to applications that have long input text, such as document classification
or automatic Q&A.

Aim. We consider the problem of long document understanding and propose a modification
to the basic neural architectures that allow them to read input text non-sequentially. The main
benefit of this approach is faster inference because it skips irrelevant information. An unexpected
benefit this approach is that it sometimes helps the models generalize better.

Data. The tasks under test include synthetic number prediction (synthetic data), senti-
ment classification (Rotten Tomatoes and IMDB), news topic classification (AG) and reading
comprehension (Children’s Book Test). Those are representative tasks in text reading involving
different sizes of datasets and various levels of text processing.

Methods. In our approach, the model is a recurrent network, which learns to predict
the number of jumping steps after it reads an input token. The model is therefore not fully
differentiable, but it can be trained by a policy gradient algorithm called REINFORCE. The
reward of the recurrent network is to optimize the accuracy of the model on the training dataset.

Anticipated results. The comparison is between the vanilla LSTM and our model. In a
nutshell, we anticipate that, while achieving the same testing accuracy, our model is much faster
than the baseline LSTM model, as we are able to skip a bunch of text.

Conclusions. The model we develop can indeed learn how to “jump” while processing text,
which is faster than most of the existing methods.

Keywords:Reinforcement Learning, Natural Language Processing.
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1 Introduction

The last few years have seen much success of applying neural networks to many important ap-
plications in natural language processing, e.g., part-of-speech tagging, chunking, named entity
recognition Collobert et al. (2011), sentiment analysis Socher et al. (2011, 2013), document clas-
sification Kim (2014); Le and Mikolov (2014); Zhang et al. (2015); Dai and Le (2015), machine
translation Kalchbrenner and Blunsom (2013); Sutskever et al. (2014); Bahdanau et al. (2014);
Sennrich et al. (2015); Wu et al. (2016), conversational/dialogue modeling Sordoni et al. (2015);
Vinyals and Le (2015); Shang et al. (2015), document summarization Rush et al. (2015); Nallapati
et al. (2016), parsing Andor et al. (2016) and automatic question answering (Q&A) Weston et al.
(2015); Hermann et al. (2015); Wang and Jiang (2016); Wang et al. (2016); Trischler et al. (2016);
Lee et al. (2016); Seo et al. (2016); Xiong et al. (2016). An important trait of all these models is
that they read all the text available to them. While it is essential for certain applications, such as
machine translation, this trait also makes it difficult to apply these models to scenarios that have
long input text, such as document classification or automatic Q&A.

2 Problem Statement

In this paper, we consider the problem of understanding long documents with partial reading,
and propose a modification to the basic neural architectures that allows them to read input text
non-sequentially. The main benefit of this approach is faster inference because it skips irrelevant
information. An unexpected benefit of this approach is that it also helps the models generalize
better.
In our approach, the model is a recurrent network, which learns to predict the number of jumping
steps after it reads one or several input tokens. Such a discrete model is therefore not fully differ-
entiable, but it can be trained by a standard policy gradient algorithm, where the reward can be
the accuracy or its proxy during training.
In our experiments, we use the basic LSTM recurrent networks Hochreiter and Schmidhuber (1997)
as the base model and benchmark the proposed algorithm on a range of document classification or
reading comprehension tasks, such as Rotten Tomatoes Pang and Lee (2005), IMDB Maas et al.
(2011), AG News Zhang et al. (2015) and Children’s Book Test Hill et al. (2015). We find that
the proposed approach of non-sequential reading speeds up its sequential counterpart by two to six
times. Surprisingly, we also observe our model beats the standard LSTM in terms of accuracy.
In summary, the main contribution of our work is to design an architecture that learns to read text
non-sequentially and show that it is both faster and more accurate in practical applications of text
processing. Our model is simple and flexible enough that we anticipate it be able to incorporate to
recurrent nets with more sophisticated structures to achieve even better performance in the future.

3 Data

In this section, we present the datasets used for testing the efficiency of the proposed model. The
tasks include sentiment analysis, news topic classification and automatic question answering. Those
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Task Dataset Level Vocab AvgLen #train #valid #test #class
Sentiment Analysis Rotten Tomatoes word 18,764 22 words 8,835 1,079 1,030 2
Sentiment Analysis IMDB word 112,540 241 words 21,143 3,857 25,000 2
News Classification AG character 70 200 characters 101,851 18,149 7,600 4

Q/A Children Book Test-NE sentence 53,063 20 sentences 108,719 2,000 2,500 10
Q/A Children Book Test-CN sentence 53,185 20 sentences 120,769 2,000 2,500 10

Table 1: Tasks and datasets statistics.

are representative tasks in text reading involving different sizes of datasets and various levels of
text processing, from character to word and to sentence. Table 1 summarizes the statistics of the
dataset in use.

3.1 Word Level Sentiment Analysis with Rotten Tomatoes and IMDB datasets

We first conduct sentiment analysis on two movie review datasets, both containing equal numbers
of positive and negative reviews.
The first dataset is Rotten Tomatoes, which contains 10,662 documents. Since there is not a
standard split, we randomly select around 80% for training, 10% for validation, and 10% for testing.
The average and maximum lengths of the reviews are 22 and 56 words respectively, and we pad
each of them to 60.
The second dataset of interest is IMDB Maas et al. (2011),1 which contains 25,000 training and
25,000 testing movie reviews, where the average length of text is 240 words, much longer than that
of Rotten Tomatoes. We randomly set aside about 15% of training data as validation set.

3.2 Character Level News Article Classification with AG dataset

Next we test our model on a news article classification problem. The data contains four classes
of topics (World, Sports, Business, Sci/Tech) from the AG’s news corpus,2 a collection of more
than 1 million news articles. The data we use is the subset constructed by Zhang et al. (2015)
for classification with character-level convolutional networks. There are 30,000 training and 1900
testing examples for each class respectively, where 15% of training are set aside as validation. The
non-space alphabet under use are:

abcdefghijklmnopqrstuvwxyz0123456

789-,;.!?:/\|_@#$%&* +-=<>()[]{}

3.3 Sentence Level Automatic Question Answering with Children’s Book Test
dataset

The last task is automatic question answering. We benchmark on the data set Children’s Book Test
(CBT) Hill et al. (2015).3 In each document, there are 20 contiguous sentences (context) extracted
from a children’s book followed by a query sentence. A word of the query is deleted and the task

1http://ai.Stanford.edu/amaas/data/sentiment/index.html
2http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
3http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz
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Figure 1: An example of the proposed model processing a text document. Here, the maximum size
of jump is K = 5, the number of tokens read before a jump is R = 2 and the number of jumps
allowed is N = 10. The green softmax are for jumping predictions. The processing stops if a) the
jumping predicts a 0 or b) the jump times exceed N or c) the network processed the last token.
We only show case a) in this figure.

is to select the best fit for this position from 10 candidates. Originally, there are 4 types of tasks
according to the part of speech of the missing word, from which, we choose the most difficult two,
i.e., the name entity (NE) and common noun (CN) as our focus, since simple language models can
already achieve human-level performance for the rest two types .

4 Method

In this section, we introduce the proposed model named LSTM-Jump. We will first describe its
main structure followed by the difficulty of estimating part of the model parameters because of
non-differentiability. To address this issue, we appeal to a reinforcement learning formulation and
adopt a policy gradient method.

4.1 Model Overview

Notation Meaning

N number of jumps allowed
K maximum size of jumping
R number of tokens read before a jump

Table 2: Notations referred to in experiments.

The main architecture of the proposed model is shown in Figure 1, which is based on an LSTM
recurrent neural network. Before training, the number of jumps N allowed, the number of tokens
read between every two jumps R and the maximum size of jumping K are chosen ahead of time.
While K is a fixed parameter of the model, N and R are hyperparameters that can vary between
training and testing. We summarize those notations in Table 2, such that one can refer to when
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reading the experiment results. Also, throughout the paper, we would use d1:p to denote a sequence
d1, d2, ..., dp.
In the following, we describe in detail how the model operates when processing text. Given a
training example x1:T , the recurrent network will read the embedding of the first R tokens x1:R
and output the hidden state. Then this state is used to compute the jumping softmax that deter-
mines a distribution over the jumping steps between 1 and K. The model then samples from this
distribution a jumping step, which is used to decide the next token to be read into the model. Let
κ be the sampled value, then the next starting token is xR+κ. Such process continues until either

a) the jump softmax samples a 0; or

b) the number of jumps exceeds N ; or

c) the model reaches the last token xT .

After stopping, the latest hidden state is further used for predicting desired targets. How to
leverage the hidden state depends on the specifics of the task at hand. For example, in classification
problems of Section 5.2 and 5.3, it is directly applied to produce a softmax for classification, while
in automatic Q&A problem of Section 5.4, it is used to compute the correlation with the candidate
answers in order to select the best one. Figure 1 gives an example with K = 5, R = 2 and N = 10
terminating on condition a).

4.2 Training with REINFORCE

Our goal for training is to estimate the LSTM and possibly word embedding parameters θm, together
with the jumping action parameters θa. Once obtained, they can be used for inference.
The estimation of θm is straightforward in the tasks that can be reduced as classification problems
(which is exactly what our experiments cover), as the cross entropy objective J1(θm) is differentiable
over θm that we can directly apply backpropagation to minimize.
However, the nature of discrete jumping decisions made at every step makes it difficult to estimate
θa, as cross entropy is no longer differentiable over θa. Therefore, we are tempted to formulate it as
a reinforcement learning problem and apply policy gradient method to train the model. Specifically,
we need to maximize a reward function over θa which can be constructed as follows.
Let j1:N be the jumping actions sequence during the training with an example x1:T . Suppose hi
is a hidden state of the LSTM right before the i-th jump ji,

4 then it is a function of j1:i−1 and
thus can be denoted as hi(j1:i−1). Now the jump is attained by sampling from the multinomial
distribution p(ji|hi(j1:i−1); θa), which is determined by the jump softmax. We can receive a reward
R after processing x1:T under the current jumping strategy.5 The reward should be positive if the
output is favorable or non-positive otherwise. In our experiments, we choose

R =

{
1 if prediction correct;
−1 otherwise.

4The i-th jumping step is usually not xi.
5In the general case, one may receive (discounted) intermediate rewards after each jump. But in our case, we

only consider final reward. It is equivalent to a special case that all intermediate rewards are identical and without
discount.
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Then the objective function of θa we want to maximize is the expected reward under the distribution
defined by the current jumping policy, i.e.,

J2(θa) = Ep(j1:N ;θa)[R]. (1)

where p(j1:N ; θa) =
∏
i p(j1:i|hi(j1:i−1); θa).

Optimizing this objective numerically requires computing its gradient, whose exact value is in-
tractable to obtain as the expectation is over high dimensional interaction sequences. By running
S examples, an approximated gradient can be computed by the following REINFORCE algo-
rithm Williams (1992):

∇θaJ2(θa) =
N∑
i=1

Ep(j1:N ;θa)[∇θa log p(j1:i|hi; θa)R]

≈ 1

S

S∑
s=1

N∑
i=1

[∇θa log p(js1:i|hsi ; θa)Rs]

where the superscript s denotes a quantity belonging to the s-th example. Now the term∇θa log p(j1:i|hi; θa)
can be computed by standard backpropagation.
Although the above estimation of ∇θaJ2(θa) is unbiased, it may have very high variance. One
widely used remedy to reduce the variance is to subtract a baseline value bsi from the reward Rs,
such that the approximated gradient becomes

∇θaJ2(θa) ≈
1

S

S∑
s=1

N∑
i=1

[∇θa log p(js1:i|hsi ; θ)(Rs − bsi )]

It is shown Williams (1992); Zaremba and Sutskever (2015) that any number bsi will yield an
unbiased estimation. Here, we adopt the strategy of Mnih et al. (2014) that bsi = wbh

s
i + cb and the

parameter θb = {wb, cb} is learned by minimizing (Rs− bsi )2. Now the final objective to minimize is

J(θm, θa, θb) = J1(θm)− J2(θa) +
S∑
s=1

N∑
i=1

(Rs − bsi )2,

which is fully differentiable and can be solved by standard backpropagation.

4.3 Inference

During inference, we can either use sampling or greedy evaluation by selecting the most probable
jumping step suggested by the jump softmax and follows that path. In the our experiments, we
will adopt the sampling scheme.
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5 Experimental Results and Analysis

In this section, we present our empirical studies to understand the efficiency of the proposed model
in reading text. The tasks under experimentation are: synthetic number prediction, sentiment
analysis, news topic classification and automatic question answering. Those are representative
tasks in text reading involving different sizes of datasets and various levels of text processing,
from character to word and to sentence. Table 1 summarizes the statistics of the dataset in our
experiments.
To exclude the potential impact of advanced models, we restrict our comparison between the vanilla
LSTM Hochreiter and Schmidhuber (1997) and our model, which is referred to as LSTM-Jump.
In a nutshell, we show that, while achieving the same or even better testing accuracy, our model
is up to 6 times and 66 times faster than the baseline LSTM model in real and synthetic datasets,
respectively, as we are able to selectively skip a large fraction of text.
In fact, the proposed model can be readily extended to other recurrent neural networks with
sophisticated mechanisms such as attention and/or hierarchical structure to achieve higher accuracy
than those presented below. However, this is orthogonal to the main focus of this work and would
be left as an interesting future work.

General Experiment Settings We use the Adam optimizer Kingma and Ba (2014) with a
learning rate of 0.001 in all experiments. We also apply gradient clipping to all the trainable
variables with the threshold of 1.0. The dropout rate between the LSTM layers is 0.2 and the
embedding dropout rate is 0.1. We repeat the notations N,K,R defined previously in Table 2,
such that reader can easily refer to when looking at in Tables 4,5,6,7. While K is fixed during both
training and testing, we would fix R and N at training but vary their values during test to see how
the change of parameters affects the result. Besides, the reported test time is measured by running
one pass of the whole test set and the speedup is over the base LSTM model. The code is written
with TensorFlow.6

5.1 Number Prediction with a Synthetic Dataset

First of all, we carry out the sanity check of whether LSTM-Jump is indeed able to learn how to
jump if a very clear jumping signal is given in the text. The input of the task is a sequence of L
positive integers x0:T−1 and the output is simply xx0 . That is, the output is chosen from the input
sequence, with index determined by x0 . Here are two examples to illustrate this idea:

input1 : 4, 5, 1, 7, 6, 2. output1 : 6

input2 : 2, 4, 9, 4, 5, 6. output2 : 9

One can see that a0 is essentially the indicator of how many steps the reading should jump to get
the exact output and obviously, the remaining number of the sequence are useless. After reading
the first token, a “smart” network should be able to learn from the training examples to jump to
the output position, skipping the rest.

6https://www.tensorflow.org/
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Seq length LSTM-Jump LSTM Speedup
Test accuracy

10 98% 96% n/a
100 98% 96% n/a
1000 90% 80% n/a

Test time (Avg tokens read)
10 13.5s (2.1) 18.9s (10) 1.40x
100 13.9s (2.2) 120.4s (100) 8.66x
1000 18.9s (3.0) 1250s (1000) 66.14x

Table 3: Testing accuracy and time of synthetic number prediction problem. The jumping level is
word.

We generate 1 million training and 10,000 validation examples with the rule above, each with
sequence length T = 100. We also impose 1 ≤ x0 < T to ensure the index is valid. We
find that directly training the LSTM-Jump with full sequence is unlikely to converge, therefore,
we adopt a curriculum training scheme. More specifically, we generate sequences with lengths
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and train the model starting from the shortest. Whenever the
training accuracy reaches a threshold, we shift to longer sequences. The training stops when the
validation accuracy is larger than 98%. We also train an LSTM with the same curriculum training
scheme to conduct the prediction. All the networks are single layered, with hidden size 512, em-
bedding size 32 and batch size 100. During testing, we generate sequences of lengths 10, 100 and
1000 with the same rule, each having 10,000 examples. As the training size is huge, we do not need
to worry about overfitting so dropout is not applied. In fact, we find that the training, validation
and testing accuracies are almost the same.
The results of LSTM and our method, LSTM-Jump, are shown in Table 3. The first observation is
that LSTM-Jump is faster than LSTM; the longer the sequence is, the more significant speed-up
LSTM-Jump can gain. This is because LSTM-Jump is aware of the jumping signal at the first
token and hence can directly jump to the output position to make prediction, while LSTM is
agnostic to the signal and has to read the whole sequence. Thanks to this fact, the reading speed of
LSTM-Jump is hardly affected by the length of sequence, but that of LSTM is linear with respect
to length. Besides, LSTM-Jump also outperforms LSTM in terms of test accuracy under all cases.
This is not surprising either, as LSTM has to read a large amount of tokens that are potentially
not helpful and could interfere with the prediction. In summary, the results indicate LSTM-Jump
is able to learn to “jump” when the signal is very clear.

5.2 Word Level Sentiment Analysis with Rotten Tomatoes and IMDB datasets

As LSTM-Jump has shown great speedups in the synthetic dataset, we would like to understand
whether it could carry this benefit to real-world data, where “jumping” signal is not explicit. So
in this section, we conduct sentiment analysis on two movie review datasets, both containing equal
numbers of positive and negative reviews.
The first dataset is Rotten Tomatoes, which contains 10,662 documents. Since there is not a
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standard split, we randomly select around 80% for training, 10% for validation, and 10% for testing.
The average and maximum lengths of the reviews are 22 and 56 words respectively, and we pad
each of them to 60. We choose the pre-trained word2vec embeddings7 Mikolov et al. (2013) as our
fixed word embedding that we do not update this matrix during training. Both LSTM-Jump and
LSTM contain 2 layers, 256 hidden units and the batch size is 100. As the amount of training data
is small, we slightly augment the data by sampling a continuous 50-word sequence in each padded
reviews as one training sample. During training, we enforce LSTM-Jump to read 8 tokens before
a jump (R = 8), and the maximum skipping tokens per jump is 10 (K = 10), while the number of
jumps allowed is 3 (N = 3).
The testing result is reported in Table 4. In a nutshell, LSTM-Jump is always faster than LSTM
under different combinations of R and N . At the same time, the accuracy is on par with that
of LSTM. In particular, the combination of (R,N) = (7, 4) even achieves slightly better accuracy
than LSTM while having a 1.5x speedup.

Model (R,N) Accuracy Time Speedup

LSTM-Jump
(9, 2) 0.783 6.3s 1.98x
(8, 3) 0.789 7.3s 1.71x
(7, 4) 0.793 8.1s 1.54x

LSTM n/a 0.791 12.5s 1x

Table 4: Testing time and accuracy on the Rotten Tomatoes review classification dataset. The
maximum size of jumping K is set to 10 for all the settings. The jumping level is word.

The second dataset of interest is IMDB Maas et al. (2011),8 which contains 25,000 training and
25,000 testing movie reviews, where the average length of text is 240 words, much longer than that
of Rotten Tomatoes. We randomly set aside about 15% of training data as validation set. Both
LSTM-Jump and LSTM has one layer and 128 hidden units, and the batch size is 50. Again, we use
pretrained word2vec embeddings as initialization but they are updated during training. We either
pad a short sequence to 400 words or randomly select a 400-word segment from a long sequence as
a training example. The number of tokens read before a jump is set to R = 20, maximum skipping
tokens per jump is K = 40 and the maximum number of jumps is N = 5.
As Table 5 shows, the result exhibits a similar trend as found in Rotten Tomatoes that LSTM-
Jump is uniformly faster than LSTM under many settings. The various (R,N) combinations again
display the trade-off between efficiency and accuracy. If one cares more about accuracy, then
allowing LSTM-Jump to read and jump more times is a good choice. Otherwise, shrinking either
one would bring a significant speedup though at the price of losing some accuracy. Nevertheless,
the configuration with the highest accuracy still enjoys a 1.6x speedup compared to LSTM. With
a slight loss of accuracy, LSTM-Jump can be 2.5x faster .

7https://code.google.com/archive/p/word2vec/
8http://ai.Stanford.edu/amaas/data/sentiment/index.html
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Model (R,N) Accuracy Time Speedup

LSTM-Jump

(80, 8) 0.894 769s 1.62x
(80, 3) 0.892 764s 1.63x
(70, 3) 0.889 673s 1.85x
(50, 2) 0.887 585s 2.12x
(100, 1) 0.880 489s 2.54x

LSTM n/a 0.891 1243s 1x

Table 5: Testing time and accuracy on the IMDB sentiment analysis dataset. The maximum size
of jumping K is set to 40 for all the settings. The jumping level is word.

5.3 Character Level News Article Classification with AG dataset

We now present results on testing the character level jumping with a news article classification
problem. The data contains four classes of topics (World, Sports, Business, Sci/Tech) from the
AG’s news corpus,9 a collection of more than 1 million news articles. The data we use is the subset
constructed by Zhang et al. (2015) for classification with character-level convolutional networks.
There are 30,000 training and 1900 testing examples for each class respectively, where 15% of
training are set aside as validation. The non-space alphabet under use are:

abcdefghijklmnopqrstuvwxyz0123456

789-,;.!?:/\|_@#$%&* +-=<>()[]{}

Since the vocabulary size is small, we choose 16 as the embedding size. The initialized entries of the
embedding matrix are drawn from a uniform distribution in [−0.25, 0.25], which are progressively
updated during training. Both LSTM-Jump and LSTM have 1 layer and 64 hidden units and the
batch sizes are 20 and 100 respectively. The training sequence is again of length 400 that it is either
padded from a short sequence or sampled from a long one. The number of characters read before a
jump is R = 30, the maximum span per jump is K = 40 and N = 5 jumps are allowed at training.
The result is summarized in Table 6. Not surprisingly, LSTM-Jump outperforms LSTM in terms
of both efficiency and accuracy, although the advantage in speedup is not as significant as that in
the previous tasks. This is mainly due to the fact that the embedding size and hidden are both
much smaller than those used previously, and accordingly the processing of a token is much faster.
In that case, other computation overhead such as calculating and sampling from the jump softmax
might become a dominating factor of efficiency. By this cross-tasks comparison, we can see that
the larger the recurrent neural network and the embedding are, the more speedup LSTM-Jump
can gain, which is also confirmed by the task below.

9http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Model (R,N) Accuracy Time Speedup

LSTM-Jump

(50, 5) 0.854 102s 0.80x
(40, 6) 0.874 98.1s 0.83x
(40, 5) 0.889 83.0s 0.98x
(30, 5) 0.885 63.6s 1.28x
(30, 6) 0.893 74.2s 1.10x

LSTM n/a 0.881 81.7s 1x

Table 6: Testing time and accuracy on the AG news classification dataset. The maximum size of
jumping K is set to 40 for all the settings. The jumping level is character.

5.4 Sentence Level Automatic Question Answering with Children’s Book Test
dataset

The last task is automatic question answering, in which we aim to test the sentence level skimming
of LSTM-Jump. We benchmark on the data set Children’s Book Test (CBT) Hill et al. (2015).10

In each document, there are 20 contiguous sentences (context) extracted from a children’s book
followed by a query sentence. A word of the query is deleted and the task is to select the best
fit for this position from 10 candidates. Originally, there are 4 types of tasks according to the
part of speech of the missing word, from which, we choose the most difficult two, i.e., the name
entity (NE) and common noun (CN) as our focus, since simple language models can already achieve
human-level performance for the rest two types .
The models, LSTM or LSTM-Jump, firstly read the whole query, then the context sentences and
finally output the predicted word. While LSTM reads everything, our jumping model would decide
how many context sentences should skip after reading one sentence. Whenever a model finishes
reading, the context and query are encoded in its hidden state ho, and the best answer from the
candidate words has the same index that maximizes the following:

softmax(CWho) ∈ R10,

where C ∈ R10×d is the word embedding matrix of the 10 candidates and W ∈ Rd×hidden size

is a trainable weight variable. Using such bilinear form to select answer basically follows the idea
of Chen et al. (2016), as it is shown to have good performance. The task is now distilled to a
classification problem of 10 classes.
We either truncate or pad each context sentence, such that they all have length 20. The same
preprocessing is applied to the query sentences except that the length is set 30. For both models,
the number of layers is 2, the hidden units are 256 and the batch size is 32. Pretrained word2vec
embeddings are again used and they are not adjusted during training. The maximum number of
context sentences LSTM-Jump can skip per time is K = 5 while the number of total jumping is
limited to N = 5. We let the model jump after reading every sentence, so R = 1 (20 words).
The result is reported in Table 7. The performance of LSTM-Jump is superior to LSTM in terms of
both accuracy and efficiency under all settings in our experiments. In particular, the fastest LSTM-

10http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz

11 of 18 5-8-2017 at 21:37



Final Version

Jump configuration achieves a remarkable 6x speedup over LSTM, while also having respectively
1.4% and 4.4% higher accuracy in Children’s Book Test - Named Entity and Children’s Book Test
- Common Noun.

Model (R,N) Accuracy Time Speedup
Children’s Book Test - Named Entity

LSTM-Jump
(1, 5) 0.468 40.9s 3.04x
(1, 3) 0.464 30.3s 4.11x
(1, 1) 0.452 19.9s 6.26x

LSTM n/a 0.438 124.5s n/a
Children’s Book Test - Common Noun

LSTM-Jump
(1, 5) 0.493 39.3s 3.09x
(1, 3) 0.487 29.7s 4.09
(1, 1) 0.497 19.8s 6.14x

LSTM n/a 0.453 121.5s 1x

Table 7: Testing time and accuracy on the Children’s Book Test dataset. The maximum size of
jumping K is set to 5 for all the settings. The jumping level is sentence.

The dominant performance of LSTM-Jump over LSTM might be interpreted as follows. After
reading the query, both LSTM and LSTM-Jump know what the question is. However, LSTM still
has to process the remaining 20 sentences and thus at the very end of the last sentence, the long
dependency between the question and output might become weak that the prediction is hampered.
On the contrary, the question can guide LSTM-Jump on how to read selectively and stop early
when the answer is clear. Therefore, when it comes to the output stage, the “memory” is both
fresh and uncluttered that a more accurate answer is likely to be picked.
Below is an example of how the model reads a test context given a query (bold face sentences are
those read by our model in the increasing order). XXXXX is the missing word we want to fill.

(a) Query: ‘XXXXX!

(b) Context:

1. said Big Klaus, and he ran off at once to Little Klaus.

2. ‘Where did you get so much money from?’

3. ‘Oh, that was from my horse-skin.

4. I sold it yesterday evening.’

5. ‘That ’s certainly a good price!’

6. said Big Klaus; and running home in great haste, he took an axe, knocked all his four

7. ‘Skins!

8. skins!

9. Who will buy skins?’
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10. he cried through the streets.

11. All the shoemakers and tanners came running to ask him what he wanted for them.’

12. A bushel of money for each,’ said Big Klaus.

13. ‘Are you mad?’

14. they all exclaimed.

15. ‘Do you think we have money by the bushel?’

16. ‘Skins!

17. skins!

18. Who will buy skins?’

19. he cried again, and to all who asked him what they cost, he answered,’ A bushel

20. ‘He is making game of us,’ they said; and the shoemakers seized their yard measures and

(c) Candidates: Klaus | Skins | game | haste | head | home | horses | money | price| streets

(d) Answer: Skins

The reading behavior might be interpreted as follows. The model tries to search for clues, and after
reading sentence 8, it realizes that the most plausible answer is “Klaus” or “Skins”, as they both
appear twice. “Skins” is more likely to be the answer as it is followed by a “!”. The model searches
further to see if ”Klaus!” is mentioned somewhere, but it only finds “Klaus” without “!” for the
third time. After the last attempt at sentence 14, it is confident about the answer and stops to
output with “Skins”.

6 Related Work

Closely related to our work is the idea of learning visual attention with neural networks Mnih et al.
(2014); Ba et al. (2014); Sermanet et al. (2014), where a recurrent model is used to combine visual
evidence at multiple fixations processed by a convolutional neural network. Similar to our approach,
the model is trained end-to-end using the REINFORCE algorithm Williams (1992). However, a
major difference between those work and ours is that we have to sample from discrete jumping
distribution, while they can sample from continuous distribution such as Gaussian. The difference
is mainly due to the inborn characteristics of text and image. In fact, as pointed out by Mnih et al.
(2014), it was difficult to learn policies over more than 25 possible discrete locations.
This idea has recently been explored in the context of natural language processing applications,
where the main goal is to filter irrelevant content using a small network Choi et al. (2016). Perhaps
most closely related to our work is the concurrent work on learning to reason with reinforcement
learning Shen et al. (2016). The key difference between our work and Shen et al. (2016) is that
they focus on early stopping after multiple pass of data to ensure accuracy whereas our method
focuses on selective reading with single pass to enable fast processing.
The concept of “hard” attention has also used successfully in the context of making neural network
predictions more interpretable Lei et al. (2016). The key difference between our work and Lei
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et al. (2016)’s method is that our method optimizes for faster inference, and is more dynamic in
its jumping. Likewise is the difference between our approach and the “soft” attention approach
by Bahdanau et al. (2014).
Our method belongs to adaptive computation of neural networks, whose idea is recently explored
by Graves (2016); Jernite et al. (2016), where different amount of computations are allocated
dynamically per time step. The main difference between our method and Graves; Jernite et al.’s
methods is that our method can set the amount of computation to be exactly zero for many steps,
thereby achieving faster scanning over texts. Even though our method requires policy gradient
methods to train, which is a disadvantage compared to Graves (2016); Jernite et al. (2016), we do
not find training with policy gradient methods problematic in our experiments.
At the high-level, our model can be viewed as a simplified trainable Turing machine, where the
controller can move on the input tape. It is therefore related to the prior work on Neural Turing
Machines Graves et al. (2014) and especially its RL version Zaremba and Sutskever (2015). Com-
pared to Zaremba and Sutskever (2015), the output tape in our method is more simple and reward
signals in our problems are less sparse, which explains why our model is easy to train. It is worth
noting that Zaremba and Sutskever report difficulty in using policy gradients to train their model.
Our method, by skipping irrelevant content, shortens the length of recurrent networks, thereby
addressing the vanishing or exploding gradients in them Hochreiter et al. (2001). The baseline
method itself, Long Short Term Memory Hochreiter and Schmidhuber (1997), belongs to the same
category of methods. In this category, there are several recent methods that try to achieve the
same goal, such as having recurrent networks that operate in different frequency Koutnik et al.
(2014) or is organized in a hierarchical fashion Chan et al. (2015); Chung et al. (2016).

7 Conclusion

In this paper, we focus on learning how to skim text for fast reading. In particular, we propose
a “jumping” model that after reading every few tokens, it decides how many tokens should be
skipped by sampling from a softmax. Such jumping behavior is modeled as a discrete decision
making process, which can be trained by reinforcement learning algorithm such as REINFORCE.
In four different tasks with six datasets (one synthetic and five real), we test the efficiency of the
proposed method on various levels of text jumping, from character to word and then to sentence.
The results indicate our model is several times faster than, while the accuracy is on par with the
baseline LSTM model.
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