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Abstract
Background Multigraphs are an extremely common form of network

data, in which several edge types are defined over a single set of nodes.
Despite its ubiquity, there are relatively few network models designed to
handle this data, and its particular challenges.

Aim We have two major objectives with this novel method. One is
to be able to tune explicitly between the two extremes of flexibility, and
comparability, when finding an optimal layout for each of the layers of a
multigraph. The other is to be able to remove unnecessary layers, and
thus remove unnecessary complexity from this complex data format.

Data The data used is of two kinds. First, because a novel method is
developed, simulations are carried out on a variety of synthetic graphs, in
order to understand the properties of the model in as controlled a manner
as possible. Second, the model is fit to a novel five-layer dataset of the
staff at a charter school in West Baltimore.

Method The method developed here is based on the widely used
Latent Space Model, but both reparameterizes and regularizes it, to allow
for several novel properties. The model is fit with a combination of a
heuristic starting point, and proximal gradient descent, using the group
lasso.

Results Rather than finding a consistent trade-off between compara-
bility and accuracy, we found that many networks can be made far more
comparable without sacrificing any accuracy.

Conclusion The basic functionality of method has been demonstrated
in a variety of synthetic, and organic contexts, and has already suggested
that many multigraphs could be made easier to visualize without any
compromise in accuracy of representation.

Intellectual merit This method allows network data that was previ-
ously prohibitively complex to be examined in an intuitive manner, taking
a full pattern into account all at once, instead of examining the pieces
independently.

Broader impacts The ability of this method to act as a cognitive
aid in complex visualizations has already inspired applications in medical
diagnostics, and deep learning interpretation.

Keywords: latent space model; social network analysis; multigraph
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1 Introduction

1.1 The Difficulty and Ubiquity of Multigraphs
Multigraphs, also called multiview networks, can be thought of as either a single
graph with multiple edge types, or as multiple networks over the same set of
nodes. Data of this kind is not uncommon, at either large or small scales.
Twitter has Following relationships, as well as Retweets, and Likes, each of
which can be thought of as simply one layer within the full relationship between
two nodes. In small scales, surveys for networks very rarely ask about a single
type of relationship, and many of the most famous network data sets have
multiple relationships (such as Trust, Friendship, and Respect, in Samson’s
monk data). If the population is static over time, longitudinal networks are also
easily representable as multigraphs. Despite the widespread existence of data
of this form its inherent difficulty has led to only a small number of models for
it, all of which have important shortcomings for the practicing social network
analyst.

1.2 The Practical Difficulties of Multigraphs
In particular, practitioners have two immediate problems when dealing with
multigraphs, both of which are consequences of the inherent complexity of the
data.

1.2.1 Visualization

The first problem is that multigraphs are too complex to easily visualize, and
visualization has always been a cornerstone of network analysis. In particular,
the difficulty comes in comparing the many layers of data (i.e. the graphs formed
by the different edge types). To be expressive, a graph layout needs to be flexible
in how it places nodes – however in order to be comparable, two layouts need to
place nodes in relatively similar places. A useful multigraph model would be able
to tune explicitly between these two extremes of flexibility, and comparability.

1.2.2 Dimensionality

The second problem is that multigraphs may be unnecessarily complex. Em-
pirically, there are often high degrees of correlation between the layers in a
multigraph, and the smaller the number of graphs, the easier analysis becomes.
These two observations combine to suggest another useful property of a new
model – the ability to remove redundant layers.

1.3 Previous Work
Our model combines several methods that have proven to be exceptionally valu-
able – Latent Space Models, [?], the LASSO estimator, [Friedman and Hastie(2008)],
and in particular the group LASSO [?]. The substantial amount of work that has
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been done on them all provides many different possible approaches to designing,
and fitting, our own model. Efficient optimization procedures, often employ-
ing coordinate or block-coordinate optimization, exist for fitting the LASSO
to linear models, [Friedman and Hastie(2008)], to generalized linear models
[Friedman et al.(2010)Friedman, Hastie, and Tibshirani], with the element-wise,
group, and combined, sparse group LASSO, [Vincent and Hansen(), Qin and Scheinberg(),
Wu and Lange(2008)], and more.

On the social network methodology side, two recent papers have been pub-
lished that take the general approach of extending LSMs to multigraph data.
Our approach has important advantages over both of them. One paper takes the
extreme of modeling the multigraph as a single object, which only makes visual-
ization more difficult [Gollini and Murphy(2016)]. The other treats each layer as
independent, and allows correlations between them. While a highly intuitive idea,
this does not solve the comparability problem, or that of dimensionality reduction
[Salter-Townshend and McCormick(2017)]. Furthermore, there is evidence that
the extreme flexibility of this model leads to a substantial risk of overfitting.
While the fact that ours is less flexible is not an unmitigated blessing, we believe
it has benefits in interpretability, and it can also rely on its regularization to
avoid the problem encountered by [Salter-Townshend and McCormick(2017)].

2 The Model

2.1 Problem Statement
Motivated by these problems, we propose a model with the following three
objectives:

1. Use current methods from statistical SNA to model multigraphs

2. Model the layers of the multigraph in a way that can tune between compa-
rability and expressiveness

3. Allow the model to remove redundant layers

A model with all of these qualities, which we term the Hierarchical Latent
Space Model, can be described in the following way:

2.2 The Likelihood Function
Using the canonical Latent Space Model [?] as a starting point, we model a set
of conditionally independent binary dyads.

The existence of each of these dyads is a function of an intercept, a set
of covariates (omitted here for clarity), and the distance between the latent
“position” variables z of the two nodes in the dyad. The goal of the model will
be to estimate these positions. An optimal set of variables would place positions
close together for nodes with an observed edge, and vice versa.
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ηijk = αk − ‖zik − zjk‖22
The indices i and j are over the nodes; the index k refers to the different

layers in the multigraph. Because the edges are binary, we use the inverse logit
σ to transform η, but it should be observed that for real-valued edges, other link
functions could be easily substituted.

σ(ηijk) =
1

1 + exp(−ηijk)
∈ [0, 1]

All together, the unpenalized likelihood of the HLSM thus takes the form of
a binomial:

L =
∏
k

∏
i

∏
j<i

σ(ηijk)
yijk(1− σ(ηijk))1−yijk

and the log likelihood is

` =
∑
k

∑
i

∑
j<i

(yijk − 1)ηijk − ln(1 + exp(−ηijk))

2.3 Regularization
While the notation z for the latent variables is consistent with the literature, and
somewhat more intuitive, our contribution comes from a re-parameterization of
the model, where

zik = bi + εik

Our model starts with a “base” position bi for each node, which is the
hierarchical layer in the model. It then adds a layer-specific perturbation εik.
The behavior of the model then depends entirely on the regularization placed
on the ε’s. When there is none, each layer is fit without regard to the others,
as each ε can be arbitrarily large, and thus does not need to rely on the base
position in its representation. When there is an arbitrarily large amount of
regularization, the perturbations are all driven to zero, and all k layers are
represented identically by the base parameters b. With intermediate values, the
user can find the point between these two extremes that allows for the graphs to
be distinct, but also renders them sufficiently similar to be comparable, by not
allowing the perturbations to stray too far from their shared base position.

Furthermore, with the use of a group lasso penalty that groups together all
of the perturbations within a single layer k, the model will perform graph-wise
dimensionality reduction, by setting a redundant layer equal to the base layer.
This is far more valuable to the practitioner than an element-wise sparse solution,
which would still require them to consider all of the layers in their multigraph.
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3 Fitting

3.1 The Optimization Problem
Together these two elements form our optimization problem, which is to minimize
the sum of the negative log likelihood and a penalty on the deviations εik. We
tested two approaches with respect to the penalty on the deviations εik.

In the first model, we used an element-wise lasso, by penalizing the norm of
each deviation εik. This can be seen in by Equation 1. It is important to note
that the latent parameters are all two-dimensional, to allow for visualization.
Consequently even with this element-wise approach, the group-lasso approach
and the L2 penalty is necessary, following [?]. However the grouping is only over
the two dimensions of the individual parameter.

min
b,ε
−`(b, ε) + λ

∑
i

∑
k

‖εik‖2 (1)

In the second approach, we used a group lasso penalty that is over all of the
perturbations εk within each layer k, instead of on each individual deviation
εik. This encourages sparsity over the layers, meaning an entire graph might be
zeroed out (its perturbations driven to zero, leading it to be expressed as just
the base layer). This approach is illustrated in Equation 2.

min
b,ε
−`(b, ε) + λ

∑
k

‖εk‖2 (2)

Because neither of these objective functions is differentiable, we use proximal
gradient descent in fitting the model.

3.2 Derivation of the Gradients
Then, the gradients of the ηijk are:

∂ηijk
∂bi

= −2(bi + εik − bj − εjk)

∂ηijk
∂bj

= 2(bi + εik − bj − εjk)

∂ηijk
∂εik

= −2(bi + εik − bj − εjk)

∂ηijk
∂εjk

= 2(bi + εik − bj − εjk)
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∂`

∂bm
=
∑
k

∑
i

∑
j<i

(yijk − 1)
∂ηijk
∂bm

− ∂ ln(1 + exp(−ηijk))
∂bm

=
∑
k

∑
j<m

(ymjk − 1)
∂ηmjk
∂bm

− ∂ ln(1 + exp(−ηmjk))
∂bm

+
∑
i>m

(yimk − 1)
∂ηimk
∂bm

− ∂ ln(1 + exp(−ηimk))
∂bm


=
∑
k

[
− 2

∑
j<m

[
(ymjk − 1)(bm + εmk − bj + εjk) +

exp(−ηmjk)
1 + exp(−ηmjk)

(bm + εmk − bj − εjk)
]

+ 2
∑
i>m

[
(yimk − 1)(bi + εik − bm − εmk) +

exp(−ηijk)
1 + exp(−ηmjk)

(bi + εik − bm − εmk)
] ]

= 2
∑
k

[
−
∑
j<m

(
ymjk − 1 +

exp(−ηmjk)
1 + exp(−ηmjk)

)
(zmk − zjk)

+
∑
i>m

(
yimk − 1 +

exp(−ηijk)
1 + exp(−ηmjk)

)
(zik − zmk)

]

∂`

∂εmk
= 2

[
−
∑
j<m

(
ymjk − 1 +

exp(−ηmjk)
1 + exp(−ηmjk)

)
(zmk − zjk)

+
∑
i>m

(
yimk − 1 +

exp(−ηijk)
1 + exp(−ηmjk)

)
(zik − zmk)

]

3.3 The Proximal Operator
The proximal operator for the penalty term using the L2 norm is:

prox‖.‖,λt(εk) =

{
‖εk‖−λt
‖εk‖ εk, ‖εk‖ ≥ λt

0, ‖εk‖ < λt

prox‖.‖,λt(bi) = bi

Therefore, let β be the vector with all parameters ε and b. The Proximal
Gradient Descent method in this case is:

β+ = prox‖.‖,λt(β − t∇`(β))

3.4 Non-Convexity and Initialization
The original Latent Space Model is stated in the original paper as non-convex
in the latent positions z [?], and our model is assumed to be the same. This issue is
typically resolved by using MCMC samplers [?, Salter-Townshend and McCormick(2017)]
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which are capable of exploring non-convex spaces, however using them on this
problem proved not only to take far more time, but also to have substantially
worse results. We focus our discussion on the convex approaches used.

As we use methods designed for convex problems, we start by using a careful
initialization of our procedure. This attempts to begin the algorithm close to a
global minimum of the objective, so that when we do descend the likelihood, we
reduce our chances of being caught in a poor local minimum. This initialization
was composed of several steps.

1. Create a proposal ‘base’ graph from ŷij =
∑
k yijk > 0

2. Fit a separate single-graph latent space model to each layer (including the
base layer)

3. Transform the layer estimates to minimize their distance from the base
estimate

The third step in this procedure was initially done with a Procrustes transform
[?], as is used in Bayesian estimation of Latent Space Models. This transform
is used because proposal graphs in a sampling procedure can produce a graph
with many different unimportant variations, as the likelihood is invariant to
translation, rotation, scaling, and flipping. The Procrustes transform is thus
used to remove these transformations, while keeping the variations that are of
importance to the likelihood. However this transform minimizes the overall
distance between all pairs of points in two shapes, and in this problem, we
require something slightly different. The goal here is to minimize only distances
between positions that correspond to the same node – this is the property that
minimizes the ε’s, and makes the embeddings comparable.

To solve this problem we propose the Anticrustean transformation. A simple
implementation combines line searches over the several classes of transforms to
which the likelihood is invariant, finding in each line search the position that
minimizes the sum of the squared distances between two instantiations of the
same node. Together, these steps produce a good initial estimate of all of the
models parameters, which are used as starting points in the proximal gradient
procedure.

4 Proof of Concept Results
To test our model, we first simulate a toy data set consisting of a multigraph
with N = 20 vertices and K = 2 layers, followed by the real and novel data
set that motivated this technique. We initialize our optimization problem
using the initialization procedure described in the previous section. We then
run 3000 iterations of the proximal gradient algorithm. Figures 1 and 2 show
the improvement in the objective function value over the 3000 iterations for,
respectively, the element-wise lasso and the layer-wise lasso approaches using
different values for λ. We can observe that the function values appear to converge
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to a local minimum. In both approaches we used a fixed step size t = 10−3 in
the proximal gradient algorithms.

Figure 1: Value of the objective function for different values of λ in the stan-
dard lasso approach. We ran 3000 iterations of the proximal gradient descent
algorithm.

Figure 2: Value of the objective function for different values of λ in the group lasso
approach. We ran 3000 iterations of the proximal gradient descent algorithm.

Figures 3 and 4 compare the optimal positions found by each of the models
with the initial one. Black points represent the base positions bi and the red
and green points (and lines) represent the two different layers of the graph. We
can observe that as we increase the value of λ deviations are more penalized and
the optimal solution tends to be one where all layers collapse to a single graph.
Additionally, we can also compare the resulting optimal positions between the
two approached (standard lasso and group lasso). For λ = 1 the two layers are
significantly more distinct than the ones in the standard lasso case.

In Figure 5, we plot the results of our algorithm on a novel data set of
teachers at a school in West Baltimore. As can be seen, the graphs are highly
visually comparable, while also maintaining a substantial amount of expressive-
ness to demonstrate their individual structure. We believe this convincingly
demonstrates the potential utility of our technique as a tool in social network
analysis, as well as many other fields.

5 More Extensive Simulation Results
While the toy model is compelling, it is clear that a more thorough examination
of the properties of limits of this method will require a richer variety of test cases.
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Figure 3: Scatter plots showing the initial positions (top left plot) used in the
optimization problem and the final ones for different values of λ in the standard
lasso approach. Black points represent the base positions bi and the red and
green points (and lines) represent the two different layers of the graph. As the
value of λ increases deviations are more penalized and the optimal solution tends
to be one where all layers collapse to a single graph.

Figure 4: Scatter plots showing the initial positions (top left plot) used in the
optimization problem and the final ones for different values of λ in the group
lasso approach. Black points represent the base positions bi and the red and
green points (and lines) represent the two different layers of the graph. As the
value of λ increases deviations are more penalized and the optimal solution tends
to be one where all layers collapse to a single graph. We can observe that for
λ = 1 the two layers are significantly more distinct than the ones in the standard
lasso case.

The first possibility are of course Erdos-Renyi graphs, but they have serious
drawbacks. The value of this model comes only from its being able to represent
several layers that are somewhat, or even very, different – there is no value in a
model that only models identical layers. To test carefully the degree to which
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Figure 5: A Real-World Network of Teachers in West Baltimore

layers can differ, and still be well represented by the HLSM, it is necessary to be
able to introduce precise amounts of disturbances into a graph – this allows a
model to be fit to g and g′, where g′ is a known and controllable distance from
g. Unfortunately with completely random Erdos-Reyni graphs, shuffling a single
edge could result in its being moved to any other location in the graph – possibly
fundamentally changing the pattern of connectivity, such as by disconnecting
two components. This “small” difference thus would have large repercussions for
the graph, and so perhaps the model. This was considered too unpredictable.

5.1 Blockmodels as a Model Graph Type
The solution to this problem was to use blockmodels as the substrate for testing,
and when shuffling edges, only shuffling them within blocks. In other words, one
shuffle consists of removing an edge between two nodes in group 1, and placing it
instead between two other nodes – both also in group 1. In this way, Differences
can be introduced to a graph while explicitly maintaining the overall structure,
and thus ensuring comparability.

There were two more points of consideration in using blockmodels. The first
was whether they were sufficiently realistic as models for real-world networks.
However while simple, the blockmodel has been a staple of network analysis for
several decades, and block structures are extremely common empirical attributes
of real-world networks. Their simplicity and power was thus considered a perfect
combination for this first round of explorations.

The second point was that once blocks are determined, it is not clear that
they should be treated identically. Similar to the point raised above with respect
to Erdos-Renyi graphs, some edges have a greater effect on the overall structure
of a graph than others, and this point is identical for blocks in graphs. However
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as a first pass, every edge was treated as contributing equally to the accuracy of
the final representation.

The test cases were thus composed of graphs drawn from manually specified
blockmodels, each of 36 nodes, with a density of 0.1 on the off-diagonal elements,
and of 0.6 on-diagonal. Variations were made by randomly shuffling a small
number of edges, by having different numbers of blocks, and of having the blocks
be of differing sizes. Thus one layer may have been evenly split into two groups
of similar sizes, while the other layer in the same multigraph would have three
groups, one large, and two small. These were then fit over a range of lambda
values, and the true-positive and true-negative rates of the model in representing
the edges of the multigraph were recorded for each layer.

5.2 A Surprising Lack of Effect on Accuracy
It was initially presumed that the more regularization was applied, the more the
modeled graph would differ from the observed graph. To test this, both the true
positive and true negative rates were assessed, for each layer of the multigraph,
and at each value of lambda for which the model was fit. The TPR is plotted as
a solid line, the TNR as a dashed-and-dotted line, and each is colored with the
same color as its corresponding layer. One full example can be seen in Figure 6

However as can be seen in the representative example, there is no real observed
loss in accuracy until the very end, at the highest values of regularization. There
has still been a substantial amount of alignment between the layers though, as
can be seen when comparing the first pane (the initialization point) and last.
This was a consistent finding across a number of graph layer combinations, and
suggests that there is an unnecessary flexibility in many LSM representations.
This was not unknown, but there had also not been a need to deal with it. Here,
we demonstrate the approximate amount of regularization that can be applied
before the modeled graph differs more from the observed graph than it would
when fit as its own layer.

6 Conclusion
A combination of convex methods and a good heuristic starting point have been
demonstrated to fit this novel class of models in a way finds a local minimum,
and that produces a model fit with desirable visual properties.

In addition, it was found that multigraphs can often be represented in very
parsimonious ways, if the layers are drawn from a classic family of graphs. For
these, regularization is valuable typically to a point immediately prior to the
elimination of a layer, after which accuracy drops modestly, but noticeably. Prior
to this, there are often very slight, zero, or even positive changes in accuracy as
regularization increases. This suggests that there is substantial flexibility in the
way a single LSM could be displayed, and that rather than finding a compromise
between multiple conflicting layers, a large amount of the behavior of this model
is simply in eliminating unnecessary variation between the representations.
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Future work will attempt to understand on a deeper level when a multigraph
can be reconciled and when it can’t, possibly finding heuristics to predict whether
or not this procedure will be useful even before it is run. In addition, the accuracy
will be weighted by block size and density, to emphasize edges based on their
importance to the graph structure – it can be seen that weighting each edge
equally is likely undesirable. A compelling candidate is to weight by surprise –
an error of omission or commission could be weighted by how surprising it is,
which is a known quantity, given the densities of the blocks in the model. In this
way, errors in sparse blocks are more serious than errors in dense ones, making
the model better at representing the crucial bridging structures that determine
so much of a global networks behavior.
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Appendix: Link to R scripts
The proximal descent methods described in this report were implemented using
the R language. All scripts are available in the following git hub repository:
https://github.com/amloewi/hlsm. The main R script is located at https:
//github.com/amloewi/hlsm/blob/master/R/final_project.R
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