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Abstract
With the increased popularity of convolutional neural networks (CNNs) deployed on the wide-
spectrum of platforms (from mobile devices to workstations), the related power, runtime, and
energy consumption have drawn significant attention. From lengthening battery life of mobile
devices to reducing the energy bill of datacenters, it is important to understand the efficiency of
CNNs during serving for making an inference, before actually training the model. In this work, we
propose NeuralPower : a layer-wise predictive framework based on sparse polynomial regression,
for predicting the serving power, runtime, and energy consumption of a CNN deployed on any
GPU platform. Given the architecture of a CNN, NeuralPower provides an accurate prediction
and breakdown for power and runtime across all layers in the whole network, helping machine
learners quickly identify the power, runtime, or energy bottlenecks. The experimental results
show that the prediction accuracy of the proposed NeuralPower outperforms the best published
model to date, yielding an improvement in accuracy of up to 68.5%. We also assess the accuracy of
predictions at the network level, by predicting the runtime, power, and energy of state-of-the-art
CNN architectures, achieving an average accuracy of 88.24% in runtime, 88.34% in power, and
97.21% in energy. We comprehensively corroborate the effectiveness of NeuralPower as a powerful
framework for machine learners by testing it on different GPU platforms.

1. Introduction

In recent years, convolutional neural networks (CNNs) have been widely applied in several important
areas, such as text processing and computer vision, in both academia and industry. However, the
high energy consumption of CNNs has limited the types of platforms that CNNs can be deployed on,
which can be attributed to both (a) high power consumption and (b) long runtime. GPUs have been
adopted for performing CNN-related services in various computation environments ranging from data
centers, desktops, to mobile devices. In this context, resource constraints in GPU platforms need to
be considered carefully before running CNN-related applications.

In this report, we focus on the testing or service phase since, CNNs are typically deployed to
provide services (e.g., image recognition) that can potentially be invoked billions of times on millions
of devices using the same architecture. Therefore, testing runtime and energy are critical to both
users and cloud service providers. In contrast, training a CNN is usually done once. Orthogonal to
many methods utilizing hardware characteristics to reduce energy consumptions, CNN architecture
optimization in the design phase is significant. In fact, given the same performance level (e.g., the
prediction accuracy in image recognition task), there are usually many CNNs with different energy
consumptions. Figure 1 shows the relationship between model testing errors and energy consump-
tion for a variety of CNN architectures. We observe that several architectures can achieve a similar
accuracy level. However, the energy consumption drastically differs among these architectures, with
the difference as large as 40× in several cases. Therefore, seeking for energy-efficient CNN archi-
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tecture without compromising performance seems intriguing, especially for large-scale deployment.

40X

Figure 1: Testing error vs. energy consumption for various CNN architectures on CIFAR-10 running
with TensorFlow on Nvidia Titan X GPU. Each point represents one randomly-sampled
CNN architecture for making inferences on CIFAR-10. For the architectures that achieve
similar error rates (around 20%) during test phase, the energy consumption can vary
significantly by more than 40×.

To identify energy-efficient CNNs, the use of accurate runtime, power, and energy models is
of crucial importance. The reason for this is twofold. First, commonly used metrics characterizing
CNN complexity (e.g., total FLOPs1) are too crude to predict energy consumption for real platforms.
Energy consumption depends not only on the CNN architecture, but also on the software/hardware
platform. In addition, it is also hard to predict the corresponding runtime and power. Second,
traditional profiling methods have limited effectiveness in identifying energy-efficient CNNs, due to
several reasons: 1) These methods tend to be inefficient when the search space is large (e.g., more
than 50 architectures); 2) They fail to quantitatively capture how changes in the CNN architectures
affect runtime, power, and energy. Such results are critical in many automatic neural architecture
search algorithms Zoph and Le (2016); 3) Typical CNNs are inconvenient or infeasible to profile
if the service platform is different than the training platform. Therefore, it is imperative to train
models for power, runtime, energy consumption of CNNs. Such models would significantly help
Machine Learning practitioners and developers to design accurate, fast, and energy-efficient CNNs,
especially in the design space of mobile or embedded platforms, where power- and energy-related
issues are further exacerbated.

In this report, we develop a predictive framework for power, runtime, and energy of CNNs during
the testing phase, namely NeuralPower , without actually running (or implementing) these CNNs
on a target platform. The framework is shown in Figure 2. That is, given (a) a CNN architecture
of interest and (b) the target platform where the CNN model will be deployed, NeuralPower can
directly predict the power, runtime, and energy consumption of the network in service/deployment
phase. This report brings the following contributions:

• To the best of our knowledge, our proposed learning-based polynomial regression approach,
namely NeuralPower , is the first framework for predicting the power consumption of CNNs
running on GPUs, with an average accuracy of 88.34%.

• NeuralPower can also predict runtime of CNNs, which outperforms state-of-the-art analytical
models, by achieving an improvement in accuracy up to 68.5% compared to the best previously
published work.

1. FLOP stands for “floating point operation”.
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Figure 2: NeuralPower quickly predicts the power, runtime, and energy consumption of a CNN
architecture during service phase. Therefore, NeuralPower provides the machine learners
with analysis and guidance when searching for energy-efficient CNN architectures on given
software/hardware platforms.

• NeuralPower uses power and runtime predictions to predict the energy consumption of CNNs
running on GPUs, with an average accuracy of 97.21%.

• In addition to total runtime and average power, NeuralPower also provides the detailed break-
down of runtime and power across different components (at each layer) of the whole network,
thereby helping machine learners to identify efficiently the runtime, power, or energy bottle-
necks.

1.1. Background and Related Work

Prior art, e.g., by Han et al. (2015), has identified the runtime overhead and power consumption of
CNNs execution to be a significant concern when designing accurate, yet power- and energy-efficient
CNN models. These design constraints become increasingly challenging to address, especially in
the context of two emerging design paradigms, (i) the design of larger, power-consuming CNN
architectures, and (ii) the design of energy-aware CNNs for mobile platforms. Hence, a significant
body of state-of-the-art approaches aim to tackle such runtime and power overhead, by accelerating
the execution of CNNs and/or by reducing their power-energy consumption.

To enable CNN architectures that execute faster, existing work has investigated both hardware-
and software-based methodologies. On one hand, with respect to hardware, several hardware plat-
forms have been explored as means to accelerate the CNN execution, including FPGA-based method-
ologies by Zhang et al. (2015a), ASIC-like designs by Zhang et al. (2015b). On the other hand, with
respect to software-based acceleration, several libraries, such as cuDNN and Intel MKL, have been
used in various deep learning frameworks to enable fast execution of CNNs. Among the different
hardware and software platforms, GPU-based frameworks are widely adopted both in academia and
industry, thanks to the good trade-off between platform flexibility and performance that they pro-
vide. In this work, we aim to model the runtime and power characteristic of CNNs executing on
state-of-the-art GPU platforms. In the meantime, recent work has focused on limiting the energy
and power consumption of CNNs. Several approaches investigate the problem in the context of
hyper-parameter optimization. For instance, Rouhani et al. (2016a) have proposed an automated
customization methodology that adaptively conforms the CNN architectures to the underlying hard-
ware characteristics, while minimally affecting the inference accuracy. In addition, some approaches
include techniques that draw ideas from energy-aware computer system design, such as the method-
ologies by Han et al. (2015) and Courbariaux et al. (2016).

While all the aforementioned approaches motivate hardware-related constraints as limiting fac-
tors towards enabling efficient CNN architecture, to the best of our knowledge there is no comprehen-
sive methodology that models the runtime, power, and eventually the energy of CNN architectures.
That is, prior work either relies on proxies of memory consumption or runtime expressed as simplistic
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counts of the network weights (e.g., as done by Rouhani et al. (2016b)), or extrapolates power-energy
values from energy-per-operation tables (as assumed by Han et al. (2015)). Consequently, existing
modeling assumptions are either overly simplifying or they rely on outdated technology nodes. Our
work successfully addresses these limitations, by proposing power, energy, and runtime models that
are validated against state-of-the-art GPUs and Deep Learning software tools.

A work that shares similar insight with our methodology is the Paleo framework proposed by Qi
et al. (2016). In their approach, the authors present an analytical method to determine the runtime
of CNNs executing on various platforms. However, their model cannot be flexibly used across
different platforms with different optimization libraries, without detailed knowledge of them. More
importantly, their approach cannot predict power and energy consumption.

2. Data

The aim of this report is to build the predictive models for runtime, power, and enegy consumptions
on real platforms running CNNs. Therefore, we collect runtime, power data directly from the GPU
platforms. Since the data should be large enough for the learning or modeling process, we pick a
set of CNNs to represent various kind of CNN architectures used in both academia and industry.
We also collect data from different GPU platforms to test the robustness of our methodology. The
details are shown below.

2.1. Experiment Platforms

The main modeling and evaluation steps are performed on the platform described in Table 1. Due
to the popularity of TensorFlow in the community, we adopt this software platform throughout this
report to implement CNNs. To exclude the impact of voltage/frequency changing on the power
and runtime data we collected, we keep the GPU in a fixed state and CUDA libraries ready to use
by enabling the persistence mode. We use nvidia-smi to collect the instantaneous power per 1
ms for the entire measuring period. Please note that while this experimental setup constitutes our
configuration basis for investigating the proposed modeling methodologies, in Section 4.3 we present
results of our approach on other GPU platforms, including Nvidia GTX 1070 and Nvidia Jetson
TX1.

Table 1: Target platform

CPU / Main memory Intel Core-i7 5820K / 32GB
GPU Nvidia GeForce GTX Titan X (12GB DDR5)
GPU max / idle power 250W / 15W
Deep learning platform TensorFlow 1.0 on Ubuntu 14
Power meter NVIDIA System Management Interface

2.2. CNN Architectures Investigated

To comprehensively assess the effectiveness of our modeling methodology, we include a set of several
CNN architectures which are widely used in either academia or industry. Our analysis includes
state-of-the-art configurations, such as the AlexNet by Krizhevsky (2014), VGG-16 & VGG-19
by Simonyan and Zisserman (2014), R-CNN by Ren et al. (2015), NIN network by Lin et al. (2013),
CaffeNet by Jia et al. (2014), GoogleNet by Szegedy et al. (2015), and Overfeat by Sermanet et al.
(2013). We also consider different flavors of smaller networks such as vanilla CNNs used on the
MNIST by LeCun et al. (1998) and CIFAR10-6conv Courbariaux et al. (2015) on CIFAR-10. This
way, we can cover a wide spectrum of CNN applications.
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2.3. Data Collection

To train the layer-level predictive models, we collect data points by profiling power and runtime
from all layers of all the considered CNN architectures in the training set. We separate the training
data points into groups based on their layer types. In this report for the GTX Titan X platform,
the training data include 858 convolution layer samples, 216 pooling layer samples, and 116 fully
connected layer samples. The statistics can change if one needs any form of customization. For
testing, we apply our learned models on the network in the testing set, and compare our predicted
results against the actual results profiled on the same platform, including both layer-level evaluation
and network-level evaluation.

3. Methodology

In this section, we introduce our hierarchical power and runtime model framework: NeuralPower .
NeuralPower is based on the following key insight: despite the huge amount of different CNN
variations that have been used in several applications, all these CNN architectures consist of basic
underlying building blocks/primitives which exhibit similar execution characteristics per type of
layer. To this end, NeuralPower first models the power and runtime of the key layers that are
commonly used in a CNN. Then, NeuralPower uses these models to predict the performance and
runtime of the entire network.

3.1. Layer-Level Power and Runtime Modeling

The first part of NeuralPower is layer-level power and runtime models. We construct these models
for each type of layer for both runtime and power. More specifically, we select to model three types
of layers, namely the convolutional, the fully connected, and the pooling layer, since these layers
carry the main computation load during CNN execution.

We propose a learning-based polynomial regression model to learn the coefficients for different
layers, and we assess the accuracy of our approach against power and runtime measurements on
different GPUs. There are three major reasons for this choice. First, in terms of model accuracy,
polynomial models provide more flexibility and low prediction error when modeling both power
and runtime. The second reason is the interpretability: runtime and power have clear physical
correlation with the layer’s configuration parameters (e.g., batch size, kernel size, etc.). That is, the
features of the model can provide an intuitive encapsulation of how the layer parameters affect the
runtime and power. The third reason is the available amount of sampling data points. Polynomial
models allow for adjustable model complexity by tuning the degree of the polynomial, ranging from
linear model to polynomials of high degree, whereas a formulation with larger model capacity may
be prone to overfitting. To perform model selection, we apply ten-fold cross-validation and we use
Lasso to decrease the total number of polynomial terms. The detailed model selection process will
be discussed in Section 4.1.

Layer-level runtime model: The runtime T̂ of a layer can be expressed as:

T̂ (xT ) =
∑
j

cj ·
DT∏
i=1

x
qij
i +

∑
s

c′sFs(xT ) (1)

where xT ∈ RDT ; qij ∈ N; ∀j,
DT∑
i=1

qij ≤ KT .

The model consists of two components. The first component corresponds to the regular degree-KT

polynomial terms which are a function of the features in input vector xT ∈ RDT . xi is the i-th
component of xT . qij is the exponent for xi in the j-th polynomial term, and cj is the coefficient to
learn. This feature vector of dimension DT includes layer configuration hyper-parameters, such as
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the batch size, the input size, and the output size. For different types of layers, the dimension DT

is expected to vary. The input vector for every type of layer includes input size. For convolutional
layers, the input vector also includes the kernel shape, the stride size, and the padding size. For
fully-connected layer, the input vector also includes the output size. For pooling layer, the input
vector also includes kernel size and stride size.

The second component corresponds to special polynomial terms F , which encapsulate physical
operations related to each layer (e.g., the total number of memory accesses and the total number of
floating point operations). The number of the special terms differs from one layer type to another.
For convolutional layer, the special polynomial terms include the memory access count for input
tensor, output tensor, kernel tensor, and the total number of floating point operations for the
all convolution computations. For fully-connected layer, the special terms include total number
of floating point operations for the matrix multiplication. For pooling layer, the special terms
include the memory access count for input tensors, output tensors and total number of floating
point operations for pooling. Finally, c′s is the coefficient of the s-th special term to learn.

Based on this formulation, it is important to note that not all input parameters are positively
correlated with the runtime. For example, if the stride size increases, the total runtime will decrease
since the total number of convolutional operations will decrease. This observation motivates further
the use of a polynomial formulation, since it can capture such trends (unlike a posynomial model,
for instance).

Layer-level power model: To predict the power consumption P̂ for each layer type during
testing, we follow a similar polynomial-based approach:

P̂ (xP ) =
∑
j

zj ·
DP∏
i=1

x
mij

i +
∑
k

z′kFk(xP ) (2)

where xP ∈ RDP ; mij ∈ N; ∀j,
DP∑
i=1

mij ≤ KP .

where the regular polynomial terms have degree KP and they are a function of the input vector
xP ∈ RDP . mij is the exponent for xi of the j-th polynomial term, and zj is the coefficient to learn.
In the second sum, z′k is the coefficient of the k-th special term to learn.

Power consumption, however, has a non-trivial correlation with the input parameters. More
specifically, as a metric, power consumption has inherent limits, i.e., it can only take a range of
possible values constrained through the power budget. That is, when the computing load increases,
power does not increase in a linear fashion. To capture this trend, we select an extended feature
vector xP ∈ RDP for our power model, where we include both the original features used in the
runtime model, and the logarithmic form of all these features. As expected, the dimension DP is
twice the size of the input feature dimension DT . A logarithmic scale in our features vector can
successfully reflect such a trend, as supported by our experimental results in Section 4.

3.2. Network-Level Power, Runtime, and Energy Modeling

We discuss the network-level models for NeuralPower . For the majority of CNN architectures
readily available in a Deep Learning models “zoo” (as the one compiled by Jia et al. (2014)), the
whole structure consists of and can be divided into several layers in series. Consequently, using our
predictions for power and runtime as building blocks, we extend our predictive models to capture
the runtime, the power, and eventually the energy, of the entire architecture at the network level.

Network-level runtime model: Given a network with N layers connected in series, the pre-
dicted total runtime can be written as the sum of the predicted runtime T̂n of each layer n:

T̂total =

N∑
n=1

T̂n (3)
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Network-level power model: Unlike the summation for total runtime, the average power can be
obtained using both per layer runtime and power. More specifically, we can represent the average
power P̂avg of a CNN as:

P̂avg =

∑N
n=1 P̂n · T̂n∑N

n=1 T̂n

(4)

Network-level energy model: From here, it is easy to derive our model for the total energy
consumption Êtotal of an entire network configuration:

Êtotal = T̂total · P̂avg =

N∑
n=1

P̂n · T̂n (5)

which is basically the scalar product of the layer-wise power and runtime vectors, or the sum of
energy consumption for all layers in the model.

4. Experimental Results

In this section, we assess our proposed NeuralPower in terms of power, runtime, and energy pre-
diction accuracy at both layer level and network level. Since the models for runtime and power
are slightly different from one to another, we discuss them separately in each case. In addition, we
validate our framework on other platforms to show the robustness of NeuralPower .

4.1. Layer-Level Model Evaluation

4.1.1. Model selection

To begin with model evaluation, we first illustrate how model selection has been employed in Neu-
ralPower . In general, NeuralPower changes the order of the polynomial (e.g., DT in Equation 1)
to expand/shrink the size of feature space. NeuralPower applies Lasso to select the best model for
each polynomial model. Finally, NeuralPower selects the final model with the lowest cross-validation
Root-Mean-Square-Error (RMSE), which is shown in Figure 3.
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Figure 3: Comparison of best-performance model with respect to each polynomial order for the fully-
connected layers. In this example, a polynomial order of two is chosen since it achieves
the best Root-Mean-Square-Error (RMSE) for both runtime and power modeling. At the
same time, it also has the lowest Root-Mean-Square-Percentage-Error (RMSPE).
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4.1.2. Runtime Models

Applying the model selection process, we achieve a polynomial model for each layer type in a CNN.
The evaluation of our models is shown in Table 2, where we report the Root-Mean-Square-Error
(RMSE) and the relative Root-Mean-Square-Percentage-Error (RMSPE) of our runtime predictions
for each one of the considered layers. Since we used Lasso in our model selection process, we also
report the model size (i.e., the number of terms in the polynomial) per layer. More importantly, we
compare against the state-of-the-art analytical method proposed by Qi et al. (2016), namely Paleo.
To enable a comparison here and for the remainder of section, we executed the Paleo code on the
considered CNNs. We can easily observe that our predictions based on the layer-level models clearly
outperform the best published model to date, yielding an improvement in accuracy up to 68.5%
(calculated from the differences of RMSPEs for pooling layer).

Table 2: Comparison of runtime models for common CNN layers – Our proposed runtime model
consistently outperforms the state-of-the-art runtime model in both root-mean-square-error
(RMSE) and the Root-Mean-Square-Percentage-Error (RMSPE).

Layer type
NeuralPower Paleo Qi et al. (2016)

Model size RMSPE RMSE (ms) RMSPE RMSE (ms)
Convolutional 60 39.97% 1.019 58.29% 4.304
Fully-connected 17 41.92% 0.7474 73.76% 0.8265
Pooling 31 11.41% 0.0686 79.91% 1.763

Convolutional layer: The convolution layer is among the most time- and power-consuming
components of a CNN. To model this layer, we use a polynomial model of degree three. We select
a features vector consisting of the batch size, the input tensor size, the kernel size, the stride size,
the padding size, and the output tensor size. In terms of the special terms defined in Equation 1,
we use terms that represent the total computation operations and memory accesses count.

Fully-connected layer: We employ a regression model with degree of two, and as features of
the model we include the batch size, the input tensor size, and the output tensor size. It is worth
noting that in terms of software implementation, there are two common ways to implement the
fully-connected layer, either based on default matrix multiplication, or based on a convolutional-like
implementation (i.e., by keeping the kernel size exactly same as the input image patch size). Upon
profiling, we notice that both cases have a tensor-reshaping stage when accepting intermediate results
from a previous convolutional layer, so we treat them interchangeably under a single formulation.

Pooling layer: The pooling layer usually follows a convolution layer to reduce the complexity
of the model. As basic model features we select the input tensor size, the stride size, the kernel size,
and the output tensor size. Using Lasso and cross-validation we find that a polynomial of degree
three provides the best accuracy.

4.1.3. Power Models

As mentioned in Section 3.1, we use the logarithmic terms of the original features (e.g., batch size,
kernel size, etc.) as additional features for the polynomial model since this significantly improves
the model accuracy. This modeling choice is well suited for the nature of power consumption which
does not scale linearly; more precisely, the rate of the increase in power goes down as the model
complexity increases, especially when the power values get closer to the power budget limit. For
instance, in our setup, the Titan X GPU platform has a maximum power of 250W. We find that
a polynomial order of two achieves the best cross validation error for all three layer types under
consideration.
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To the best of our knowledge, there is no prior work on power prediction at the layer level to
compare against. We therefore compare our methods directly with the actual power values collected
from TensorFlow, as shown in Table 3. Once again, we observe that our proposed model formulation
achieves error always less that 9% for all three layers. The slight increase in the model size compared
to the runtime model is to be expected, given the inclusion of the logarithmic feature terms, alongside
special terms that include memory accesses and operations count. We can observe, though, that the
model is able to capture the trends of power consumption trained across layer sizes and types.

Table 3: Power model for common CNN layers

Layer type
NeuralPower

Model size RMSPE RMSE (W)
Convolutional 75 7.35% 10.9172
Fully-connected 15 9.00% 10.5868
Pooling 30 6.16% 6.8618

4.2. Network-level Modeling Evaluation

With the results from layer-level models, we can model the runtime, power, and energy for the whole
network based on the network-level model (Section 3.2) in NeuralPower . To enable a comprehensive
evaluation, we assess NeuralPower on several state-of-the-art CNNs, and we compare against the
actual runtime, power, and energy values of each network. For this purpose, and as discussed in
Section 2, we leave out a set of networks to be used only for testing, namely the VGG-16, NIN,
CIFAR10-6conv, AlexNet, and Overfeat networks.

4.2.1. Runtime evaluation

Prior to assessing the predictions on the networks as a whole, we show the effectiveness of Neu-
ralPower as a useful aid for CNN architecture benchmarking and per-layer profiling. Enabling such
breakdown analysis is significant for machine learning practitioners, since it allows to identify the
bottlenecks across components of a CNN.

For runtime, we use state-of-the-art analytical model Paleo as the baseline. In Figure 4, we
compare runtime prediction models from NeuralPower and the baseline against actual runtime
values of each layer in the NIN and VGG-16 networks. From Figure 4, we can clearly see that
our model outperforms the Paleo model for most layers in accuracy. For the NIN, our model
clearly captures that conv4 is the dominant (most time-consuming) layer across the whole network.
However, Paleo erroneously identifies conv2 as the dominant layer. For the VGG-16 network, we
can clearly see that Paleo predicts the runtime of the first fully-connected layer fc6 as 3.30 ms, with
a percentage prediction error as high as -96.16%. In contrast, our prediction exhibits an error as
low as -2.53%. Since layer fc6 is the dominant layer throughout the network, it is critical to make
a correct prediction on this layer.

From the above, we can conclude that our proposed methodology generally has a better accuracy
in predicting the runtime for each layer in a complete CNN, especially for the layers with larger
runtime values. Therefore, our accurate runtime predictions, when employed for profiling each
layer at the network level, can help the machine learners and practitioners quickly identify the real
bottlenecks with respect to runtime for a given CNN.

Having demonstrated the effectiveness of our methodology at the layer level, we proceed to assess
the accuracy of the network-level runtime prediction T̂total (Equation 3). It is worth observing that
in Equation 3 there are two sources of potential error. First, error could result from mispredicting
the runtime values T̂n per layer n. However, even if these predictions are correct, another source of
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Figure 4: Comparison of runtime prediction for each layer in NIN and VGG-16: Our models provide
accurate runtime breakdown of both network, while Paleo cannot. Our model captures
the execution-bottleneck layers (i.e., conv4 in NIN, and fc6 in VGG-16) while Paleo
mispredicts both.

error could come from the formulation in Equation 3, where we assume that the sum of the runtime
values of all the layers in a CNN provides a good estimate of the total runtime. Hence, to achieve a
comprehensive evaluation of our modeling choices in terms of both the regression formulation and
the summation in Equation 3, we need to address both these concerns.

To this end, we compare our runtime prediction T̂total against two metrics. First, we compare
against the actual overall runtime value of a network, notated as Ttotal. Second, we consider another
metric defined as the sum of the actual runtime values Tn (and not the predictions) of each layer n:

Ttotal =

N∑
n=1

Tn (6)

Intuitively, a prediction value T̂total close to both the Ttotal value and the actual runtime Ttotal would
not only show that our model has good network-level prediction, but that also that our underlying
modeling assumptions hold.

We summarize the results across five different networks in Table 4. More specifically, we show the
networks’ actual total runtime values (Ttotal), the runtime Ttotal values, our predictions T̂total, and
the predictions from Paleo (the baseline). Based on the Table, we can draw two key observations.
First, we can clearly see that our model always outperforms Paleo, with runtime predictions always
within 24% from the actual runtime values. Compared to the actual power value, our prediction have
an RMSPE of 11.76%, or 88.24% in accuracy. Unlike our model, prior art could underestimate the
overall runtime up to 42%. Second, as expected, we see that summing the true runtime values per
layer does indeed approximate the total runtime, hence confirming our assumption in Equation 3.

4.2.2. Power evaluation

We present a similar evaluation methodology to assess our model for network-level power predictions.
We first use our methodology to enable a per-layer benchmarking of the power consumption. Figure
5 shows the comparison of our power predictions and the actual power values for each layer in the
NIN and the VGG-16 networks. We can see that convolutional layers dominate in terms of power
consumption, while pooling layers and fully connected layers contribute relatively less. We can also
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Table 4: Performance model comparison for the whole network. We can easily observe that our
model always provides more accurate predictions of the total CNN runtime compared to
the best published model to date (Paleo). We assess the effectiveness of our model in five
different state-of-the-art CNN architectures.

CNN Qi et al. (2016) NeuralPower Sum of per-layer actual Actual runtime

name Paleo (ms) T̂total (ms) runtime Ttotal (ms) Ttotal (ms)
VGG-16 345.83 373.82 375.20 368.42
AlexNet 33.16 43.41 42.19 39.02

NIN 45.68 62.62 55.83 50.66
Overfeat 114.71 195.21 200.75 197.99

CIFAR10-6conv 28.75 51.13 53.24 50.09

observe that the convolutional layer exhibits the largest variance with respect to power, with power
values ranging from 85.80W up to 246.34W.

Another key observation is related to the fully-connected layers of the VGG-16 network. From
Figure 4, we know layer fc6 takes the longest time to run. Nonetheless, we can see in Figure 5 that
its power consumption is relatively small. Therefore, the energy consumption related of layer fc6 will
have a smaller contribution to the total energy consumption of the network relatively to its runtime.
It is therefore evident that using only the runtime as a proxy proportional to the energy consumption
of CNNs could mislead the machine learners to erroneous assumptions. This observation highlights
that power also plays a key role towards representative benchmarking of CNNs, hence illustrating
further the significance of accurate power predictions enabled from our approach.
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Figure 5: Comparison of power prediction for each layer in NIN and VGG-16.

As discussed in the runtime evaluation as well, we assess both our predictive model accuracy
and the underlying assumptions in our formulation. In terms of average power consumption, we
need to confirm that the formulation selected in Equation 4 is indeed representative. To this end,
besides the comparison against the actual average power of the network Pavg, we compare against

the average value Pavg, which can be computed by replacing our predictions P̂n and T̂n with the
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Table 5: Evaluating our power predictions for state-of-the-art CNN architectures.

CNN NeuralPower Sum of per-layer actual Actual power

name P̂total (W) power Ptotal (W) Pavg (W)
VGG-16 206.88 195.76 204.80
AlexNet 174.25 169.08 194.62

NIN 179.98 187.99 226.34
Overfeat 172.20 168.40 172.30

CIFAR10-6conv 165.33 167.86 188.34

actual per-layer runtime and power values:

Pavg =

∑N
n=1 Pn · Tn∑N

n=1 Tn

(7)

We evaluate our power value predictions for the same five state-of-the-art CNNs in Table 5. Com-
pared to the actual power value, our prediction have an RMSPE of 11.66%, or 88.34% in accuracy.
We observe that in two cases, AlexNet and NIN, our prediction has a larger error, i.e., of 10.47%
and 20.48% respectively. This is to be expected, since our formulation for Pavg depends on runtime
prediction as well, and as observed previously in Table 4, we underestimate the runtime in both
cases.

4.2.3. Energy evaluation

Finally, we use Equation 5 to predict the total energy based on our model. To evaluate our modeling
assumptions as well, we compute the energy value Etotal based on the actual per-layer runtime and
power values, defined as:

Etotal =

N∑
n=1

Pn · Tn (8)

We present the results for the same five CNNs in Table 6. We observe that our approach enables
good prediction, with an average RMSPE of 2.79%, or 97.21% in accuracy.

Table 6: Evaluating our energy predictions for state-of-the-art CNN architectures.

CNN NeuralPower Sum of per-layer actual Actual energy

name Êtotal (J) energy Etotal (J) Etotal (J)
VGG-16 77.312 73.446 75.452
AlexNet 7.565 7.134 7.594

NIN 11.269 10.495 11.465
Overfeat 33.616 33.807 34.113

CIFAR10-6conv 8.938 8.453 9.433

4.3. Models on Other Platforms

Our key goal is to provide a modeling framework that could be flexibly used for different platforms.
To comprehensively demonstrate this property of our work, we extend our evaluation to a different
GPU platform, including desktop GPU - Nvidia GTX 1070, and mobile GPU - Nvidia Jetson TX1.
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4.3.1. Results on Nvidia GTX 1070

We first apply our framework to another GPU platform, and more specifically to the Nvidia GTX
1070 with 8GB memory. We repeat the runtime and power data collection by executing Tensorflow,
and we train power and runtime models on this platform. The layer-wise evaluation results are
shown in Table 7. For these results, we used the same polynomial orders as reported previously
for the TensorFlow on Titan X experiments. Moreover, we evaluate the overall network prediction
for runtime, power, and energy values and we present the predicted values and the prediction error
(denoted as Error) in Table 8. Based on these results, we can see that our methodology achieves
consistent performance across different desktop GPU platforms.

Table 7: Runtime and power model for all layers using TensorFlow on GTX 1070.

Layer type
Runtime Power

Model size RMSPE RMSE (ms) Model size RMSPE RMSE (W)
Convolutional 10 57.38 % 3.5261 52 10.23% 9.4097
Fully-connected 18 44.50% 0.4929 23 7.08% 5.5417
Pooling 31 11.23% 0.0581 40 7.37% 5.1666

Table 8: Evaluation of NeuralPower on CNN architectures using TensorFlow on GTX 1070.

CNN name
Runtime Power Energy

Value (ms) Error Value (W) Error Value (J) Error
AlexNet 44.82 17.40% 121.21 -2.92% 5.44 13.98%
NIN 61.08 7.24% 120.92 -4.13% 7.39 2.81%

4.3.2. Results on Nvidia Jetson TX1

In addition to the traditional high-performance GPUs, many of the CNNs are running on the mobile
platforms to enable various services locally. Therefore, we apply our models on the mobile platform
to show that our method are versatile and widely suitable for various platforms.

We present the per-layer accuracy for runtime and power predictions in Table 9. Different than
GTX Titan X or 1070, Jetson TX1 has very limited memory resource and power cap. Therefore, it
cannot run large CNNs or CNNs with large batch size. For this reason, the CNN architecture set
used for Jetson TX1 is a little bit different than the one used in the previous experiments. However,
we can still see that NeuralPower is robust on mobile GPU platforms. Furthermore, we evaluate our
model on the Cifar10-6conv and NIN networks in Table 10. Different with the results shown for GTX
1070, the results for Jetson TX1 show the trend as underestimating the runtime, and overestimating
the power consumption. The similar thing is that they still have similar power, runtime, or energy
consumption error level.

According to these results, we can conclude that our methodology achieves consistent perfor-
mance across different GPU platforms, thus enabling a scalable/portable framework from machine
learning practitioners to use across different systems.

4.4. Discussion

We first discuss the characteristics of the features in those chosen models. Here are our observations:

• The special polynomial terms F (mentioned in Section 3.1) are important to both runtime and
power models in every type of layer for all the platforms we have studied. On average, 75.0%
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Table 9: Runtime and power model for all layers using TensorFlow on Jetson TX1.

Layer type
Runtime Power

Model size RMSPE RMSE (ms) Model size RMSPE RMSE (W)
Convolutional 44 20.00 % 0.437 48 21.69% 0.825
Fully-connected 12 32.64% 0.871 31 7.72% 0.103
Pooling 53 19.34% 0.2307 37 13.81% 0.315

Table 10: Evaluation of NeuralPower on CNN architectures using TensorFlow on Jetson TX1.

CNN name
Runtime Power Energy

Value (ms) Error Value (W) Error Value (J) Error
Cifar10-6conv 26.69 -13.10% 11.39 18.79% 0.304 3.23%
NIN 75.38 -8.41% 8.23 2.53% 0.620 -6.09%

of features in special terms are chosen for the model, while 35.6% of the regular polynomial
features are chosen.

• There is no single feature which is always important to any prediction model across different
platforms. However, for any specific prediction task, e. g., runtime prediction for pooling layer,
the supports of coefficient vectors for different platforms share a lot of features in common.
Averaged through all the models, 79.8% of the features selected by a model for one platform
are also chosen by the model for other platforms.

• In general, runtime and power models are likely to choose different features in any type of
layer for any platform. The features shared between runtime and power models only compose
34.5% of the total features appeared in the models on average.

It is important to note that the overhead introduced by NeuralPower is very limited. More
specifically, NeuralPower needs to collect datasets to train the models, however, the overhead for
training is very small, e.g., around 30 minutes for GTX Titan X. This includes data collection (under
10 minutes) and model training (less than 20 minutes). The process is done once for a new platform.
However, the model training process can be further shorten by exploiting transfer learning, which
exploits the similarity between different platforms. For example, we find that the best performing
models for GTX 1070 have the same polynomial order as the corresponding models for GTX Titan
X. Even for Jetson TX1, nearly all best performing models share the same polynomial order as the
corresponding models for GTX Titan X, except the runtime model for fully-connected layers. In
this case, the model training process, especially the model selection phase, can be greatly simplified.
Therefore, the overhead would be negligible. If the training process starts from the scratch, the
overhead can still be offset if the CNN architecture search space is large. Even if machine learners
only evaluate a few CNN architectures, NeuralPower can still provide the detailed breakdown with
respect to runtime, power, and energy to identify bottlenecks and possible improvement directions.

5. Conclusion

With the increased popularity of CNN models, the runtime, power, and energy consumption have
emerged as key design issues when determining the network architecture or configurations. In this
work, we propose NeuralPower , the first holistic framework to provide an accurate estimate of
power, runtime, and energy consumption. The runtime model of NeuralPower outperforms the
current state-of-the-art predictive model in terms of accuracy. Furthermore, NeuralPower can be
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used to provide an accurate breakdown of a CNN network, helping machine learners identify the
bottlenecks of their designed CNN models. Finally, we assess the accuracy of predictions at the
network level, by predicting the runtime, power, and energy of state-of-the-art CNN configurations.
NeuralPower achieves an average accuracy of 88.24% in runtime, 88.34% in power, and 97.21% in
energy. As future work, we aim to extend our current framework to model the runtime, power, and
energy of the networks with more sophisticated parallel structures, such as the ResNet network by
He et al. (2016).
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