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Abstract

Computational modeling of human multi-
modal language is an emerging research
area in natural language processing span-
ning the language, visual and acoustic
modalities. Comprehending multimodal
language requires not only the modeling
of interactions within each modality (intra-
modal interactions), but more importantly
the interactions between modalities (cross-
modal interactions). Modeling these inter-
actions lie at the core of multimodal lan-
guage analysis. From a resource perspec-
tive, there is a genuine need for large scale
datasets that allow for in-depth studies of
human multimodal language. In this paper
we introduce Multimodal Opinion Senti-
ment and Emotion Intensity (MOSEI), the
largest dataset for multimodal sentiment
analysis and emotion recognition. In ad-
dition, we propose a novel multimodal fu-
sion technique called the Graph Memory
Fusion Network (GMFN) that dynamically
fuses modalities in a hierarchical manner.
Using data from MOSEI and GMFN, we
conduct experiments to investigate the hier-
archical interactions between modalities in
human multimodal language. Unlike previ-
ously proposed fusion techniques, GMFN
is highly interpretable and achieves supe-
rior performance when compared to the
previous state of the art, demonstrating that
GMFN is highly suitable for multimodal
language analysis.

1 Introduction

Theories in the origin of language have identified
the combination of verbal and nonverbal behaviors
(visual and acoustic modality) as the prime form of

communication utilized by humans throughout evo-
lution (Müller, 1866). From a computational per-
spective, the modeling of human language across
both verbal and nonverbal behaviors is an upcom-
ing research area that extends the boundaries of
natural language processing. This research area
focuses on modeling tasks such as multimodal sen-
timent analysis (Morency et al., 2011; Glorot et al.,
2011), emotion recognition (Busso et al., 2008)
and personality traits recognition (Park et al., 2014)
from multimodal temporal signals including lan-
guage (spoken words), visual (facial expressions,
gestures), and acoustic (prosody, speech tone).

At its core, these multimodal signals are highly
structured with two prime forms of interactions:
intra-modal and cross-modal interactions (Ra-
jagopalan et al., 2016b). Intra-modal interactions
refer to information within a specific modality, in-
dependent of other modalities. For example, the
arrangement of words in a sentence according to
the generative grammar of the language (language
modality) (Chomsky, 1957) or the sequence of fa-
cial muscles for the presentation of a frown (vision
modality). Cross-modal interactions refer to in-
teractions between modalities. For example, the
simultaneous co-occurrence of a smile with a posi-
tive sentence or the delayed occurrence of a laugh-
ter after the end of sentence. Modeling these intra-
modal and cross-modal interactions lie at the heart
of human multimodal language analysis and has re-
cently become a centric research direction in both
NLP (Hazarika et al., 2018; Poria et al., 2017a;
Chen et al., 2017) and multimodal machine learn-
ing (Zadeh et al., 2018a; Srivastava and Salakhut-
dinov, 2012; Ngiam et al., 2011).

However, from a resource perspective, datasets
made for modeling multimodal language have se-
vere shortcomings in the following aspects:

Diversity in training samples: Having a rich
diversity in training samples is crucial for com-



prehensive studies of human multimodal language.
This is due to the high complexity of the under-
lying data distribution. This complexity is rooted
in the variability of intra-modal and cross-modal
dynamics for language, vision and acoustic modal-
ities (Rajagopalan et al., 2016b). Previously pro-
posed datasets for multimodal language are gener-
ally small in size due to the difficulties associated
with data acquisition, costs of annotations, as well
as significant the amount of feature extraction and
post-processing required.

Diversity in topics: Having a diverse set of top-
ics allows our models to generalizable across differ-
ent domains. Models trained on only a few topics
generalize poorly as the learnt language and non-
verbal features might be highly correlated to the
topics of videos they were trained on. For example,
a lack of diversity in topics might cause a model
to always associate movie reviews with negative
sentiment. Increasing the diversity of topics with
rich examples from each topic allows our models
the generalize across multiple domains.

Diversity in speakers: Human multimodal lan-
guage is highly idiosyncratic: individuals prefer
their own writing and speaking styles. Training
models on only few speakers can lead to a poor
solutions where models memorize the identity of
speakers. Having a diverse set of speakers opens
the door towards generalizable models of multi-
modal language (Zadeh et al., 2016a) and allows
us to draw reasonable conclusions over the rich
expressiveness of human multimodal language.

Diversity in annotations: Human multimodal
language is broadly defined across expressions of
sentiment, emotions and personality traits. The ex-
pression of each intent is unique. It is crucial that
our methods learn to generalize across different
expressions of intent such as sentiment, emotions
and various speaker personality traits. Furthermore,
having multiple labels to predict allows our compu-
tational methods to discover potential relationships
between labels. For example, there are certainly
strong correlations between positive sentiment and
positive emotions. Such a variety of labels could
allow for multi-task learning and a step towards
deeper understanding of human language from mul-
tiple perspectives.

This paper addresses the lack of multimodal re-
sources with diversity in samples, topics, speakers
and annotations. Our first contribution is to present
the scientific community with the largest dataset

of multimodal sentiment and emotion recognition
called Multimodal Opinion Sentiment and Emotion
Intensity (MOSEI). MOSEI contains 23,500 anno-
tated sentence utterance video segments from 1,000
distinct speakers and 250 topics. This diverse set of
speakers, topics, annotations, and samples allows
for generalizable studies of human multimodal lan-
guage. All the videos are gathered from online
video sharing websites and follow creative com-
mons license that allows for personal unrestricted
use and redistribution. The multimodal dataset and
a multimodal data loading framework are provided
to the scientific community to encourage valuable
research in human multimodal language analysis.

Our second contribution is an interpretable fu-
sion model called the Graph Memory Fusion Net-
work (GMFN). As compared to previously pro-
posed models, GMFN is specifically designed with
interpretability in mind: fusion is performed in a
hierarchical manner so that the importance of every
combination of modalities can be analyzed. Specif-
ically, GMFN contains a Dynamic Fusion Graph
module with built-in efficacies that allow us to in-
terpret the interactions between modalities during
fusion. This allows us to study the nature of cross-
modal dynamics in multimodal language which we
do so in detail in our experiments. Furthermore,
GMFN achieves superior performance compared
to previously proposed models on MOSEI as well
as excellent results on 6 additional datasets relat-
ing to multimodal sentiment analysis, multimodal
emotion recognition and multimodal speaker trait
recognition.

2 Related Works

In this section we compare the MOSEI to previ-
ously proposed dataset for modeling multimodal
language. We then describe the baselines and re-
cent models for sentiment analysis and emotion
recognition.

2.1 Comparison to other Datasets
We compare MOSEI to an extensive pool of
datasets for sentiment analysis and emotion recog-
nition. The following datasets include a combina-
tion of language, visual and acoustic modalities as
their input data.

2.1.1 Multimodal Datasets
CMU-MOSI (Zadeh et al., 2016b) is a collection
of 2199 opinion video clips each annotated with
sentiment in the range [-3,3]. The ICT-MMMO



Dataset # S # Sp Mod Sent Emo TL (hh:mm:ss)
MOSEI 23,453 1,000 {l, v, a} 3 3 65:53:36
CMU-MOSI 2,199 98 {l, v, a} 3 7 02:36:17
ICT-MMMO 340 200 {l, v, a} 3 7 13:58:29
YouTube 300 50 {l, v, a} 3 7 00:29:41
MOUD 400 101 {l, v, a} 3 7 00:59:00
SST 11,855 – {l} 3 7 –
Cornell 2,000 – {l} 3 7 –
Large Movie 25,000 – {l} 3 7 –
STS 5,513 – {l} 3 7 –
IEMOCAP 10,000 10 {l, v, a} 7 3 11:28:12
SAL 23 4 {v, a} 7 3 11:00:00
VAM 499 20 {v, a} 7 3 12:00:00
VAM-faces 1,867 20 {v} 7 3 –
HUMAINE 50 4 {v, a} 7 3 04:11:00
RECOLA 46 46 {v, a} 7 3 03:50:00
SEWA 538 408 {v, a} 7 3 04:39:00
SEMAINE 80 20 {v, a} 7 3 06:30:00
AFEW 1,645 330 {v, a} 7 3 02:28:03
AM-FED 242 242 {v} 7 3 03:20:25
Mimicry 48 48 {v, a} 7 3 11:00:00
AFEW-VA 600 240 {v, a} 7 3 00:40:00

Table 1: Comparison between the MOSEI dataset
with standard sentiment analysis and emotion
recognition datasets. #S denotes the number of
annotated data points. #Sp is the number of distinct
speakers. Mod indicates the subset of modalities
present from {l, v, a}. Sent and Emo columns indi-
cate presence of sentiment and emotion labels. TL
denotes the total number of video hours.

(Wöllmer et al., 2013) consists of online social
review videos annotated at the video level for sen-
timent. YouTube (Morency et al., 2011) contains
videos from the social media web site YouTube that
span a wide range of product reviews and opinion
videos. MOUD (Perez-Rosas et al., 2013) consists
of product review videos in Spanish. Each video
consists of multiple segments labeled to display
positive, negative or neutral sentiment. IEMO-
CAP (Busso et al., 2008) consists of 151 videos
of recorded dialogues, with 2 speakers per session
for a total of 302 videos across the dataset. Each
segment is annotated for the presence of 9 emo-
tions (angry, excited, fear, sad, surprised, frustrated,
happy, disappointed and neutral) as well as valence,
arousal and dominance.

2.1.2 Language Datasets
Stanford Sentiment Treebank (SST) (Socher
et al., 2013) includes fine grained sentiment labels
for phrases in the parse trees of sentences collected
from movie review data. While SST has larger pool
of annotations, we only consider the root level an-
notations for comparison. Cornell Movie Review
(Pang et al., 2002) is a collection of 2000 movie-
review documents and sentences labeled with re-
spect to their overall sentiment polarity or subjec-
tive rating. Large Movie Review dataset (Maas

et al., 2011) contains text from highly polar movie
reviews. Sanders Tweets Sentiment (STS) con-
sists of 5513 hand-classified tweets each classified
with respect to one of four topics of Microsoft,
Apple, Twitter, and Google.

2.1.3 Visual and Acoustic Datasets
The Vera am Mittag (VAM) corpus consists of
12 hours of recordings of the German TV talk-
show “Vera am Mittag” (Grimm et al., 2008). This
audio-visual data is labeled for continuous-valued
scale for three emotion primitives: valence, acti-
vation and dominance. VAM-Audio and VAM-
Faces are subsets that contain on acoustic and vi-
sual inputs respectively. RECOLA (Ringeval et al.,
2013) consists of 9.5 hours of audio, visual, and
physiological (electrocardiogram, and electroder-
mal activity) recordings of online dyadic interac-
tions. Mimicry (Bilakhia et al., 2015) consists of
audiovisual recordings of human interactions in
two situations: while discussing a political topic
and while playing a role-playing game. AFEW
(Dhall et al., 2012, 2015) is a dynamic temporal
facial expressions data corpus consisting of close
to real world environment extracted from movies.

Detailed comparison of MOSEI to the datasets
in this section is presented in Table 1. MOSEI has
a longer total duration as well as a larger number
of total data points. Furthermore, MOSEI has a sig-
nificantly greater variety in the number of speakers
and topics. It has features from all three modalities
of language, visual and acoustic. Finally, MOSEI
is annotated for both sentiment and emotions.

2.2 Baseline Models

Modeling multimodal language has been the sub-
ject of studies in NLP and multimodal machine
learning. Notable approaches are listed as follows.

The first category of models simplify the tem-
poral aspect of videos by averaging each modal-
ity’s information through time (Abburi et al., 2016).
These approaches then use this as input to a non-
temporal learning model such as Support Vec-
tor Machines (SVMs) (Cortes and Vapnik, 1995;
Zadeh et al., 2016b; Perez-Rosas et al., 2013; Park
et al., 2014), Random Forests (Breiman, 2001) or
Neural Networks (Nojavanasghari et al., 2016; Po-
ria et al., 2016; Wang et al., 2016). These models
are successful in understanding co-occurrences of
multimodal information. However, the lack of tem-
poral modeling is a major flaw as these models
do not have the resolution to work with multiple



contradictory evidences, eg. if a smile and frown
happen together in a segments. Furthermore, the
representation over long periods of time become
less informative and therefore the performances of
these approaches decrease as the segments increase
in length.

The second category of research models tem-
poral information using probabilistic models. In
particular, the application of graphical models in
temporal sequence modeling has been an impor-
tant research problem due to their interpretability
and mathematical interpretations. Hidden Markov
Models (HMMs) (Baum and Petrie, 1966), Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001)
and Hidden Conditional Random Fields (HCRFs)
(Quattoni et al., 2007) were shown to work well
on unimodal sequences such as language (Misawa
et al., 2017; Ma and Hovy, 2016; Huang et al.,
2015) and audio (Yuan and Liberman, 2008). These
temporal graphical models have been extended
to work with multimodal data (Morency et al.,
2011). Several methods have been proposed in-
cluding multi-view HCRFs where the potentials
of the HCRF are changed to facilitate multiple
views. (Song et al., 2012) extends the HCRF where
view-shared and view specific sub-structures are ex-
plicitly learned to capture the interaction between
views. (Song et al., 2013) proposes using multi-
layered CRFs with latent variables to learn hidden
spatio-temporal dynamics. Feature representations
are learned at every layer and this is repeated to
obtain a hierarchical sequence summary (HSS) rep-
resentation. (Song et al., 2013) extends this for
multi-view data.

The third category has emerged recently with
the advent of deep learning. Recurrent Neural
Networks, specially Long-short Term Memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997), have been extensively used for language
(Socher et al., 2013; Kalchbrenner et al., 2014;
Zhou et al., 2015; Srivastava et al., 2015; Zilly
et al., 2016) and speech (Trigeorgis et al., 2016;
Lim et al., 2016) based sequence modeling due to
their superior performance in capturing long term
dependencies. Extensions of LSTMs have also
been proposed in a multi-view setting. The Early
Fusion LSTM concatenates the inputs from differ-
ent modalities at each time-step and uses that as the
input to a single LSTM (Hochreiter and Schmidhu-
ber, 1997; Graves et al., 2013; Schuster and Pali-
wal, 1997). The Multi-view LSTM partitions the

LSTM memory into different components for ex-
plicit modeling of different views (Rajagopalan
et al., 2016a). The Contextual-LSTM (Poria et al.,
2017b) leverages additional contextual informa-
tion from entire videos to obtain predictions for
a single segment. More advanced recurrent mod-
els were also proposed to model both intra-modal
and cross-modal interactions. The Memory Fu-
sion Network (Zadeh et al., 2018a) studied the
synchronization of multimodal sequences using a
multi-view gated memory that stores intra-view and
cross-view interactions through time. The Multi-
attention Recurrent Network (Zadeh et al., 2018b)
models both view-specific and cross-view dynam-
ics using multiple attention coefficient assignments.
Intra-modal and cross-modal interactions are stored
in a hybrid LSTM memory component. Other
methods proposed learning binary gating mech-
anisms to remove noisy modalities that either pro-
vide contradictory evidences or are redundant to
multimodal prediction (Chen et al., 2017), or mod-
eling inter and intra modal interactions by creating
a multi-dimensional tensor that captures unimodal,
bimodal and trimodal interactions (Zadeh et al.,
2017).

3 MOSEI Dataset

Understanding expressed sentiment and emotions
are two crucial factors in human multimodal lan-
guage. We introduce a novel dataset for multimodal
sentiment and emotion recognition called Multi-
modal Opinion Sentiment and Emotion Intensity
(MOSEI). MOSEI is the largest to date with both
attributes annotated. In the following subsections,
we first explain the details of the MOSEI data acqui-
sition, crawling mechanism, followed by details of
annotation, inter-annotator agreement and feature
extraction.

3.1 Data Acquisition

Social multimedia presents a unique opportunity
for acquiring large quantities of data from various
speakers and topics. We only use websites that
support creative commons license which allows
for open usage of data. Users of these social mul-
timedia websites often post their opinions in the
forms of monologue videos; videos with only one
person in front of camera discussing a certain topic
of interest. Each video inherently contains three
modalities: language in the form of spoken text,
visual via perceived gestures and facial expressions,



and acoustic through intonations and prosody.

During our automatic data acquisition process,
videos from YouTube are analyzed for the pres-
ence of one speaker in the frame using face de-
tection to ensure the video is a monologue. We
limit the videos to setups where the speaker’s atten-
tion is exclusively towards the camera by rejecting
videos that have moving cameras (such as camera
on bikes or selfies recording while walking). We
use a diverse set of 250 frequently used topics in on-
line videos as the seed for acquisition. We restrict
the number of videos acquired from each channel
to a maximum of 10 to prevent excessive dupli-
cates in identity, providing a diverse set of speakers.
This resulted in discovering 1,000 identities from
YouTube. The definition of a identity is proxy to
the number of channels since accurate identifica-
tion requires quadratic manual annotations, which
is infeasible for high number of speakers. Further-
more, we limited the videos to have manual and
accurately punctuated transcriptions provided by
the uploader in order to facilitate computational
language analysis on the collected dataset.

3.1.1 Crawl System

We developed a crawler that can search YouTube
and filter videos with only one person in front of the
camera. This filter is implemented by extracting
a number of frames from each video and using
OpenCV’s (Itseez, 2015) Haar cascades to estimate
how many faces are in each video. The crawler is
supplied a search term which it then forwards to
the YouTube Data API. The search terms provide
a rough estimate of topics since they are directly
connected to meta-data provided by the uploader.

Figure 1 shows the distribution of the video top-
ics used in MOSEI. The diversity of the video
topics brings the following generalizability advan-
tages: (1) models trained on MOSEI will be gen-
eralizable across different topics and the notion of
dataset domain is marginalized, (2) the diversity of
topics bring variety of speakers, which allows the
trained models to be generalizable across different
speakers, and (3) the diversity in topics brings di-
versity in recording setups which allows the trained
models to be generalizable across microphones and
cameras with different intrinsic parameters. This
diversity makes MOSEI a one-of-a-kind dataset for
sentiment analysis and emotion recognition.

Figure 1: The diversity of topics of videos in MO-
SEI, displayed as a word cloud. Larger words indi-
cate more videos from that topic. The 5 most fre-
quent topics are: reviews (16.2%), debate (2.9%),
consulting (1.8%), financial (1.8%) and speech
(1.6%). The remaining topics are almost uniformly
distributed at around 0.5%-1.5% each.

3.1.2 Transcripts

The crawled videos are limited to only videos with
user-provided transcripts (which we rely on the
YouTube Data API for). However to ensure that the
user-provided transcript is reliable, we further post-
process with the following filters: 1) punctuation –
we use various heuristics about punctuation to en-
sure that the transcript is high quality, 2) alignment
– we ensure that the forced alignment using P2FA
(Yuan and Liberman, 2008) passes with high con-
fidence. These filters allow us to filter out videos
with bad transcripts.

3.2 Dataset Splits

The MOSEI Mega Corpus facilitates both machine
learning and behavioral studies. The dataset in its
complete form can be used for machine learning
research as it contains a rather balanced distribu-
tion across various sentiment scores. However, this
does not represent the true distribution of mono-
logue videos on YouTube. To compensate for this
bias, MOSEI Natural Split is a subset of the dataset
that was crawled without any form of sentiment and
emotion guidance, and reflects a more representa-
tive sample of the distribution of sentiment and
emotion polarity in YouTube monologues. This
subset contains fewer polarized videos with a ma-
jority of displaying neutral sentiment. In the fol-
lowing subsections, we first discuss the statistics
of MOSEI Natural Split, and then discuss how we
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Figure 2: Distribution of sentiment labels for MO-
SEI Overall and Natural split. This figure does not
represent magnitude (Overall 23,500 sentences but
Natural has 7,500 sentences), only ratio.

acquired videos with more polarized sentiment and
emotion in order to balance the complete MOSEI
dataset.

3.2.1 MOSEI Natural Split

MOSEI Natural Split contains sentences randomly
sampled from YouTube monologues. The distribu-
tion of annotated sentiment for this split is skewed
towards neutral sentences. Due to a combination
of factors such as video topic and gender in the
selection of these videos, we believe this is the
distribution of uttered sentences in YouTube mono-
logues. From a machine learning perspective, this
distribution is not ideal since there are many neutral
sentences. This dataset contains a total of 7,500
sentences from more than 245 topics and 721 dif-
ferent speakers with almost an equal number of
male/female speakers (57.2% male and 42.8% fe-
male). Figure 2 shows the distribution of sentiment
in Natural Split compared to the overall dataset.

3.2.2 MOSEI Guided Crawl

To compensate for the lack of videos with polar-
ized sentiment, we use a text-based sentiment anal-
ysis model based on the best performing text-based
model in (Zadeh et al., 2017) trained on the CMU-
MOSI dataset and sentences specifically annotated
for this task. We use this model to detect the most
polarized videos which we crawled, and sent these
for annotation on Amazon Mechanical Turk. We
also use 500 polarized videos of POM dataset (Park
et al., 2014) which have manual sentiment annota-
tions and extract their sentences. A total of 16,000
sentences are extracted using guided crawl.

3.3 MOSEI Final Statistics

The final pool of acquired videos included 5,000
videos which were then manually checked for qual-
ity of video, audio and transcript by 14 expert
judges over three months. The judges also anno-
tated each video for gender and confirmed that each
video is an acceptable monologue. A set of 3228
videos remained after manual quality inspection.
We also performed automatic checks on the quality
of video and transcript which is discussed in Sec-
tion 3.6 using facial feature extraction confidence
and forced alignment confidence.

3.3.1 Channel IDs
There are a total number of 734 unique YouTube
channels from which male and female videos are
extracted. We use the channel id as a heuristic
to approximate the number of speakers as well
as their gender. Each channel gives at most two
identities: one male and one female. Using this
information, we balance the gender in the dataset
using the data provided by the judges (57% male to
43% female). This constitutes the final set of raw
videos in MOSEI.

3.3.2 Video Topics
The list of crawling search terms had a total of
1962 terms. However, only around 250 resulted
in acceptable videos. Since the search terms are
related to the metadata of the videos provided by
the uploader, we can make the assumption that
they are highly related to the general topic of video.
Using these statistics, the 5 most frequent topics
are: reviews (16.2%), debate (2.9%), consulting
(1.8%), financial (1.8%) and speech (1.6%). The
remaining topics are almost uniformly distributed
at around 0.5%-1.5% each. The topics covered in
the final set of videos are shown in Figure 1 as
a Venn-style word cloud (Coppersmith and Kelly,
2014) with the size proportional to the number of
videos gathered for that topic.

3.4 Post-processing

The final set of videos are then tokenized into sen-
tences using punctuation markers manually pro-
vided by transcripts. Due to the high quality of
the transcripts, using punctuation markers showed
better sentence quality than using the Stanford
CoreNLP tokenizer (Manning et al., 2014). This
was verified on a set of 20 random videos by two ex-
perts. After tokenization, a set of 23,453 sentences
were chosen as the final sentences in the dataset.



Total number of sentences 23453
Total number of videos 3228
Total number of distinct speakers 1000
Total number of distinct topics 250
Average number of sentences in a video 7.3
Average length of sentences in seconds 7.28
Total number of words in sentences 447143
Total of unique words in sentences 23026
Total number of words appearing at least 10 times in the dataset 3413
Total number of words appearing at least 20 times in the dataset 1971
Total number of words appearing at least 50 times in the dataset 888

Table 2: MOSEI dataset summary of statistics.

This was achieved by restricting each identity to
contribute at least 10 and at most 50 sentences to
the dataset. Table 2 shows high-level summary
statistics of the MOSEI dataset.

3.5 Annotation

Annotation of MOSEI follows closely the anno-
tation of CMU-MOSI (Zadeh et al., 2016a) and
Stanford Sentiment Treebank (Socher et al., 2013).
Each sentence is annotated for sentiment on a [-3,3]
Likert scale of: [−3: highly negative, −2 negative,
−1 weakly negative, 0 neutral, +1 weakly positive,
+2 positive, +3 highly positive]. Ekman emotions
(Ekman et al., 1980) of {happiness, sadness, anger,
fear, disgust, surprise} are annotated on a [0,3] Lik-
ert scale for presence of emotion x: [0: no evidence
of x, 1: weakly x, 2: x, 3: highly x]. The anno-
tation was carried out by 3 crowdsourced judges
from Amazon Mechanical Turk platform. To avert
implicitly biasing the judges and to capture the raw
perception of the crowd, we avoided extreme anno-
tation training and instead provided the judges with
a 5 minutes training video on how to use the annota-
tion system. All the annotations have been carried
out by only master workers with higher than 98%
approval rate to assure high quality annotations.

Figure 3 shows the distribution of sentiment
and emotions in MOSEI dataset. The distribution
shows a slight shift in favor of positive sentiment
which is similar to distribution of CMU-MOSI and
SST. We believe that this is an implicit bias in on-
line opinions being slightly shifted towards positive.
The emotion histogram shows different prevalence
for different emotions. The most common cate-
gory is happiness with more than 12,000 positive
sample points. The least prevalent emotion is fear
with almost 1900 positive sample points which is
an acceptable number for machine learning studies.

3.5.1 Crowdsourced Annotations
MOSEI is designed to capture the crowd’s percep-
tion of a speaker’s sentiment and emotions. We
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Figure 3: Distribution of sentiment and emotions
in the MOSEI mega corpus. The distribution shows
a natural skew towards more frequently used emo-
tions. However, the least frequent emotion, fear,
still has 1,900 data points which is an acceptable
number for machine learning studies.

rely on minimal training for the annotations to limit
the potential bias training may cause. Modeling
the crowd’s raw perception of sentiment and emo-
tions is vital to creating real-world applications
that model the thought processes of the general
population. This is in contrast to datasets in the
same domain of sentiment and emotion recogni-
tion which rely on experts’ opinions, which may
not agree with the general population’s opinion.
We prioritize the general population’s perception
over the psychological definitions of sentiment and
emotions, which can only be inferred by experts.

All the monologue sentences in the dataset are
annotated using Amazon Mechanical Turk (AMT).
Each sentence is annotated thrice by different an-
notators. Only master annotators with an accep-
tance rate of over 98% were allowed to annotate
the dataset. The following question is asked to the
MTurk workers for annotations: “Watch the video
clip and rate the sentiment and emotions of the
speaker. Please note that you may or may not agree
with what the speaker says. It is important that you
only rate the sentiment and emotions of the speaker,
not yourself.”

3.5.2 Sentiment and Emotions Definition
Due to the vast number of similar tasks on AMT,
annotators are relatively familiar with broad defini-
tion of sentiment and emotions. However, through
a five minute training video, we define emotions
as the speaker’s expression of state of mind and
feeling while uttering the sentence. Sentiment is
defined as the speakers attitude towards the topic
of his/her discussion. The annotators were asked
to annotate sentiment on a seven-step Likert scale
of [-3: highly negative, -2: negative, -1: weakly



Figure 4: Annotation user interface for sentiment (left) and emotion (right) labeling.

negative, 0: neutral, 1: weakly positive, 2: positive,
3: highly positive]. The Emotions selected are the
six basic Ekman emotions (Ekman et al., 1980) of
{happiness, sadness, anger, fear, disgust, surprise}.
Each of the emotions is annotated at a four-step
Likert scale for the presence of an emotion x: [0:
no evidence of x, 1: weakly x, 2: x, 3: highly
x]. The annotators are also asked to determine the
speaker’s gender.

3.5.3 Annotation User Interface
Figure 4 shows the sample annotation interface
that AMT workers see when performing annota-
tions. Each worker must finish watching the train-
ing video before starting their annotations. Further-
more, at any time during the annotation session
workers can rewatch the training video to refresh
their memory for specific instructions.

3.5.4 Annotator Agreement
After all sentences were annotated, we computed
Krippendorf’s Alpha as a measure of the agree-
ment scores across individual annotators. Table
3 shows these agreement scores. While MOSEI
is annotated by crowdsourced workers in a fairly
subjective manner – by asking their opinion about
sentiment and emotion of the speaker with minimal
training – the overall agreement scores are com-
parable with other datasets annotated by experts
outlined in the submitted paper. Furthermore, a
lower agreement would be expected from a dataset
such as MOSEI due to its diversity of topics and
speakers, and inherent variance in wild data. These
factors impact the agreement since they increase
the subjectivity of the task.

3.6 Extracted Features

Data points in MOSEI come in video format with
one speaker in front of the camera. The extracted
features for each modality are as follows (for other
benchmarks we extract the same features):

MOSEI Krippendorf alpha
Sentiment 0.53
Happiness 0.41
Anger 0.18
Sadness 0.12
Disgust 0.21
Fear 0.02
Surprise 0.09

Table 3: Agreement Krippendorf alpha values for
annotations in the MOSEI dataset.

Language: All videos have manual transcrip-
tion. Glove word embeddings (Pennington et al.,
2014) were used to extract word vectors from tran-
scripts. Words and audio are aligned at phoneme
level using P2FA forced alignment model (Yuan
and Liberman, 2008). Following this, the visual
and acoustic modalities are aligned to the words
by interpolation. Since the utterance duration of
words in English is usually short, this interpolation
does not lead to substantial information loss.

Visual: Frames are extracted from the full
videos at 30Hz. The bounding box of the face
is extracted using the MTCNN face detection al-
gorithm (Zhang et al., 2016). We extract facial
action units through Facial Action Coding System
(FACS) (Ekman et al., 1980). Extracting these
action units allows for accurate tracking and un-
derstanding of the facial expressions (Baltrušaitis
et al., 2016). We also extract a set of six basic
emotions purely from static faces using Emotient
FACET (iMotions, 2017). MultiComp OpenFace
(Baltrušaitis et al., 2016) is used to extract the set
of 68 facial landmarks, 20 facial shape parameters,
facial HoG features, head pose, head orientation
and eye gaze (Baltrušaitis et al., 2016). Finally,
we extract face embeddings from commonly used
facial recognition models such as DeepFace (Taig-
man et al., 2014), FaceNet (Schroff et al., 2015)
and SphereFace (Liu et al., 2017).

Acoustic: We use the COVAREP software (De-
gottex et al., 2014) to extract acoustic features
including 12 Mel-frequency cepstral coefficients,



pitch, voiced/unvoiced segmenting features (Drug-
man and Alwan, 2011), glottal source parameters
(Drugman et al., 2012; Alku et al., 1997, 2002),
peak slope parameters and maxima dispersion quo-
tients (Kane and Gobl, 2013). All extracted fea-
tures are related to emotions and tone of speech.

3.7 Modality Alignment

To reach the temporal alignment between different
modalities we choose the granularity of the input
to be at the level of words. Words are aligned with
audio using P2FA (Yuan and Liberman, 2008) to
get their utterance times. The visual and acous-
tic modalities follow the same granularity. We
use expected values across the word for visual and
acoustic features since they are extracted at a higher
frequencies (30 Hz and 100 Hz respectively).

4 Multimodal Data SDK

Dealing with data from multiple sources can be
frustrating and intimidating for the community,
specifically as the nature of the data from each
modality becomes increasingly complex. This
problem is compounded by the fact that time series
data from multiple modalities must be aligned for
best performance (Zadeh et al., 2018b). For the pur-
pose of efficient and reliable data loading, we have
built a pipeline in Python that allows users to load
any of the multimodal datasets used in this paper.
The SDK also allows the users to align the informa-
tion from multiple sources with various frequencies
and returns tensors that are ready to be used in com-
mon deep learning frameworks such as TensorFlow
(Abadi et al., 2016), Theano (Theano Develop-
ment Team, 2016) and PyTorch. Additionally, the
SDK offers downloading capabilities for each of
the datasets (except IEMOCAP which users have to
ask for permission from University of Southern Cal-
ifornia) (Busso et al., 2008). The complete pack-
age is available at https://github.com/
A2Zadeh/CMU-MultimodalDataSDK.

5 Multimodal Fusion Model

From the linguistics perspective, understanding the
interactions between language, visual and audio
modalities in multimodal language is a fundamen-
tal research problem. While previous works have
been successful in multimodal discriminative tasks,
many have not developed new insights on how fu-
sion is performed between different modalities.
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Figure 5: Overview figure of Memory Fusion Net-
work (MFN) (Zadeh et al., 2018a). σ denotes the
sigmoid activation function, τ the tanh activation
function, ⊙ the Hadamard product and ⊕ element
wise addition. Each LSTM encodes information
from one view such as language (l), video (v) or
audio (a).

To understand the fusion process one must first
understand the multimodal dynamics (Zadeh et al.,
2017). Multimodal dynamics state that there exists
different combination of modalities and that all of
these combinations must be captured to better un-
derstand the multimodal language. In this paper,
we define building the multimodal dynamics as a hi-
erarchical process and propose a new fusion model
called the Dynamic Fusion Graph (DFG). DFG is
easily interpretable by analyzing the strengths of
connections. To utilize this new fusion model in
a multimodal language framework, we build upon
Memory Fusion Network (MFN) by replacing the
original fusion component in the MFN with our
DFG. We call this resulting model the Graph Mem-
ory Fusion Network (GMFN). Once the model is
trained end to end, we analyze the efficacies in
the DFG to study the fusion mechanism learned
for modalities in multimodal language. In addi-
tion to being an interpretable fusion mechanism,
GMFN also outperforms previously proposed state-
of-the-art models for sentiment analysis and emo-
tion recognition on the MOSEI. In the following
subsections, we first provide a review of the MFN
model before a detailed explanation of the Dynamic
Fusion Graph and the Graph Memory Fusion Net-
work model.

5.1 Memory Fusion Network

The Memory Fusion Network (MFN) (Zadeh et al.,
2018a) is a recurrent neural model with three main
components 1) System of LSTMs: a set of par-
allel LSTMs with each LSTM modeling a single

https://github.com/A2Zadeh/CMU-MultimodalDataSDK
https://github.com/A2Zadeh/CMU-MultimodalDataSDK


modality. 2) Delta-memory Attention Network is
the special attention mechanism that designed for
multimodal fusion by assigning coefficients to high-
light cross-modal dynamics. 3) Multi-view Gated
Memory is a component that stores the output of
multimodal fusion over time. The MFN is shown
in Figure 5.

System of LSTMs: The input to GMFN is a
multimodal sequence with the set of M modalities
each of and length T . For example sequences can
consist of language, video, and audio for M =
{l, v, a}. The input of the mth modality is denoted
as: xm = [xmt ∶ t ≤ T,xmt ∈ Rdxm ] where dxm is
the input dimensionality of mth modality xm.

For each modality, a Long-Short Term Mem-
ory (LSTM) encodes the intra-modal interactions
over time. For the mth modality, the memory
of assigned LSTM is denoted as cm = {cmt ∶
t ≤ T, cmt ∈ Rdcm} and the output is defined as
hm = {hmt ∶ t ≤ T,hmt ∈ Rdcm} with dcm denot-
ing the dimensionality of mth LSTM memory cm.
The following update rules are defined for the mth
LSTM (Hochreiter and Schmidhuber, 1997):

imt = σ(Wm
i xmt +Umi hmt−1 + bmi ) (1)

fmt = σ(Wm
f xmt +Umf hmt−1 + bmf ) (2)

omt = σ(Wm
o xmt +Umo hmt−1 + bmo ) (3)

ĉmt =Wm
ĉ xmt +Umĉ hmt−1 + bmĉ (4)

cmt = fmt ⊙ cmt−1 + imt ⊙ ĉmt (5)

hmt = omt ⊙ tanh(cmt ) (6)

The parameters include the two affine transfor-
mations Wm

∗
∈ Rdxm×dcm and Um

∗
∈ Rdcm×dcm .

im, fm, om are the input, forget and output gates
of the mth LSTM respectively, ĉmt is the proposed
memory update ofmth LSTM for time t, ⊙ denotes
the Hadamard product (element-wise product), σ
is the sigmoid activation function.

Delta Memory Attention Network: The goal
of the Delta Memory Attention Network (DMAN)
is to outline the cross-modal interactions at
timestep t between different view memories in the
system of LSTMs. A coefficient assignment tech-
nique is applied on the concatenation of LSTM
memories c[t−1,t] at times t − 1 and t to track
changes in modality features. High coefficients
are assigned to the dimensions jointly form a cross-
modal interaction and low coefficients to the other
dimensions. Memories c[t−1,t] are passed to a neu-
ral network Da ∶ R2dc ↦ R2dc , dc = ∑n dcn to
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Figure 6: The structure of Dynamic Fu-
sion Graph (DFG) for three modalities of
{(l)anguage, (v)ision, (a)coustic}. Dashed
lines in DFG show the dynamic connections be-
tween vertices controlled by the efficacies (α).

obtain the attention coefficients.

a[t−1,t] = Da(c[t−1,t]) (7)

a[t−1,t] are softmax activated scores for each LSTM
memory at time t − 1 and t. The output of the
DMAN, ĉ is defined as:

ĉ[t−1,t] = c[t−1,t] ⊙ a[t−1,t] (8)

ĉ[t−1,t] are the attended memories of the LSTMs.
Multi-view Gated Memory: u is the neural

component that acts as a unifying memory for the
system of LSTMs. The output of DMAN, ĉ[t−1,t]
is directly passed to the Multi-view Gated Mem-
ory to signal what dimensions in the system of
LSTM memories constitute a cross-view interac-
tion. ĉ[t−1,t] is first used as input to a neural net-
work Du ∶ R2×dc ↦ Rdmem to generate a cross-
view update proposal ût for u. dmem is the dimen-
sionality of the memory.

ût = Du(ĉ[t−1,t]) (9)

This update proposes changes to u based on obser-
vations about cross-view interactions at time t.

The Multi-view Gated Memory is controlled us-
ing two gates: γ(1), γ(2) are the retain and update
gates respectively. At each timestep t, γ(1) assigns
how much of the current state of the Multi-view
Gated Memory to remember and γ(2) assigns how
much of the memory to update based on the update
proposal ût. γ(1) and γ(2) are each controlled by
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Figure 7: The overview of Graph Memory Fusion
Network (GMFN) pipeline. GMFN replaces the
fusion block in MFN with a Dynamic Fusion Graph
(DFG).

a neural network. Dγ(1) , Dγ(2) ∶ R2×dc ↦ Rdmem

control part of the gating mechanism of Multi-view
Gated Memory using ĉ[t−1,t] as input:

γ
(1)
t = Dγ(1)(ĉ[t−1,t]), γ

(2)
t = Dγ(2)(ĉ[t−1,t])

(10)
At each time-step of GMFN recursion, u is updated
using γ(1) and γ(2), as well as the current update
proposal ût with the following formulation:

ut = γ(1)t ⊙ ut−1 + γ(2)t ⊙ tanh(ût) (11)

ût is activated using tanh squashing function to im-
prove model stability by avoiding drastic changes
to the memory.

5.2 Dynamic Fusion Graph
In this section we discuss the internal structure of
the proposed Dynamic Fusion Graph (DFG) neu-
ral model. DFG in illustrated in Figure 6. DFG
has the following properties that makes it suitable
for multimodal fusion: (1) it explicitly models the
multimodal interactions by capturing unimodal, bi-
modal and trimodal interactions, (2) it does so with
an efficient number of parameters (as opposed to
previous approaches such as Tensor Fusion (Zadeh
et al., 2017)), and (3) it can dynamically alter its
structure and choose the ideal fusion graph based
on the importance of individual multimodal dynam-
ics during fusion.

We assume the set of modalities to be
M = {(l)anguage, (v)ision, (a)coustic}.
The unimodal dynamics are denoted as
{l},{v},{a}, the bimodal dynamics are de-
noted as {l, v},{v, a},{l, a}, and the trimodal

dynamics are denoted as {l, v, a}. These dynamics
are in the form of latent representations that have
been learnt from our multimodal data. Each
of these latent representations are considered
as vertices inside a graph G = (V,E) with V
denoting the set of vertices and E denoting the
set of edges. A directional neural connection
is established between two vertices vi and vj
only if vi ⊂ vj . For example, {l} ⊂ {l, v} which
results in a connection between < language > and
< language, vision >. This connection is denoted
as an edge eij . The set of all edges E consists of
all such eij satisfying this definition.

We define an efficacy for each edge eij as as
weight αij that determines the importance of that
edge in multimodal fusion. Specifically, each α is
a sigmoid activated probability neuron which indi-
cates how strong or weak the connection is between
vi and vj . During fusion, stronger interactions will
be emphasized more while the effect of weaker
interactions will be minimized. This set of effi-
cacies α are the main source of interpretability in
DFG. The vector of all αs is inferred using a deep
neural network Dα which takes as input singleton
vertices in V (l, v, and a). We leave it to the su-
pervised training objective to learn parameters of
Dα and make optimal use of efficacies. For each
multimodal input, different edges will be activated
depending on the strength of each interaction. As a
result, the DFG is able to dynamically control the
structure of the graph during multimodal fusion.

With the singleton vertices in V (l, v, and a),
efficacies for each edge αij and the graph G in
place, we can now detail the steps for multimodal
fusion. Multimodal fusion happens in a hierarchi-
cal manner. Each vertex vi is multiplied by αij
before being used as input to Dj , a neural network
that performs local fusion of several weighted ver-
tices. In total, Dj takes as input all vi that satisfy
the neural connection formula: vi ⊂ vj . The output
of Dj is the result of local multimodal fusion and
is passed to the resulting vertex vj . This process
is repeated in a hierarchical manner until all cross-
modal interactions across unimodal, bimodal, and
trimodal interactions are discovered.

The overall structure of the vertices, edges and
respective efficacies is shown in Figure 6. There are
a total of 8 vertices (including the output vertex),
19 edges, and therefore 19 efficacies. Singleton
vertices l, v, and a are the inputs to the DFG. All
vertices are connected to the output vertex Tt of



Dataset MOSEI Sentiment MOSEI Emotions
Task Sentiment Anger Disgust Fear Happy Sad Surprise
Metric A2 F1 A5 A7 MAE r WA F1 WA F1 WA F1 WA F1 WA F1 WA F1
LANGUAGE
SOTA2 74.1§ 74.1⊳ 43.1≀ 42.9≀ 0.75§ 0.46≀ 56.0∪ 71.0× 59.0§ 67.1⊳ 56.2§ 79.7§ 53.0⊳ 44.1⊳ 53.8≀ 49.9≀ 53.2× 70.0⊳

SOTA1 74.3⊳ 74.1§ 43.2§ 43.2§ 0.74⊳ 0.47§ 56.6≀ 71.8● 64.0⊳ 72.6● 58.8× 89.8● 54.0§ 47.0§ 54.0§ 61.2● 54.3⊳ 85.3●

VISUAL
SOTA2 73.8§ 73.5§ 42.5⊳ 42.5⊳ 0.78≀ 0.41♡ 54.4≀ 64.6§ 54.4♡ 71.5⊲ 51.3§ 78.4§ 53.4≀ 40.8§ 54.3⊳ 60.8● 51.3⊳ 84.2
SOTA1 73.9⊳ 73.7⊳ 42.7≀ 42.7≀ 0.78§ 0.43≀ 60.0§ 71.0● 60.3≀ 72.4● 64.2♡ 89.8● 57.4● 49.3● 57.7§ 61.5⊲ 51.8§ 85.4●

ACOUSTIC
SOTA2 74.2≀ 73.8△ 42.1△ 42.1△ 0.78⊳ 0.43§ 55.5⊲ 51.8△ 58.9⊳ 72.4● 58.5⊳ 89.8● 57.2∩ 55.5∩ 58.9⊲ 65.9⊲ 52.2♡ 83.6∩

SOTA1 74.2△ 73.9≀ 42.4∩ 42.4∩ 0.74∩ 0.43⊳ 56.4△ 71.9● 60.9§ 72.4● 62.7§ 89.8⊲ 61.5§ 61.4§ 62.0∩ 69.2∩ 54.3⊲ 85.4●

MULTIMODAL
SOTA2 76.0# 76.0# 44.7† 44.6† 0.72∗ 0.52∗ 56.0◇ 71.4♭ 65.2# 71.4# 56.7§ 89.9# 57.8§ 66.6∗ 58.9∗ 60.8# 52.2∗ 85.4●

SOTA1 76.4◇ 76.4◇ 44.8∗ 44.7∗ 0.72# 0.52# 60.5∗ 72.0● 67.0♭ 73.2● 60.0♡ 89.9● 66.5∗ 71.0∎ 59.2§ 61.8● 53.3# 85.4#

GMFN 76.9 77.0 45.1 45.0 0.71 0.54 62.6 72.8 69.1 76.6 62.0 89.9 66.3 66.3 60.4 66.9 53.7 85.5
∆SOTA ↑ 0.5 ↑ 0.6 ↑ 0.3 ↑ 0.3 ↓ 0.01 ↑ 0.02 ↑ 2.1 ↑ 0.8 ↑ 2.1 ↑ 3.4 ↓ 2.2 0.0 ↑ 4.8 ↑ 4.9 ↓ 1.6 ↓ 2.3 ↓ 0.6 ↑ 0.1

Table 4: Results for multimodal sentiment analysis and multimodal emotion recognition on the newly
introduced MOSEI dataset. GMFN sets new state of the art results for multiple metrics. SOTA1 and
SOTA2 refer to the previous best and second best state-of-the-art respectively. Symbols depict the model
which the baseline result came from: # MFN, ∎ MARN, ∗ TFN, ◇ MV-LSTM, § EF-LSTM, † BC-LSTM,
♣ C-MKL, ♭ DF, ♡ SVM, ● RF, ∪ CNN-LSTM, RNTN, ×: DynamicCNN, ⊳ DAN, ≀ DHN, ⊲ RHN, △:
Adieu-Net, ∩: SER-LSTM. For a detailed table with all baseline results, please refer to the supplementary
material. The best results are highlighted in bold and ∆SOTA shows the performance improvement of
GMFN over SOTA1, previous state-of-the-art. Improvements are highlighted in green. The GMFN
outperforms the SOTA across all datasets and metrics, except the ∆SOTA entries highlighted in gray.
These results show that sentiment prediction and emotion recognition on the MOSEI dataset is non-trivial.

the network via edges scaled by their respective
efficacy. The final output of the DFG is the output
vertex Tt, which is a summarization of multimodal
interactions up to time t.

5.3 Graph Memory Fusion Network

To test the performance of DFG, we use a recur-
rent architecture similar to MFN. We replace the
Delta-memory Attention Network with DFG and
refer to the modified model as Graph Memory Fu-
sion Network (GMFN). Figure 7 shows the overall
architecture of the GMFN.

Similar to MFN, GMFN employs a system of
LSTMs for modeling individual modalities. cl, cv,
and ca represent the memory of LSTMs for lan-
guage, vision and acoustic modalities respectively.
Dm, m ∈ {l, v, a} is a fully connected deep neural
network that takes in hm

[t−1,t], the LSTM represen-
tation across two consecutive timestamps. This
allows the model to track changes in memory di-
mensions across time. The outputs of Dl, Dv and
Da are the singleton vertices for the DFG. The
DFG models cross-modal interactions and encodes
the cross-modal representations in its output vertex
Tt for storage in the Multi-view Gated Memory
ut. The Multi-view Gated Memory functions using
a network Du that transforms Tt into a proposed
memory update ût. γ(1) and γ(2) are the Multi-

view Gated Memory’s retain and update gates re-
spectively and are learned using networks Dγ(1)
andDγ(2) . Finally, a networkDz transforms Tt into
a multimodal representation zt to update the sys-
tem of LSTMs in the hybrid manner as described
in (Zadeh et al., 2018b): using a system of Long
Short-term Hybrid Memory Networks.

The outputs of the GMFN are the final state of
the Multi-view Gated Memory uT and the outputs
of each of the m LSTMs:

hT = ⊕
m∈M

hmT

representing individual sequence information. ⊕
denotes vector concatenation. This output is subse-
quently connected to a classification or regression
layer for final prediction (for sentiment and emo-
tion recognition).

6 Experiments and Discussion

6.1 Results on MOSEI
In our experiments, we seek to evaluate how modal-
ities interact during multimodal fusion by studying
the efficacies of DFG through time.

Table 4 shows the results on MOSEI. Accuracy
is reported as AC where C is the number of classes
as well as F1 measure. For regression we report
MAE and correlation (r). For emotion recognition



Dataset CMU-MOSI ICT-MMMO YouTube MOUD IEMOCAP Emotions
Task Sentiment Sentiment Sentiment Sentiment Happy Sad Angry Neutral
Metric A2 F1 A7 MAE r A2 F1 A3 F1 A2 F1 A2 F1 A2 F1 A2 F1 A2 F1
SOTA2 77.1∎ 77.0∎ 34.1# 0.97∎ 0.63# 72.5∗ 72.6∗ 48.3∎ 45.0# 81.1# 81.0# 86.0§ 83.6∗ 83.2† 81.7† 83.5† 84.3◇ 67.5∗ 66.7◇

SOTA1 77.4# 77.3# 34.7∎ 0.97# 0.63§ 73.8# 73.1# 51.7# 51.6# 81.1∎ 81.2∎ 86.0♭ 84.2§ 83.4∗ 82.8∗ 85.2§ 84.5§ 68.8§ 68.5§

GMFN no W 71.3 71.3 27.0 1.14 0.54 71.3 71.1 45.0 40.2 71.3 71.1 85.6 79.0 80.8 78.2 82.6 81.3 66.0 63.8
GMFN no E 73.2 73.0 33.2 1.04 0.60 67.5 66.7 48.3 48.2 67.5 66.7 86.0 81.6 82.8 81.4 83.2 81.5 67.6 66.2
GMFN no G 75.5 75.5 30.5 1.00 0.61 68.8 68.9 46.7 46.9 77.4 77.0 86.5 84.0 83.2 82.1 84.0 83.0 66.6 66.0
GMFN no M 63.4 63.4 23.5 1.31 0.41 58.8 59.5 45.0 35.0 70.8 66.9 85.6 83.0 81.3 79.1 82.0 79.3 66.2 66.2
GMFN no S 75.1 75.0 33.7 0.998 0.634 72.5 71.3 53.3 45.8 81.1 80.5 86.4 82.6 82.6 81.2 83.9 83.4 68.4 66.8
GMFN 77.7 77.7 35.6 0.96 0.66 76.3 76.2 55.0 53.5 81.1 80.9 86.8 84.2 83.8 83.0 85.8 85.5 69.4 68.9
∆SOTA ↑ 0.3 ↑ 0.4 ↑ 0.9 ↓ 0.01 ↑ 0.03 ↑ 2.5 ↑ 3.1 ↑ 9.2 ↑ 8.4 ↑ 8.5 ↑ 8.0 ↑ 0.8 0.0 ↑ 0.4 ↑ 0.2 ↑ 0.6 ↑ 1.0 ↑ 0.6 ↑ 0.4

Dataset POM Speaker Personality Traits
Task Con Pas Voi Dom Cre Viv Exp Ent Res Tru Rel Out Tho Ner Per Hum
Metric A7 A7 A7 A7 A7 A7 A7 A7 A5 A5 A5 A5 A5 A5 A7 A5

SOTA2 26.6● 27.6§ 32.0♡ 35.0♡ 26.1♭ 32.0♭ 27.6∗ 29.6♭ 34.0♡ 53.2● 49.8♡ 39.4♭ 42.4§ 42.4♭ 27.6∗ 36.5†

SOTA1 26.6● 31.0∗ 33.0♭ 35.0♡ 27.6† 36.5† 30.5† 31.5♡ 34.0♡ 53.7♭ 50.7◇ 42.9♡ 45.8† 42.4♭ 28.1♡ 40.4●

GMFN no W 30.0 31.5 33.5 36.0 29.6 31.0 27.6 35.5 31.0 53.2 50.7 39.9 41.9 42.4 28.1 40.9
GMFN no E 26.1 31.5 33.5 33.0 28.6 31.0 27.1 29.6 31.0 53.2 50.7 39.9 41.9 42.4 27.1 40.9
GMFN no G 29.1 31.5 33.5 33.5 29.6 34.0 31.0 30.5 31.5 53.2 50.7 42.9 42.9 43.8 31.5 40.9
GMFN no M 24.1 31.5 28.6 27.6 27.1 27.6 26.6 32.0 31.0 34.5 37.4 39.9 41.4 42.4 23.6 40.9
GMFN no S 32.5 31.5 34.0 36.9 30.5 32.5 34.5 35.0 33.5 53.7 50.7 42.4 45.8 45.3 31.5 42.4
GMFN 35.5 35.0 36.5 41.9 32.0 36.9 37.4 36.9 37.4 55.2 53.7 45.8 48.3 46.3 34.5 43.8
∆SOTA ↑ 8.9 ↑ 4.0 ↑ 3.5 ↑ 6.9 ↑ 4.4 ↑ 0.4 ↑ 6.9 ↑ 5.4 ↑ 3.4 ↑ 1.5 ↑ 3.0 ↑ 2.9 ↑ 2.5 ↑ 3.9 ↑ 6.4 ↑ 3.4

Table 5: Results for multimodal sentiment analysis on the CMU-MOSI, ICT-MMMO, YouTube and
MOUD datasets, multimodal emotion recognition on the IEMOCAP dataset and multimodal speaker
traits recognition on the POM dataset. SOTA1 and SOTA2 refer to the previous best and second best
state-of-the-art respectively. For a detailed table with all baseline results, please refer to the supplementary
material. The best results are highlighted in bold and ∆SOTA shows the performance improvement of
GMFN over SOTA1, previous state-of-the-art. Improvements are highlighted in green. GMFN achieves
excellent results and is an effective method for multimodal fusion.

due to the natural imbalances across various emo-
tions, we use weighted accuracy (Tong et al., 2017)
and F1 measure. For all metrics, higher values in-
dicate better performance except for MAE where
lower values indicate better performance. GMFN
shows superior performance in sentiment analysis
and competitive performance in emotion recogni-
tion. Therefore, GMFN is an effective method for
multimodal fusion.

6.2 Results on External Datasets:
Multimodal Sentiment Analysis

We achieve state-of-the-art performance with im-
provement over all the comparison metrics for three
additional English sentiment analysis datasets:
CMU-MOSI, ICT-MMMO and MOUD. Table 5
shows the comparison of our GMFN with state-of-
the-art approaches for these three dataset. To assess
the generalization of the GMFN to speakers com-
municating in different languages, we also compare
with state-of-the-art approaches for sentiment anal-
ysis on MOUD, with opinion utterance video clips
in Spanish. The final quarter of Table 5 shows these
results where we also achieve improvement over
state-of-the-art approaches.

6.3 Results on External Datasets:
Multimodal Emotion Recognition

Our results for multimodal emotion recognition on
IEMOCAP dataset are reported in the bottom half
of Table 5. Our approach achieves state-of-the-art
performance in emotion recognition: both emotion
classification as well as continuous emotion regres-
sion except for the case of correlation in dominance
which our results are competitive but not state of
the art.

6.4 Results on External Datasets:
Multimodal Speaker Traits Recognition

We experiment on speaker traits recognition based
on observed multimodal communicative behaviors.
Table 5 shows the performance of the GMFN on
POM dataset, where it achieves state-of-the-art ac-
curacies on 16 speaker trait recognition tasks in-
cluding confidence, persuasiveness and credibility.

6.5 Subcomponent Ablations
To demonstrate the effects of each component on
the overall performance of GMFN, we perform a
series of ablation studies which remove individual
components. The ablation baselines include the
following:



RDFN no W uses only the outputs of LSTMs
at time t, instead of both t and t − 1. This assesses
the importance of a convolutional window to track
changes in multimodal features for effective fusion.

GMFN no E sets all the efficacies to 1. As a
result all intermediate fusion features are therefore
assigned the same importance. This effectively
removes the dynamic capability of DFG.

GMFN no G completely removes the DFG and
performs multimodal fusion by a simple concate-
nation of LSTM outputs hlt, h

a
t and hvt .

RDFN no M removes the MSM component
which forces each LSTM memory to carry inter-
modal dynamics individually.

RDFN no S does not perform synchronization of
LSTMs at all. This baseline is simply 3 LSTMs in
parallel that encodes the information from each of
the 3 modalities before concatenating the features
before the final layer.

Table 5 shows the results of these ablation stud-
ies on multimodal tasks using the CMU-MOSI,
ICT-MMMO, MOUD, IEMOCAP and POM. We
observe that each component of our model is in-
deed necessary for best performance across all
datasets.

6.6 Interpretability of Fusion

To better understand the internal fusion mechanism
between modalities, we visualize the behavior of
the learned DFG efficacies in Figure 8 for various
cases (dark red denotes high efficacies and dark
blue denotes low efficacies).

Multimodal Fusion is Volatile in Nature: The
first observation is that the structure of the DFG is
changing across videos and for each video, across
time. As a result, the model seems to be selectively
prioritizing certain dynamics over the others. For
example, in case (I) where all modalities are in-
formative, all efficacies seem to be high, implying
that the DFG is able to find useful information in
unimodal, bimodal and trimodal interactions. How-
ever, in cases (II) and (III) where the visual modal-
ity is either uninformative or contradictory, the effi-
cacies of v → l, v and v → l, a, v and l, a → l, a, v
are reduced since no meaningful interactions in-
volve the visual modality. Consequently the model
switches its focus on interactions involving the lan-
guage and acoustic modalities.

Priors of Multimodal Fusion: Certain effica-
cies remain unchanged across cases and across
time. For example the model always seems to

prioritize fusion between language and audio in
(l → l, a), and (a → l, a). Subsequently, DFG
gives low values to efficacies that rely unilater-
ally on language or audio alone: the (l → τ) and
(a→ τ) efficacies seem to be consistently low. On
the other hand, the visual modality appears to have
a partially isolated behavior from the language and
acoustic modalities. In the presence of informative
visual information, the model increases the effica-
cies of (v → τ) although the values of other vi-
sual efficacies also increase. We believe that these
can represent priors from Human Multimodal Lan-
guage that DFG learns from the diverse videos of
human communication in the MOSEI dataset.

Trace of Multimodal Fusion: We trace the
dominant path that every modality undergoes dur-
ing fusion: 1) language tends to first fuse with
audio via (l → l, a) and the language and acoustic
modalities together engage in higher level fusions
such as (l, a → l, a, v). Intuitively, this is aligned
with the close ties between language and audio
through word intonations. 2) The visual modality
seems to engage in fusion only if it contains mean-
ingful information. In cases (I) and (IV), all the
paths involving the visual modality are relatively
active while in cases (II) and (III) the paths involv-
ing the visual modality have low efficacies. 3) The
acoustic modality is mostly present in fusion with
the language modality. However, unlike language,
the acoustic modality also appears to fuse with the
visual modality if both modalities are meaningful,
such as in case (I).

Efficacies to Terminal Vertex: In almost all
cases, the efficacies of unimodal connections to
terminal T is low, implying that T prefers to not
rely on just the features from a single modality.
Instead, the efficacies from the combined language
and acoustic modalities as well as the combined
language and visual modalities tend to be higher.

Priors of Human Communication: DFG al-
ways prefers to perform fusion between language
and acoustic as in most cases both l → l, a and
a → l, a have high efficacies. Intuitively, in most
natural scenarios language and acoustic modalities
are highly aligned due to the close relationships be-
tween text and speech (Yuan and Liberman, 2008).
In these cases, we believe DFG has learned some
natural priors of human communication between
the language and acoustic modalities.

With these observations, we believe that DFG
has successfully learned how to dynamically mod-



Acoustic modality uninformativeVision modality uninformative

Too much too fast, I mean we basically just 
get introduced to this character…

(angry voice)Acoustic:

Language:

Vision:

𝑙 → 𝑙, 𝑎
𝑎 → 𝑙, 𝑎
𝑙 → 𝑙, 𝑣

𝑎, 𝑣 → 𝒯
𝑙, 𝑎, 𝑣 → 𝒯

𝑎 → 𝑎, 𝑣

𝑙, 𝑣 → 𝒯

𝑣 → 𝑙, 𝑣

𝑣 → 𝑎, 𝑣
𝑙 → 𝑙, 𝑎, 𝑣
𝑎 → 𝑙, 𝑎, 𝑣
𝑣 → 𝑙, 𝑎, 𝑣

𝑙, 𝑎 → 𝑙, 𝑎, 𝑣
𝑙, 𝑣 → 𝑙, 𝑎, 𝑣
𝑎, 𝑣 → 𝑙, 𝑎, 𝑣
𝑙 → 𝒯
𝑎 → 𝒯
𝑣 → 𝒯

𝑙, 𝑎 → 𝒯

All I can say is he’s a pretty average guy.

(disappointed voice)

Language modality uninformative

What disappointed me was that one of the actors 
in the movie was there for short amount of time.

(neutral voice)

𝑙 → 𝑙, 𝑎
𝑎 → 𝑙, 𝑎
𝑙 → 𝑙, 𝑣

𝑎, 𝑣 → 𝒯
𝑙, 𝑎, 𝑣 → 𝒯

𝑎 → 𝑎, 𝑣

𝑙, 𝑣 → 𝒯

𝑣 → 𝑙, 𝑣

𝑣 → 𝑎, 𝑣
𝑙 → 𝑙, 𝑎, 𝑣
𝑎 → 𝑙, 𝑎, 𝑣
𝑣 → 𝑙, 𝑎, 𝑣

𝑙, 𝑎 → 𝑙, 𝑎, 𝑣
𝑙, 𝑣 → 𝑙, 𝑎, 𝑣
𝑎, 𝑣 → 𝑙, 𝑎, 𝑣
𝑙 → 𝒯
𝑎 → 𝒯
𝑣 → 𝒯

𝑙, 𝑎 → 𝒯

Vision and acoustic modalities informative

And he I don’t think he got mad when hah 
I don’t know maybe.

(frustrated voice)
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(I) (II) (III) (IV)

𝑡 = 1 𝑡 = 𝑇 𝑡 = 1 𝑡 = 𝑇 𝑡 = 1 𝑡 = 𝑇 𝑡 = 1 𝑡 = 𝑇

Figure 8: Visualization of DFG efficacies across time. Dark red denotes high efficacies and dark blue
denotes low efficacies. The efficacies (thus the DFG structure) change over time as DFG is exposed to
new information. DFG is able choose which multimodal dynamics to rely on. It also learns priors about
human communication since certain efficacies (thus edges in DFG) remain unchanged across time and
across data points.

ify its internal structure in order to best model hu-
man communication. Not only can it perform dy-
namic fusion depending on the multimodal input,
it has also learned general priors on multimodal
fusion and human multimodal language.

7 Conclusion

In this paper, we presented the largest dataset of
multimodal sentiment analysis and emotion recog-
nition called Multimodal Opinion Sentiment and
Emotion Intensity (MOSEI). MOSEI consists of
23,453 annotated sentences from more than 1000
online speakers and 250 different topics. We an-
alyzed the structure of multimodal fusion in sen-
timent analysis and emotion recognition using a
novel interpretable fusion mechanism, the Graph
Memory Fusion Network (GMFN), which com-
bines Dynamic Fusion Graph with the Memory
Fusion Network. The interpretable nature of the hi-
erarchical fusion in DFG gave us the opportunity to
investigate the behavior of modalities during fusion.
We found that the DFG is able to dynamically select
important modalities during fusion and was able
to learn interesting priors in human multimodal
language. Furthermore, GMFN showed superior
performance in multimodal sentiment analysis and
emotion recognition, demonstrating that GMFN
is highly suitable for human multimodal language
analysis. We believe that the MOSEI dataset and
GMFN fusion model will significantly expand the
horizons of NLP and encourage further research in
human multimodal language analysis.
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9 Appendix: MOSEI Full Results

The full set of results using various approaches on
MOSEI is divided into multimodal and unimodal
and shown in Tables 6 and 7 respectively.

10 Appendix: Full Results on Other
Datasets

The full set of results for the GMFN and baselines
across all datasets are presented in Tables 8, 9, 10
and 11.



Dataset MOSEI MOSEI Natural
Task Sentiment Anger Disgust Fear Happiness Sadness Surprise Sentiment Anger Happiness Sadness

Method A2 F1 A5 A7 MAE Corr WA2 F1 WA2 F1 WA2 F1 WA2 F1 WA2 F1 WA2 F1 WA2 F1 MAECorrWA2 F1 WA2 F1 WA2 F1
MULTIMODAL
RF 60.2 56.5 39.6 38.4 - - 51.0 72.0 50.9 73.2 50.1 89.9 57.0 48.6 50.6 61.8 50.1 85.4 54.6 48.6 - - 50.5 75.7 58.8 48.5 49.6 57.2
SVM-MD 73.9 73.6 39.9 39.9 0.77 0.46 56.0 33.9 57.1 42.3 60.0 61.8 50.3 36.9 53.3 27.7 49.7 61.4 50.9 56.5 0.81 0.24 53.5 41.7 51.3 50.5 54.8 35.7
DF 74.0 72.5 43.6 43.5 0.72 0.51 49.7 15.2 67.0 71.4 54.0 26.2 52.2 41.7 55.2 47.4 51.0 74.4 57.7 75.4 0.76 0.44 58.7 54.4 55.5 57.6 52.0 33.0
EF-LSTM 73.0 72.7 41.9 41.7 0.76 0.46 50.4 11.5 58.5 49.4 47.3 68.5 55.1 49.0 51.5 48.9 48.7 75.0 55.2 73.4 0.76 0.40 57.5 61.5 54.0 55.9 50.6 17.6
EF-SLSTM 74.4 74.3 43.0 42.9 0.73 0.48 50.1 54.2 57.2 57.5 52.9 77.8 57.8 50.7 50.0 51.6 50.2 51.4 55.5 74.5 0.75 0.41 49.8 17.1 54.9 57.1 50.7 20.2
EF-BLSTM 71.6 74.1 42.1 42.0 0.75 0.46 51.5 48.1 62.8 62.3 56.7 56.2 57.8 54.6 59.2 57.3 47.2 49.7 51.4 71.0 0.80 0.29 53.4 46.7 52.8 53.8 48.1 53.3
EF-SBLSTM 73.2 72.5 43.3 43.0 0.74 0.47 50.1 7.5 48.4 12.8 50.6 37.7 51.1 39.2 50.1 17.0 50.5 59.7 57.5 74.2 0.78 0.38 56.4 60.8 53.7 54.8 59.9 53.5
EF-RHN 73.5 73.3 42.4 42.4 0.78 0.44 52.7 46.1 56.0 48.8 49.6 56.6 51.9 42.2 52.6 45.8 49.7 57.0 50.0 69.6 0.83 0.21 46.6 58.8 50.2 48.3 49.5 59.1
MV-LSTM 76.4 76.4 43.8 43.5 0.72 0.52 56.0 39.0 38.3 58.3 47.9 36.0 50.3 36.7 55.6 40.1 49.8 74.0 57.4 75.5 0.74 0.45 50.0 71.7 50.0 48.0 50.6 36.7
BC-LSTM 75.8 75.5 44.7 44.6 0.72 0.51 50.4 71.4 47.3 42.0 50.7 10.9 51.4 51.4 53.9 38.4 50.1 51.2 62.6 78.6 0.72 0.49 50.0 4.9 50.0 48.0 50.0 14.0
TFN 74.8 75.4 44.8 44.7 0.72 0.52 60.5 55.7 64.6 59.8 54.4 65.8 66.5 66.6 58.9 51.2 52.2 56.2 66.8 79.6 0.78 0.46 53.8 75.6 54.3 56.2 49.6 41.9
MARN 75.9 75.8 43.3 43.2 0.73 0.51 50.0 6.7 50.0 35.8 50.0 11.9 50.0 71.0 50.0 35.8 50.0 60.8 - - - - - - - - - -
MFN 76.0 76.0 43.3 43.2 0.72 0.52 50.0 64.1 65.2 65.1 50.2 60.8 51.2 52.8 51.5 41.4 53.3 62.2 - - - - - - - - - -
GMFN 76.9 77.0 45.1 45.0 0.71 0.54 62.6 72.8 69.1 76.6 62.0 89.9 66.3 66.3 60.4 66.9 53.7 85.5 67.4 80.1 0.72 0.49 58.7 75.4 63.2 66.9 56.1 61.3
∆SOTA ↑ 0.5↑ 0.6↑ 0.3↑ 0.3↓ 0.01↑ 0.02↑ 2.1↑ 0.8↑ 2.1↑ 3.4↓ 2.2 0.0 ↑ 4.8↑ 4.9↓ 1.6↓ 2.3↓ 0.6↑ 0.1↑ 0.6↑ 0.5 0.00 0.00 0.0 ↓ 0.2↑ 4.4↑ 9.3↓ 3.8↑ 2.2

Table 6: Results for sentiment analysis and emotion recognition on the MOSEI Overall and Natural
split. GMFN sets new state of the art on all the datasets. The best results are highlighted in bold and
∆SOTA shows the performance improvement of GMFN over previous state-of-the-art. For all metrics,
higher values indicate better performance except for MAE where lower values indicate better performance.
Improvements are highlighted in green. The GMFN outperforms the SOTA across all datasets and metrics,
except the ∆SOTA entries highlighted in gray. These results show that sentiment prediction and emotion
recognition on the MOSEI Mega Corpus is non-trivial.

Dataset MOSEI MOSEI Natural
Task Sentiment Anger Disgust Fear Happiness Sadness Surprise Sentiment Anger Happiness Sadness

Method A2 F1 A5 A7 MAE Corr WA2 F1 WA2 F1 WA2 F1 WA2 F1 WA2 F1 WA2 F1 WA2 F1 MAE Corr WA2 F1 WA2 F1 WA2 F1
LANGUAGE
RF 58.0 54.4 38.0 37.9 - - 50.8 71.8 50.2 72.6 50.0 89.8 52.6 42.4 50.1 61.2 50.0 85.3 57.2 49.8 - - 51.7 75.8 56.5 45.0 49.5 56.7
SVM 72.8 73.0 42.5 42.5 0.761 0.426 55.8 54.7 58.5 60.1 54.4 76.2 50.0 35.8 50.0 11.9 52.8 69.5 51.1 54.6 0.759 0.417 58.1 47.4 50.0 47.7 50.0 14.7
DAN 74.3 74.1 43.0 42.9 0.743 0.464 49.6 38.4 64.0 67.1 53.6 20.8 53.0 44.1 51.2 35.0 54.3 70.0 62.1 79.1 0.744 0.389 56.0 67.3 52.6 53.0 51.4 30.2
DHN 72.5 71.6 43.1 42.9 0.749 0.460 56.6 52.7 55.1 36.6 54.7 66.7 50.9 38.9 53.8 49.9 54.1 68.8 60.4 78.3 0.739 0.409 56.4 48.6 52.9 52.9 52.9 38.2
LSTM 73.2 73.0 42.8 42.7 0.745 0.469 53.6 40.9 57.3 55.2 50.4 79.7 52.0 41.8 54.0 42.8 52.0 62.1 58.0 77.0 0.749 0.389 54.1 43.4 52.6 53.5 54.6 43.6
SLSTM 73.7 73.6 43.2 42.9 0.745 0.461 52.1 34.1 59.0 59.0 52.7 37.4 53.5 45.4 50.5 25.6 51.6 66.7 58.8 78.1 0.742 0.410 54.3 57.0 52.7 53.1 49.1 37.2
BLSTM 73.6 73.6 42.6 42.3 0.748 0.466 52.1 39.6 54.6 64.4 56.2 56.2 54.0 47.0 52.4 47.4 50.1 49.1 62.5 78.4 0.766 0.388 51.9 49.8 52.3 52.9 50.1 36.9
SBLSTM 74.1 74.1 43.2 43.2 0.746 0.456 52.4 33.9 57.4 54.4 46.5 56.0 52.8 44.7 50.8 30.7 50.2 31.5 59.8 77.7 0.763 0.380 55.8 55.4 51.3 51.2 50.9 37.2
CNN-LSTM 73.8 73.5 42.4 42.4 0.758 0.458 56.0 68.2 50.0 51.2 54.5 57.8 50.0 35.8 50.0 49.7 50.0 39.4 50.0 71.1 0.786 0.291 50.0 5.3 50.0 47.8 50.0 14.7
DynamicCNN 72.6 72.4 42.8 42.8 0.763 0.432 49.9 71.0 50.0 6.1 58.8 45.3 50.0 35.8 49.8 12.3 53.2 64.6 52.4 77.0 0.787 0.328 50.0 5.3 50.0 47.8 50.0 14.7
RHN 63.3 53.4 41.5 41.5 0.825 0.252 50.0 11.9 54.1 67.2 51.1 80.6 50.0 35.8 50.2 57.0 50.1 2.6 50.0 71.1 0.831 0.160 57.0 53.3 50.0 47.7 50.1 57.5
VISUAL
RF 57.8 54.0 39.1 39.4 - - 50.1 71.0 50.0 72.4 50.1 89.8 57.4 49.3 50.0 60.8 50.0 85.4 53.3 43.5 - - 49.8 73.9 62.1 55.3 49.6 58.8
SVM 72.6 72.5 40.7 40.7 0.791 0.414 53.0 22.7 54.4 26.1 64.2 62.3 50.4 36.6 52.7 25.8 51.3 24.4 49.4 52.8 0.773 0.155 50.5 23.6 50.6 47.5 47.9 26.7
DAN 73.9 73.7 42.5 42.5 0.780 0.385 54.9 44.0 40.1 58.6 44.6 42.7 50.8 39.5 54.3 42.0 46.7 70.2 53.2 73.3 0.767 0.282 53.0 16.9 50.0 46.0 50.2 23.6
DHN 73.4 73.1 42.7 42.7 0.777 0.429 54.4 26.7 60.3 46.0 49.9 2.3 53.4 47.7 52.8 35.3 50.7 14.2 49.5 70.1 0.783 0.173 51.1 69.4 50.0 46.0 52.8 38.0
LSTM 73.2 73.1 41.9 41.9 0.785 0.381 46.5 64.6 32.8 45.7 51.3 78.4 50.5 38.5 54.4 46.5 51.4 81.3 53.1 76.8 0.785 0.187 51.7 42.8 55.6 56.4 52.5 34.9
SLSTM 72.8 72.8 41.6 41.6 0.784 0.398 52.3 19.5 34.2 47.7 49.8 5.0 51.0 39.5 55.0 33.1 49.4 84.2 51.4 75.0 0.785 0.219 49.3 50.7 54.6 54.4 50.9 42.2
BLSTM 73.0 72.9 41.8 41.8 0.782 0.395 58.4 46.4 51.2 14.1 49.6 24.4 51.0 40.8 57.7 44.6 47.5 77.5 55.1 76.7 0.787 0.180 47.6 41.0 54.8 55.2 52.8 42.6
SBLSTM 73.8 73.5 42.4 42.4 0.776 0.406 60.0 56.3 43.6 65.7 50.0 5.3 50.3 37.1 54.0 29.3 51.8 19.0 52.4 76.3 0.748 0.260 50.1 32.5 52.9 51.4 54.0 39.6
RHN 73.2 72.6 42.2 42.2 0.784 0.400 50.0 6.7 49.0 71.5 49.9 1.0 50.0 35.8 49.4 61.5 50.4 42.5 50.0 70.3 0.791 0.146 50.0 5.4 50.0 46.0 50.0 13.0
CNN-LSTM 68.8 63.4 35.6 35.6 0.857 0.072 50.0 5.1 50.0 79.0 50.0 85.4 50.0 43.8 50.0 10.5 50.0 82.8 60.3 78.2 1.001 0.157 60.2 76.6 50.0 59.2 51.4 31.7
3DCNN 71.0 64.1 39.5 39.5 0.790 0.194 50.1 52.7 50.8 51.2 51.1 66.5 50.0 43.8 48.8 41.2 51.7 46.2 60.7 68.8 1.251 0.166 63.1 51.5 43.9 55.2 38.1 26.9
ACOUSTIC
RF 58.1 54.3 39.4 39.4 - - 51.0 71.9 50.0 72.4 50.0 89.8 53.6 43.8 50.3 61.3 50.0 85.4 53.3 42.0 - - 50.9 77.5 52.1 38.3 51.1 59.1
SVM 73.9 73.6 34.6 34.6 0.794 0.421 54.1 31.3 58.4 41.5 47.4 36.9 50.0 35.8 50.0 12.1 52.2 38.2 50.3 57.0 0.843 0.100 55.7 37.7 50.0 49.7 50.1 14.3
DAN 74.2 73.8 42.1 42.1 0.777 0.428 55.5 43.2 58.9 44.8 58.5 72.9 50.1 36.0 54.8 38.3 47.7 66.5 49.9 72.7 0.843 0.164 50.0 4.4 50.0 49.7 49.9 57.4
DHN 74.2 73.9 41.6 41.6 0.780 0.422 53.2 24.0 47.4 69.9 46.9 42.7 50.0 35.9 53.8 33.5 48.6 69.1 50.7 73.5 0.829 0.171 53.9 27.0 50.0 49.7 54.9 48.3
Adieu-Net 74.2 73.8 42.1 42.1 0.779 0.426 56.4 51.8 54.9 31.1 48.2 24.6 50.0 35.8 53.7 31.9 50.3 34.2 50.0 72.9 0.840 0.129 44.9 51.3 50.0 49.7 49.8 40.9
SER-LSTM 67.1 66.4 46.3 46.3 0.713 0.348 49.9 5.5 53.4 29.1 44.9 43.2 50.0 31.4 57.8 53.1 48.2 50.7 50.5 70.7 0.841 0.069 50.0 5.6 50.0 48.9 50.0 15.1
LSTM 74.0 73.6 41.6 41.6 0.779 0.426 55.2 37.6 60.9 47.8 59.9 66.5 50.1 36.6 54.2 47.8 50.6 8.0 50.6 73.4 0.842 0.121 50.8 21.0 51.2 52.9 52.8 46.6
SLSTM 73.9 73.6 41.2 41.2 0.782 0.427 50.9 11.1 53.9 24.8 62.3 60.0 50.3 36.8 58.8 52.0 53.8 60.9 50.4 73.2 0.832 0.134 54.7 49.6 51.2 52.9 51.5 56.9
BLSTM 73.6 73.3 41.7 41.7 0.783 0.419 52.0 16.0 53.0 21.8 62.7 77.0 50.3 36.6 55.3 36.0 47.6 73.7 49.9 72.7 0.831 0.128 52.0 64.8 50.6 51.2 53.0 50.1
SBLSTM 73.9 73.6 41.2 41.2 0.782 0.427 53.1 34.9 39.5 57.4 53.9 77.7 61.5 61.4 50.5 16.1 51.7 30.3 49.9 72.7 0.837 0.126 53.6 48.3 49.9 49.7 50.7 53.6
RHN 73.1 72.8 41.5 41.5 0.787 0.408 55.5 47.8 70.3 75.9 50.0 89.8 50.0 35.8 58.9 65.9 54.3 72.4 50.0 72.8 0.857 0.149 50.0 76.8 50.0 49.7 50.0 14.0

Table 7: Results for sentiment analysis and emotion recognition on the MOSEI Overall and Natural split
using unimodal language, visual and acoustic methods.



Dataset CMU-MOSI
Task Sentiment
Method A2 F1 A7 MAE Corr
Majority 50.2 50.1 17.5 1.864 0.057
RF 56.4 56.3 21.3 - -
SVM-MD 71.6 72.3 26.5 1.100 0.559
THMM 50.7 45.4 17.8 - -
SAL-CNN 73.0 - - - -
C-MKL 72.3 72.0 30.2 - -
EF-HCRF 65.3 65.4 24.6 - -
EF-LDHCRF 64.0 64.0 24.6 - -
MV-HCRF 44.8 27.7 22.6 - -
MV-LDHCRF 64.0 64.0 24.6 - -
CMV-HCRF 44.8 27.7 22.3 - -
CMV-LDHCRF 63.6 63.6 24.6 - -
EF-HSSHCRF 63.3 63.4 24.6 - -
MV-HSSHCRF 65.6 65.7 24.6 - -
DF 72.3 72.1 26.8 1.143 0.518
EF-LSTM 74.3 74.3 32.4 1.023 0.622
EF-SLSTM 72.7 72.8 29.3 1.081 0.600
EF-BLSTM 72.0 72.0 28.9 1.080 0.577
EF-SBLSTM 73.3 73.2 26.8 1.037 0.619
MV-LSTM 73.9 74.0 33.2 1.019 0.601
BC-LSTM 73.9 73.9 28.7 1.079 0.581
TFN 74.6 74.5 28.7 1.040 0.587
GME-LSTM(A) 76.5 73.4 - 0.955 -
MARN 77.1 77.0 34.7 0.968 0.625
MFN 77.4 77.3 34.1 0.965 0.632
GMFN no W 71.3 71.3 27.0 1.143 0.537
GMFN no E 73.2 73.0 33.2 1.040 0.603
GMFN no G 75.5 75.5 30.5 0.999 0.610
GMFN no M 63.4 63.4 23.5 1.312 0.408
GMFN no S 75.1 75.0 33.7 0.998 0.634
GMFN 77.7 77.7 35.6 0.955 0.664
∆SOTA ↑ 0.3 ↑ 0.4 ↑ 0.9 0.0 ↑ 0.03
Human 85.7 87.5 53.9 0.710 0.820

Table 8: Sentiment prediction results on CMU-
MOSI test set using multimodal methods. The best
results are highlighted in bold and ∆SOTA shows
the change in performance over previous state of
the art. Improvements are highlighted in green.
The GMFN significantly outperforms the current
state of the art across all evaluation metrics.

Dataset ICT-MMMO YouTube MOUD
Task Sentiment Sentiment Sentiment
Method A2 F1 A3 F1 A2 F1
Majority 40.0 22.9 42.4 25.2 60.4 45.5
RF 70.0 69.8 33.3 32.3 64.2 63.3
SVM 68.8 68.7 42.4 37.9 59.4 45.5
THMM 53.8 53.0 42.4 27.9 61.3 57.0
DF 65.0 58.7 45.8 32.0 67.0 67.1
EF-LSTM 66.3 65.0 44.1 43.6 67.0 64.3
EF-SLSTM 72.5 70.9 40.7 41.2 56.6 51.4
EF-BLSTM 63.8 49.6 42.4 38.1 58.5 58.9
EF-SBLSTM 62.5 49.0 37.3 33.2 63.2 63.3
MV-LSTM 72.5 72.3 45.8 43.3 57.6 48.2
BC-LSTM 70.0 70.1 45.0 45.1 72.6 72.9
TFN 72.5 72.6 45.0 41.0 63.2 61.7
MARN 71.3 70.2 48.3 44.9 81.1 81.2
MFN 73.8 73.1 51.7 51.6 81.1 80.4
GMFN no W 71.3 71.1 45.0 40.2 71.3 71.1
GMFN no E 67.5 66.7 48.3 48.2 67.5 66.7
GMFN no G 68.8 68.9 46.7 46.9 77.4 77.0
GMFN no M 58.8 59.5 45.0 35.0 70.8 66.9
GMFN no S 72.5 71.3 53.3 45.8 81.1 80.5
GMFN 76.3 76.2 55.0 53.5 81.1 80.9
∆SOTA ↑ 2.5 ↑ 3.1 ↑ 9.2 ↑ 8.4 0.0 ↑ 8.0

Table 9: Sentiment prediction results on ICT-
MMMO, YouTube and MOUD test sets. The best
results are highlighted in bold and ∆SOTA shows
the change in performance over previous state of
the art. Improvements are highlighted in green.
The GMFN significantly outperforms the current
state of the art across all evaluation metrics.

Dataset IEMOCAP Emotions
Task Happy Sad Angry Neutral
Method A2 F1 A2 F1 A2 F1 A2 F1
Majority 85.6 79.0 79.4 70.3 75.8 65.4 59.1 44.0
SVM 86.1 81.5 81.1 78.8 82.5 82.4 65.2 64.9
RF 85.5 80.7 80.1 76.5 81.9 82.0 63.2 57.3
THMM 85.6 79.2 79.5 79.8 79.3 73.0 58.6 46.4
EF-HCRF 85.7 79.2 79.4 70.3 75.8 65.4 59.1 44.0
EF-LDHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
MV-HCRF 15.0 4.9 79.4 70.3 24.2 9.4 59.1 44.0
MV-LDHCRF 85.7 79.2 79.4 70.3 75.8 65.4 59.1 44.0
CMV-HCRF 14.4 3.6 79.4 70.3 24.2 9.4 59.1 44.0
CMV-LDHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
EF-HSSHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
MV-HSSHCRF 85.8 79.5 79.4 70.3 75.8 65.4 59.1 44.0
DF 86.0 81.0 81.8 81.2 75.8 65.4 59.1 44.0
EF-LSTM 85.2 83.3 82.1 81.1 84.5 84.3 68.2 67.1
EF-SLSTM 85.6 79.0 80.7 80.2 82.8 82.2 68.8 68.5
EF-BLSTM 85.0 83.7 81.8 81.6 84.2 83.3 67.1 66.6
EF-SBLSTM 86.0 84.2 80.2 80.5 85.2 84.5 67.8 67.1
MV-LSTM 85.9 81.3 80.4 74.0 85.1 84.3 67.0 66.7
BC-LSTM 84.9 81.7 83.2 81.7 83.5 84.2 67.5 64.1
TFN 84.8 83.6 83.4 82.8 83.4 84.2 67.5 65.4
GMFN no W 85.6 79.0 80.8 78.2 82.6 81.3 66.0 63.8
GMFN no E 86.0 81.6 82.8 81.4 83.2 81.5 67.6 66.2
GMFN no G 86.5 84.0 83.2 82.1 84.0 83.0 66.6 66.0
GMFN no M 85.6 83.0 81.3 79.1 82.0 79.3 66.2 66.2
GMFN no S 86.4 82.6 82.6 81.2 83.9 83.4 68.4 66.8
GMFN 86.8 84.2 83.8 83.0 85.8 85.5 69.4 68.9
∆SOTA ↑ 0.8 0.0 ↑ 0.4 ↑ 0.2 ↑ 0.6 ↑ 1.0 ↑ 0.6 ↑ 0.4

Table 10: Emotion recognition results on IEMO-
CAP test set using multimodal methods. The best
results are highlighted in bold and ∆SOTA shows
the change in performance over previous state of
the art. Improvements are highlighted in green.
The GMFN significantly outperforms the current
state of the art across all evaluation metrics.



Dataset POM
Task Con Pas Voi Dom Cre Viv Exp Ent Res Tru Rel Out Tho Ner Per Hum
Metric MA(7) MA(7) MA(7) MA(7) MA(7) MA(7) MA(7) MA(7) MA(5) MA(5) MA(5) MA(5) MA(5) MA(5) MA(7) MA(5)
Majority 19.2 20.2 30.5 18.2 21.7 25.6 26.1 19.7 29.6 44.3 39.4 36.0 31.0 24.1 20.7 6.9
SVM 20.6 20.7 32.0 35.0 25.1 29.1 26.6 31.5 34.0 50.2 49.8 42.9 39.9 41.4 28.1 36.0
RF 26.6 27.1 29.6 26.1 23.2 23.6 26.6 26.1 34.0 53.2 40.9 32.5 37.4 36.0 25.6 40.4
THMM 24.1 15.3 19.2 29.1 27.6 26.1 18.7 12.3 22.7 31.0 31.5 30.0 30.0 27.1 17.2 24.6
DF 25.6 24.1 33.0 34.0 26.1 32.0 26.6 29.6 30.0 53.7 50.2 39.4 37.9 42.4 26.6 34.5
EF-LSTM 20.7 27.6 31.5 35.0 25.1 31.0 25.1 29.1 30.0 48.3 48.3 38.4 42.4 40.4 25.6 36.0
EF-SLSTM 22.2 28.6 30.5 36.9 27.1 32.0 27.6 27.6 32.5 49.3 46.8 40.4 39.9 41.9 22.7 35.0
EF-BLSTM 25.1 26.1 34.0 32.0 29.6 31.0 25.6 33.5 30.0 52.2 46.3 34.0 41.9 42.9 25.6 39.4
EF-SBLSTM 23.2 30.5 29.1 31.0 27.6 32.5 31.0 25.1 33.5 52.7 47.8 38.4 39.4 44.8 25.6 38.9
MV-LSTM 25.6 28.6 28.1 34.5 25.6 32.5 29.6 29.1 33.0 52.2 50.7 38.4 37.9 42.4 26.1 38.9
BC-LSTM 26.6 26.6 31.0 33.0 27.6 36.5 30.5 29.6 33.0 52.2 47.3 37.9 45.8 36.0 27.1 36.5
TFN 24.1 31.0 31.5 34.5 24.6 25.6 27.6 29.1 30.5 38.9 35.5 37.4 33.0 42.4 27.6 33.0
GMFN no W 30.0 31.5 33.5 36.0 29.6 31.0 27.6 35.5 31.0 53.2 50.7 39.9 41.9 42.4 28.1 40.9
GMFN no E 26.1 31.5 33.5 33.0 28.6 31.0 27.1 29.6 31.0 53.2 50.7 39.9 41.9 42.4 27.1 40.9
GMFN no G 29.1 31.5 33.5 33.5 29.6 34.0 31.0 30.5 31.5 53.2 50.7 42.9 42.9 43.8 31.5 40.9
GMFN no M 24.1 31.5 28.6 27.6 27.1 27.6 26.6 32.0 31.0 34.5 37.4 39.9 41.4 42.4 23.6 40.9
GMFN no S 32.5 31.5 34.0 36.9 30.5 32.5 34.5 35.0 33.5 53.7 50.7 42.4 45.8 45.3 31.5 42.4
GMFN 35.5 35.0 36.5 41.9 32.0 36.9 37.4 36.9 37.4 55.2 53.7 45.8 48.3 46.3 34.5 43.8
∆SOTA ↑ 8.9 ↑ 4.0 ↑ 3.5 ↑ 6.9 ↑ 4.4 ↑ 0.4 ↑ 6.9 ↑ 5.4 ↑ 3.4 ↑ 1.5 ↑ 3.0 ↑ 2.9 ↑ 2.5 ↑ 3.9 ↑ 6.4 ↑ 3.4

Table 11: Results for personality trait recognition on the POM dataset. The best results are highlighted
in bold and ∆SOTA shows the change in performance over SOTA. Improvements over the SOTA are
highlighted in green. The GMFN significantly outperforms the current SOTA across all datasets and
evaluation metrics.
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