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Intent: count the occurrences of
a list item
Code: l . count ( ’b’ )

Figure 1: A datapoint from StackOverflow, repre-
senting a Question (intent) and its Answer (snip-
pet)

Abstract

In this work, we explore the seman-
tic parsing task of generating code in
a general-purpose programming language
(e.g. Python) from a natural language de-
scription. One significant issue with the
current state of code generation from nat-
ural language is the lack of data in a ready-
to-translate form, ie written as a command
with variable names specified. We propose
a deep generative model to rewrite and
augment utterances such as StackOver-
flow questions into an acceptable form by
adding variable names and other impor-
tant information. We treat the rewritten
natural language representation as a latent
variable, and sample an edited natural lan-
guage sentence which we condition the
code generation process on. We train the
models separately in a supervised setting
and together in an unsupervised setting.

1 Introduction

Programmers learning a new programming lan-
guage like Java or Python can often struggle with
implementing a simple command into code, due to
unfamiliarity with syntax or other issues. Even ex-
perienced programmers can forget the specific de-
tails of certain library functions. Often, program-
mers stuck on such details will query search en-
gines with natural language descriptions looking

for reference materials or contents on question and
answer sites such as StackOverflow (SO). How-
ever, this means that the programmer must search
for the right question, then the right answer, then
understand the code in the answer well enough to
implement his own version of it to attain the re-
sults that he is interested in, which can be tough
for a novice.

Semantic parsing is the category of tasks in
NLP which involve transforming some unstruc-
tured natural language text into a structured log-
ical representation. These representations can
range from simple grammars for querying knowl-
edge bases (Berant et al., 2013) to smartphone
voice commands which can be executed by vir-
tual agents such as Siri and Alexa (Kumar et al.,
2017). NLP researchers have shown significant
progress on learning these representations using
data. However, these representations are often
limited in their expressivity due to limitations in
the expressive power of the syntax and the limited
domain of the task. The ability to generate code
in general-purpose programming languages is de-
sirable as they are both sufficiently expressive for
programmable tasks and can easily be understood
and integrated by programmers into existing sys-
tems and codebases.

One necessity for learning a strong code gen-
eration system is data which includes a concise
natural language intent for which the correspond-
ing code snippet captures all of the instructions
and detail in the intent, while not including any
extraneous code. Previous works have focused
on cases where code is annotated, line-by-line,
with detailed natural language descriptions that
have variable names (Oda et al., 2015), or where
the code can only interact with a fixed number
of variables (i.e. pieces in a game) (Ling et al.,
2016). We would like to our models to capture
the complexities of all questions that programmers



can ask, which can be achieved by mining data
from a question-and-answer site like StackOver-
flow which allows users the freedom to ask any
code-related question. However, using the ques-
tion text from an SO post is often insufficient in-
formation to actually generate code. In a usual
code generation task, an example input would be
a fully-formed command ”How to get maximal el-
ement in list ’my list’”, and its corresponding
output would be a line of code: max(my list).
However, on StackOverflow a question posted by
users would take the form ”How to get maximal
element in a list?”, expressing only an abstract
intent, and the answer to the post would still be
max(my list). Despite the fact that the in-
tent and snippet agree, the intent does not contain
enough information to generate the entire code
snippet, as it is missing the variable name of the
list.

One approach to fixing this issue would be man-
ual annotation, but the process is slow and takes
a skilled programmer in the target programming
language, and thus is not easily scaled. We take
a two-step approach to utilize this data: First, we
construct a model which rewrites the abstract nat-
ural language intents into concrete commands by
augmenting them with variables from the code
and other important information such as variable
types. Then, we construct a model which gen-
erates code snippets from these rewritten intents.
Because data with rewritten intents is sparse, we
treat the rewritten intents as underlying latent vari-
ables which we infer to perform the final code gen-
eration step, and train our models in tandem, semi-
supervised. This approach surpasses our baseline
approach of ignoring the rewriting step and just
generating code directly from the intent, as well
as learning rewritten intent generation using only
the small supervised dataset.

2 Related Work

Gradient-based optimization of generative latent-
variable models was first popularized with the
Variational Auto-Encoder (VAE) (Kingma and
Welling, 2013). However, Kingma and Welling
focused on sampling and training continuous la-
tent variables. Miao and Blunsom (2016) re-
purpose the ideas from the VAE to train models
structured, discrete latent variables, and demon-
strate that the latent variables can be used as the
summaries in sentence compression to good ef-

Intent: count the occurrences of
a list item
Code: l . count ( ’b’ )
Rewritten Intent: count the
occurrences of item ’b’ in list l

Figure 2: A datapoint separated into 3 parts: intent
in blue, code in green, and generable tokens in red.

fect.
Xu et al. (Lin et al., 2017) have worked on

learning to generate Bash shell script commands
from natural language. Their approach relies on
synthesizing a template for a Bash one-liner, then
filling in the arguments. They show good re-
sults in both accuracy and human evaluation, and
show that their model is able to capture rela-
tively complex intents as commands and argu-
ments. However, they limit the scope of the task
to running Unix command-line utilities with ar-
guments, which means that many of the power-
ful elements of Bash syntax are lost, such as con-
trol flow, I/O redirection, and variables, as most
command-line use of Bash does not include these
features. Our work is a step closer to generating
code in a general-purpose language which allows
these more complex syntactic features.

3 Methods

3.1 Problem Description
A sample of fully annotated data is shown in Fig-
ure 2. We would like to infer high-quality rewrit-
ten intents from the intent (English) and code
(Python). The quality of a rewritten intent is mea-
sured by its faithfulness to the original intent and
its completeness in providing a fully-formed natu-
ral language command allowing humans and ma-
chines to write code with no additional informa-
tion. To facilitate the generation of these rewrit-
ten intents, we require that they are composed
of mostly copies of words from the intent and
variable names and literals (strings, integers, etc.)
from the code. This means that the rewritten in-
tent will mostly contain content from the original
intent, with some variable names possibly added
to allow for a complete generation. In Figure 2,
for example, without the variable names inserted
into the rewritten intent, it is impossible to write
the code; even if we know that we want to call
the count function, there’s no indication as to
which list it should be called from or what ob-



ject it should be called on. The rewritten intent
tells us that the list is l and that count should be
called on ’b’. One last element of the rewritten
intent is the generable tokens: these are common
words such as prepositions (in, of, on) and types
(list, file) which are sometimes not found in the
intents due to their brevity. We allow the model to
generate these for higher fidelity and clearer match
with the manually annotated rewritten intents.

3.2 Model

The model can be separated into two parts: there is
a rewritten intent generator and a code generator.

3.2.1 Rewritten Intent Generator
The base model is an encoder-decoder (Cho et al.,
2014) model. We use fine-tuned embeddings e(w)
to convert each token in the snippet and intent
into a vectors, then encode each sequence sepa-
rately with bidirectional LSTMs (Hochreiter and
Schmidhuber, 1997). The decoder is an LSTM
which allows for copies using pointer networks
as described in Gu et al. (Gu et al., 2016) We
would like to generate probabilities for the rewrit-
ten intent z = [z1, z2, ..., z|z|]. The intent x =
[x1, x2, ..., x|x|] and snippet y = [y1, y2, ..., y|y|]
can be encoded and concatenated into a single list
of vectors:

r = [BiLSTM(e(x1), ..., e(x|x|)),

BiLSTM(e(y1), ..., e(y|y|))] (1)

Let ht be the current hidden state of the LSTM.
Then we calculate the copy scores αt:

αt,i = v>a tanh(Wa[ht; ri]) (2)

Where va,Wa are trainable parameters. We ex-
plicitly disallow copies of code tokens which are
not variable names or literals, e.g. "foo" or 3.
Then we compute scores βt for generable tokens.
These are computed directly from the hidden state:

βt =Wght (3)

Once we have computed these two, to get the
final generation probabilities we compute

qt = softmax([αt;βt]) (4)

The probability of generating a copy or token
with index i as the next word is Pr(zt = i) = qt,i.

Finally, we calculate ht+1. If we decided to
copy a token, we would like to use information
about the copied token, so we augment the input
to the LSTM f , the embedding of the copied word
e(zt), with the encoding of the copied token r[zt].
If zt was not copied and instead generated, then
we let r[zt] = 0.

ht+1 = f(ht, [e(wt); r[zt]]) (5)

3.2.2 Code Generator
The code generator is also an encoder-decoder
LSTM model. We use a bidirectional LSTM to
encode the rewritten intent, to obtain a list of en-
codings s = BiLSTM(z1, z2, ..., z|z|). Then, we
calculate scores for copying and generating code
tokens ŷ = [ŷ1, ..., ŷ|ŷ|]. For copies, we employ
the same strategy as before: letting the current hid-
den state be ht, we calculate only for i such thatwi
is a code token:

γt,i = v>b tanh(Wb[ht; s[i]]) (6)

Letting vb,Wb be trainable parameters. To cal-
culate the probabilities of the code tokens, we cal-
culate

δt = Uc((softmax(v>c tanh(Wc[ht; s[i]])))
>r)

(7)

Letting Uc, vc,Wc be trainable parameters.
To get the final token generation probabilities
Pr(ŷt = i) = pt,i we take

pt = softmax([γt; δt]) (8)

Since the purpose of this is not primarily to
copy, we do not use the encoding of copied tokens
when computing the next hidden state

ht+1 = f(ht, e(ŷt)) (9)

3.2.3 Training
The training process roughly follows the setup
in Miao and Blunsom (Miao and Blunsom,
2016), which also has a discrete VAE architec-
ture. Supervised data is trained in the usual



Figure 3: Diagram of the Rewritten Intent Generator.

sequence-to-sequence method of maximizing the
log-likelihoods

∑
t log qt,

∑
t log pt. Let φ, θ be

the parameters of the rewritten intent and code
generation models respectively. Unsupervised
data is trained by sampling from the latent variable
distribution qφ(z|x, y), then computing the proba-
bility distribution pθ(y|z) in the code generation
step. We want to optimize the variational lower
bound of pθ, which is

Eqφ(z|x,y)[log pθ(y|z)]−DKL[qφ(z|x, y)||p′(w)]

(10)

≤ log

∫
qφ(z|x, y)
qφ(z|x, y)

pθ(y|z)p′(w)dw = log p(y)

(11)

Here, p′ is the prior language model on the
rewritten intent distribution we are sampling from.
Intuitively, this means that we want to balance out
the two objectives of drawing samples the code
generation model to generate code well and draw-
ing them from the prior language model to ensure
that they still look like words.

Instead of directly optimizing L, we control the
importance of these objectives by introducing a
coefficient λ and instead optimizing

Eqφ(z|x,y)[log pθ(y|z)]− λDKL[qφ(z|x, y)||p′(w)]
(12)

If λ is small, this means that the model will fo-
cus more on samples which perform well on code
generation as opposed to samples which are likely
to appear in the language model. Our ultimate goal
is not to enforce the language model constraints
on the rewritten intent tightly, but to create a good
code generation model and rewritten intent model
which supports it well.

We optimize the parameters φ and θ differently.
For the parameters θ, we want to maximize the
log-likelihood of generating the correct code snip-
pet given z.

∂L

∂θ
= Eqφ(z|x,y)[log pθ(y|z)] (13)

≈ 1

M

∑
m

log pθ(y|z) (14)

≈ min
m

log pθ(y|z) (15)

Equations 14 and 15 suggest two different
strategies to update the paramters. In both cases,
we sampleM samples from qφ(z|x, y), the rewrit-
ten intent generator. In Equation 14, we take the
mean of the log-likelihood and optimize based
on all the samples; in Equation 15 we optimize
only on the sample which has the minimum loss.
The first is the standard method of approximat-
ing the expectation, the second avoids optimizing
the code generation process based on bad samples
from the rewritten intent generator. The effective-



ness of these strategies is explored in the experi-
ments section.

We update the parameters φ in the rewritten in-
tent generator by letting the learning signal

l(z, x, y) = log pθ(y|z)−λ(log qφ(z|x, y)−log p′(w))

Then we take the gradient:

∂L

∂φ
= Eqφ(z|x,y)[l(z, x, y)

∂ log qφ(z|x, y)
∂φ

] (16)

≈ 1

M

∑
m

[l(z(m), x, y)
∂ log qφ(z

(m)|x, y)
∂φ

] (17)

Taking M samples as we did before. How-
ever, this estimator has high variance because
of the variability in quality of samples from
qφ(z

(m)|x, y). Thus, we use REINFORCE
(Williams, 1992) to reduce the variance of the
training process, and introduce a baselineB(x, y).
For the baseline to be effective, we minimize the
following expectation during training:

Eqφ(z|x,y)[l(z, x, y)−B(x, y)]2 (18)

We use a MLP which takes as input the bag of
words for x, y and the lengths of the sentences as
our baseline B. Our final gradient estimator is
then

∂L

∂φ
≈ 1

M

∑
m

[
(l(z(m), x, y)−B(x, y))

∂ log qφ(z
(m)|x, y)

∂φ

]
(19)

4 Experiments

4.1 Dataset and Preparation
The data consists of three parallel English-Python
corpora mined from Stack Overflow in a col-
laborative effort between Pengcheng Yin, Bowen
Deng, myself, and the two advisors on this project,
Graham Neubig and Bogdan Vasilescu. Our min-
ing method is described in Yin et al. (Yin et al.,
2018); we calculate alignment scores between
the questions asked on SO and snippets of code
posted in the answers. Specifically, we calcu-
late the alignment scores by training a logistic re-
gression classifier on a list of hand-tuned features

such as vote count and snippet length, as well as
machine-learned scores which measure the abil-
ity of a model to translate the natural language
into code and vice versa. Although the initial an-
notation and mining process worked well on the
top 1000 questions, extending to the top 10000
questions on SO proved to be difficult. While
the top 1000 questions are mostly about common
Python language constructs and usage of popu-
lar functions in popular libraries, the top 10000
questions present a much more varied set of chal-
lenges, often diving deeply into a specific library
or asking about how to fix a bug in a specific
program. We decided to annotate the model out-
puts with the highest alignment scores so that we
could teach the model which datapoints it mis-
classified, particularly types of datapoints which
did not appear in the top 1000. We retrained the
model on the new data and were able to make sig-
nificant improvements, to the point where ¿60%
of data with the highest-ranking alignment scores
was correctly aligned, as opposed to 25-30%.

• Supervised: 490 question and answer pairs
mined from the top 1000 Python questions
on StackOverflow and manually annotated.
This annotation includes the original English
question (intent), the Python code snippet
which reflects a correct answer (snippet), and
a natural language sentence in the form of a
command with all the variable names specific
to the snippet which reflects the original in-
tent of the question (rewritten intent).

• Unsupervised Verified: 390 question and an-
swer pairs mined from the top 10000 Python
questions on StackOverflow and manually
verified. Only English (intent) and Python
(snippet) data are provided.

• Unsupervised: 2242 question and answer
pairs mined from the top 10000 Python ques-
tions on StackOverflow, with no manual ver-
ification. Only English (intent) and Python
(snippet) data are provided.

4.2 Implementation

The model is implemented in Dynet (Neubig et al.,
2017), with 2-layer LSTMs with hidden layer
and input size 128. We use the Adam optimizer
(Kingma and Ba, 2014) and Dropout (Zaremba
et al., 2014) to improve the optimization process.



For the following experiments, we pre-trained
with Django data, which consists of line-by-line
annotations of the Python Django library (Oda
et al., 2015), and supervised data for 20 epochs,
then trained with a random sample of 10% of the
supervised data points combined with the all of
unsupervised datapoints. We use a 60/40 train/test
split and measure the losses.

4.3 Results
When unsupervised data is added to the training
in epoch 21, both Figure 4 and Figure 5 reflect in-
creased ability to generate code. The model seems
to learn how to better utilize the rewritten intents
it creates to generate code, even if it doesn’t learn
how to generate rewritten intents closer to our an-
notations. This could potentially be due to the fact
that rewritten intents can be written in many ways,
and the model only selects one style for code gen-
eration. Figure 6 contains outputs of the program.
Notably, the code generation tends to fall into sim-
ilar patterns, suggesting that there isn’t enough of
a learning signal to learn rewritten intents well
from the unsupervised data in our current model.

5 Conclusion and Future Work

There is still a long way to go on learning from the
StackOverflow dataset. This work itself is far from
complete; there are still areas in which the model
could be optimized for higher performance, as it is
not currently generating good outputs. To this end,
we plan to improve the data in quantity and quality
of annotations, optimization process, and model
architecture. However, even if this work were
complete, it would just be a single step towards
generating the correct code from StackOverflow.
There are still many issues to be covered, from
referencing the right variables and arguments to
using the appropriate syntax, and unlike tasks like
Machine Translation, a mostly-correct code gen-
eration will not generate the appropriate output
when run, but a mostly-correct translated sentence
is still comprehensible by speakers of the target
language. We hope that this work, when com-
plete, will encourage the development of more ro-
bust code generation models.
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Figure 4: Results of training on the unsupervised, verified data.

Figure 5: Results of training on the unsupervised data.



intent: count the occurr of a list item
code: dict ( ( ( x , l . count ( x ) ) for x in set ( l ) ) )
gold_rewritten: count the occurr of item in list l
pred_rewritten: count the occurr of item x <unk> is in <unk> x ) <unk> <unk>

of <unk> key ) ) l x <unk> <unk> x
pred_code: sorted ( l , key = lambda x : ( x [ 1 ] , x [ 1 ] ) )
------------------------------------------------------------
intent: count the occurr of a list item
code: l . count ( ’b’ )
gold_rewritten: count the occurr of item ’b’ in list l
pred_rewritten: count the occurr ’b’ from list l <unk> <unk> <unk> case of of

<unk> <unk> <unk> of <unk> of <unk> <unk> of <unk> <unk>
pred_code: re . findall ( ’b’ ( ’b’ )
------------------------------------------------------------
intent: revers a string
code: a_string [ : : ( - 1 ) ]
gold_rewritten: revers a string a_string
pred_rewritten: revers a string a_string to 1 is save last <unk> of a_string
pred_code: a_string . join ( { 1 ]
------------------------------------------------------------
intent: check if a variabl exist
code: if ( ’myvar’ in globals ( ) ) :
pass
gold_rewritten: check if a <unk> variabl ’myvar’ exist
pred_rewritten: check if object ’myvar’ <unk> <unk> variabl ’myvar’ and 1 pass

<unk> pass <unk> pass <unk> <unk> pass
pred_code: super ( ’myvar’ ) . reverse ( )
------------------------------------------------------------
intent: add new item to dictionari
code: default_data . update ( { ’item4’ : 4 , ’item5’ : 5 , } )
gold_rewritten: add key <unk> <unk> ’item4’ <unk> 4 and ’item5’ <unk> 5 to

dictionari default_data
pred_rewritten: check new item ’item4’ 5 <unk> : <unk> dictionari ’item4’ ’

item5’ <unk> 4 ’item5’ <unk> , ’item5’ <unk>
pred_code: datetime . datetime . strptime ( <unk> <unk> <unk> <unk> <unk> <

unk> 1 ] ) . 5
------------------------------------------------------------
intent: add key to a dictionari
code: data . update ( dict ( a = 1 ) )
gold_rewritten: add key a to dictionari data with <unk> 1
pred_rewritten: <unk> key a to a dictionari data from 1 <unk> case 1 1 <unk>

right 1 ) )
pred_code: datetime . datetime . strptime ( a ( a 2 ) )

Figure 6: Output of the program on unsupervised data.
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