
Data Analysis Project: Using Knowledge Graphs for Image
Classification

Kenneth Marino ∗

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213

kdmarino@cs.cmu.edu

March 27, 2018

Abstract

One characteristic that sets humans apart from modern
learning-based computer vision algorithms is the ability
to acquire knowledge about the world and use that knowl-
edge to reason about the visual world. Humans can learn
about the characteristics of objects and the relationships
that occur between them to learn a large variety of visual
concepts, often with few examples. This paper investi-
gates the use of structured prior knowledge in the form
of knowledge graphs and shows that using this knowl-
edge improves performance on image classification. We
build on recent work on end-to-end learning on graphs,
introducing the Graph Search Neural Network as a way
of efficiently incorporating large knowledge graphs into
a vision classification pipeline. We show in a number of
experiments that our method outperforms standard neural
network baselines for multi-label classification.

1 Introduction

Our world contains millions of visual concepts under-
stood by humans. These often are ambiguous (toma-
toes can be red or green), overlap (vehicles includes both
cars and planes) and have dozens or hundreds of subcat-
egories (thousands of specific kinds of insects). While
some visual concepts are very common such as person
or car, most categories have many fewer examples, form-
ing a long-tail distribution [38]. And yet, even when only

∗In collaboaration with Abhinav Gupta and Ruslan Salakhutdinov

Eleph-
ant

Large

Bush

Detection
Has
Has attribute
Looks like
Found in

Mouse

Trunk

Tail

Prediction:

Elephant Shrew

Elp.
Shrew

Small

Figure 1: Example of how semantic knowledge about the
world aids classification. Here we see an elephant shrew.
Humans are able to make the correct classification based
on what we know about the elephant shrew and other sim-
ilar animals.

shown a few or even one example, humans have the re-
markable ability to recognize these categories with high
accuracy. In contrast, while modern learning-based ap-
proaches can recognize some categories with high accu-
racy, it usually requires thousands of labeled examples for
each of these categories. Given how large, complex and
dynamic the space of visual concepts is, this approach
of building large datasets for every concept is unscalable.
Therefore, we need to ask what humans have that current
approaches do not.

One possible answer to this is structured knowledge
and reasoning. Humans are not merely appearance-based

1

classifiers; we gain knowledge of the world from expe-
rience and language. We use this knowledge in our ev-
eryday lives to recognize objects. For instance, we might
have read in a book about the “elephant shrew” (maybe
even seen an example) and will have gained knowledge
that is useful for recognizing one. Figure 1 illustrates
how we might use our knowledge about the world in this
problem. We might know that an elephant shrew looks
like a mouse, has a trunk and a tail, is native to Africa,
and is often found in bushes. With this information, we
could probably identify the elephant shrew if we saw one
in the wild. We do this by first recognizing (we see a
small mouse-like object with a trunk in a bush), recall-
ing knowledge (we think of animals we have heard of and
their parts, habitat, and characteristics) and then reason-
ing (it is an elephant shrew because it has a trunk and a
tail, and looks like a mouse while mice and elephants do
not have all these characteristics). With this information,
even if we have only seen one or two pictures of this ani-
mal, we would be able to classify it.

The datasets which we will analyze in this project are in
fact knowledge datasets. We use as our source of knowl-
edge, the Visual Genome [15] scene graphs and Word-
Net [24]. This data is described more in section 4.2.

There has been a lot of work in end-to-end learning on
graphs or neural network trained on graphs [32, 2, 6, 11,
26, 23, 9, 22]. Most of these approaches either extract
features from the graph or they learn a propagation model
that transfers evidence between nodes conditional on the
type of edge. An example of this is the Gated Graph Neu-
ral Network [18] which takes an arbitrary graph as input.
Given some initialization specific to the task, it learns how
to propagate information and predict the output for every
node in the graph. This approach has been shown to solve
basic logical tasks as well as program verification.

Our work improves on this model and adapts end-to-
end graph neural networks to multi-label image classifi-
cation. We introduce the Graph Search Neural Network
(GSNN) which uses features from the image to efficiently
annotate the graph, select a relevant subset of the input
graph and predict outputs on nodes representing visual
concepts. These output states are then used to classify the
objects in the image. GSNN learns a propagation model
which reasons about different types of relationships and
concepts to produce outputs on the nodes which are then
used for image classification. Our new architecture miti-

gates the computational issues with the Gated Graph Neu-
ral Networks for large graphs which allows our model to
be efficiently trained for image tasks using large knowl-
edge graphs. We show how our model is effective at
reasoning about concepts to improve image classification
tasks. Importantly, our GSNN model is also able to pro-
vide explanations on classifications by following how the
information is propagated in the graph.

The major contributions of this work are (a) the intro-
duction of the GSNN as a way of incorporating potentially
large knowledge graphs into an end-to-end learning sys-
tem that is computationally feasible for large graphs; (b)
a framework for using noisy knowledge graphs for image
classification; and (c) the ability to explain our image clas-
sifications by using the propagation model. Our method
significantly outperforms baselines for multi-label classi-
fication.

2 Related Work
Learning knowledge graphs [4, 3, 31] and using graphs
for visual reasoning [38, 20] has recently been of inter-
est to the vision community. For reasoning on graphs,
several approaches have been studied. For example, [39]
collects a knowledge base and then queries this knowl-
edge base to do first-order probabilistic reasoning to pre-
dict affordances. [20] builds a graph of exemplars for
different categories and uses the spatial relationships to
perform contextual reasoning. Approaches such as [17]
use random walks on the graphs to learn patterns of edges
while performing the walk and predict new edges in the
knowledge graph. There has also been some work using
a knowledge base for image retrieval [12] or answering
visual queries [40], but these works are focused on build-
ing and then querying knowledge bases rather than using
existing knowledge bases as side information for some vi-
sion task.

However, none of these approaches have been learned
in an end-to-end manner and the propagation model on
the graph is mostly hand-crafted. More recently, learn-
ing from knowledge graphs using neural networks and
other end-to-end learning systems to perform reasoning
has become an active area of research. Several works treat
graphs as a special case of a convolutional input where,
instead of pixel inputs connected to pixels in a grid, we

2

define the inputs as connected by an input graph, relying
on either some global graph structure or doing some sort
of pre-processing on graph edges [2, 6, 11, 26]. How-
ever, most of these approaches have been tried on smaller,
cleaner graphs such as molecular datasets. In vision prob-
lems, these graphs encode contextual and common-sense
relationships and are significantly larger and noisier.

Li and Zemel present Graph Gated Neural Networks
(GGNN) [18] which uses neural networks on graph struc-
tured data. This paper (an extension of Graph Neural Net-
works [32]) serves as the foundation for our Graph Search
Neural Network (GSNN). Several papers have found suc-
cess using variants of Graph Neural Networks applied
to various simple domains such as quantitative structure-
property relationship (QSPR) analysis in chemistry [23]
and subgraph matching and other graph problems on toy
datasets [9]. GGNN is a fully end-to-end network that
takes as input a directed graph and outputs either a clas-
sification over the entire graph or an output for each
node. For instance, for the problem of graph reachabil-
ity, GGNN is given a graph, a start node and end node,
and the GGNN will have to output whether the end node
is reachable from the start node. They show results for
logical tasks on graphs and more complex tasks such as
program verification.

There is also a substantial amount of work on various
types of kernels defined for graphs [37] such as diffusion
kernels [14], graphlet kernels [34], Weisfeiler-Lehman
graph kernels [33], deep graph kernels [28], graph in-
variant kernels [27] and shortest-path kernels [1]. The
methods have various ways of exploiting common graph
structures, however, these approaches are only helpful
for kernel-based approaches such as SVMs which do not
compare well with neural network architectures in vision.

Our work is also related to attribute approaches [8] to
vision such as [16] which uses a fixed set of binary at-
tributes to do zero-shot prediction, [35] which uses at-
tributes shared across categories to prevent semantic drift
in semi-supervised learning and [5] which automatically
discovers attributes and uses them for fine-grained clas-
sification. Our work also uses attribute relationships that
appear in our knowledge graphs, but also uses relation-
ships between objects and reasons directly on graphs
rather than using object-attribute pairs directly.

The work presented here overlaps heavily with our
work in CVPR2017 [21].

3 Methodology

3.1 Graph Gated Neural Network
The idea of GGNN is that given a graph with N nodes,
we want to produce some output which can either be an
output for every graph node o1, o2, ...oN or a global out-
put oG. This is done by learning a propagation model
similar to an LSTM. For each node in the graph v, we
have a hidden state representation h(t)v at every time step
t. We start at t = 0 with initial hidden states xv that de-
pends on the problem. For instance, for learning graph
reachability, this might be a two bit vector that indicates
whether a node is the source or destination node. In case
of visual knowledge graph reasoning, xv can be a one bit
activation representing the confidence of a category being
present based on an object detector or classifier.

Next, we use the structure of our graph, encoded in a
matrix A which serves to retrieve the hidden states of ad-
jacent nodes based on the edge types between them. The
hidden states are then updated by a gated update module
similar to an LSTM. The basic recurrence for this propa-
gation network is

h(1)v = [xTv , 0]
T (1)

a(t)v = AT
v [h

(t−1)
1 ...h

(t−1)
N]T + b (2)

ztv = σ(W za(t)v + Uzh(t−1)
v) (3)

rtv = σ(W ra(t)v + Urh(t−1)
v) (4)

h̃tv = tanh(Wa(t)v + U(rtv � h(t−1)
v)) (5)

h(t)v = (1− ztv)� h(t−1)
v + ztv � h̃tv (6)

where h(t)v is the hidden state for node v at time step t,
xv is the problem specific annotation, Av is the adjacency
matrix of the graph for node v, and W and U are learned
parameters. Eq 1 is the initialization of the hidden state
with xv and empty dimensions. Eq 2 shows the propaga-
tion updates from adjacent nodes. Eq (3-6) combine the
information from adjacent nodes and current hidden state
of the nodes to compute the next hidden state.

After T time steps, we have our final hidden states. The
node level outputs can then just be computed as

ov = g(h(T)
v , xv) (7)

where g is a fully connected network, the output net-
work, and xv is the original annotation for the node.

3

3.2 Graph Search Neural Network
The biggest problem in adapting GGNN for image tasks
is computational scalability. NEIL [4] for example has
over 2000 concepts, and NELL [3] has over 2M confi-
dent beliefs. Even after pruning to our task, these graphs
would still be huge. Forward propagation on the standard
GGNN isO(N2) to the number of nodesN and backward
propagation isO(NT) where T is the number of propaga-
tion steps. We perform simple experiments on GGNNs on
synthetic graphs and find that after more than about 500
nodes, a forward and backward pass takes over 1 second
on a single instance, even when making generous param-
eter assumptions. On 2,000 nodes, it takes well over a
minute for a single image. Using GGNN out of the box is
infeasible.

Our solution to this problem is the Graph Search Neu-
ral Network (GSNN). As the name might imply, the idea
is that rather than performing our recurrent update over all
of the nodes of the graph at once, we start with some ini-
tial nodes based on our input and only choose to expand
nodes which are useful for the final output. Thus, we only
compute the update steps over a subset of the graph. So
how do we select which subset of nodes to initialize the
graph with? During training and testing, we determine
initial nodes in the graph based on likelihood of the con-
cept being present as determined by an object detector or
classifier. For our experiments, we use Faster R-CNN [29]
for each of the 80 COCO categories. For scores over some
chosen threshold, we choose the corresponding nodes in
the graph as our initial set of active nodes.

Once we have initial nodes, we also add the nodes adja-
cent to the initial nodes to the active set. Given our initial
nodes, we want to first propagate the beliefs about our ini-
tial nodes to all of the adjacent nodes. After the first time
step, however, we need a way of deciding which nodes
to expand next. We therefore learn a per-node scoring
function that estimates how “important” that node is. Af-
ter each propagation step, for every node in our current
graph, we predict an importance score

i(t)v = gi(hv, xv) (8)

where gi is a learned network, the importance network.
Once we have values of iv , we take the top P scoring

nodes that have never been expanded and add them to our
expanded set, and add all nodes adjacent to those nodes

COCO
Detections:
Person
Car
Bicycle

Detected
Nodes

Nodes
Expanded
by
Importance

t=T

Propagation
Step

Output
Network

0

0

To Classification
Net

Reorder
and Zero-

pad
Propagation

Step

t=2t=1

…

Figure 2: Graph Search Neural Network expansion. Starts
with detected nodes and expands neighbors. Adds nodes
adjacent to expand nodes predicted by importance net.

to our active set. Figure 2 illustrates this expansion. At
t = 1 only the detected nodes are expanded. At t = 2 we
expand chosen nodes based on importance values and add
their neighbors to the graph. At the final time step T we
compute the per-node-output and re-order and zero-pad
the outputs into the final classification net.

To train the importance net, we assign target impor-
tance value to each node in the graph for a given image.
Nodes corresponding to ground-truth concepts in an im-
age are assigned an importance value of 1. The neighbors
of these nodes are assigned a value of γ. Nodes which are
two-hop away have value γ2 and so on. The idea is that
nodes closest to the final output are the most important to
expand.

We now have an end-to-end network which takes as in-
put a set of initial nodes and annotations and outputs a
per-node output for each of the active nodes in the graph.
It consists of three sets of networks: the propagation net,
the importance net, and the output net. The final loss
from the image problem can be backpropagated from the
final output of the pipeline back through the output net
and the importance loss is backpropagated through each
of the importance outputs. See Figure 3 to see the GSNN
architecture. First xinit, the detection confidences initial-
ize h(1)init, the hidden states of the initially detected nodes.
We then initialize h(1)adj1, the hidden states of the adjacent
nodes, with 0. We then update the hidden states using
the propagation net. The values of h(2) are then used to

4

xinit 0

h(1)init h(1)adj1

h(2)init h(2)adj1 i(1) adj2

Top PImport.
Net

0

h(2)adj2h(2)adj1h(2)init

i(2) adj3

Top P

h(2)adj1h(2)init

h(3)adj2h(3)adj1h(3)init

… h(T-1)adjNh(T-1)adj1h(T-1)init

…

Prop.
Net

h(T)

GSNN out

xinit 0

h(1)init h(1)adj1

h(2)init h(2)adj1 i(1) adj2

h(2)adj2

i(2) adj3

h(2)adj1h(2)init

h(3)adj2h(3)adj1h(3)init

h(T-1)adjNh(T-1)adj1

Prop.
Net

Prop.
Net

Classification
Loss

gt labels

Importance
Loss

Importance
Loss

Predicted
labels BCE

loss

Final
ClassificationOutput

Net

Import.
Net

Figure 3: Graph Search Neural Network diagram. Shows
initialization of hidden states, addition of new nodes as
graph is expanded and the flow of losses through the out-
put, propagation and importance nets.

predict the importance scores i(1), which are used to pick
the next nodes to add adj2. These nodes are then initial-
ized with h

(2)
adj2 = 0 and the hidden states are updated

again through the propagation net. After T steps, we then
take all of the accumulated hidden states hT to predict
the GSNN outputs for all the active nodes. During back-
propagation, the binary cross entropy (BCE) loss is fed
backward through the output layer, and the importance
losses are fed through the importance networks to update
the network parameters.

One final detail is the addition of a “node bias”
into GSNN. In GGNN, the per-node output function
g(h

(T)
v , xv) takes in the hidden state and initial annotation

of the node v to compute its output. In a certain sense it is
agnostic to the meaning of the node. That is, at train or test
time, GSNN takes in a graph it has perhaps never seen be-
fore, and some initial annotations xv for each node. It then
uses the structure of the graph to propagate those annota-
tions through the network and then compute an output.

The nodes of the graph could have represented anything
from human relationships to a computer program. How-
ever, in our graph network, the fact that a particular node
represents “horse” or “cat” will probably be relevant, and
we can also constrain ourselves to a static graph over im-
age concepts. Hence we introduce node bias terms that,
for every node in our graph, has some learned values. Our
output equations are now g(h

(T)
v , xv, nv) where nv is a

bias term that is tied to a particular node v in the over-
all graph. This value is stored in a table and its value are
updated by backpropagation.

3.3 Image pipeline and baselines
Another problem we face adapting graph networks for vi-
sion problems is how to incorporate the graph network
into an image pipeline. For classification, this is fairly
straightforward. We take the output of the graph network,
reorder it so that nodes always appear in the same order
into the final network, and zero pad any nodes that were
not expanded. Therefore, if we have a graph with 316
node outputs, and each node predicts a 5-dim hidden vari-
able, we create a 1580-dim feature vector from the graph.
We also concatenate this feature vector with fc7 layer
(4096-dim) of a fine-tuned VGG-16 network [36] and
top-score for each COCO category predicted by Faster
R-CNN (80-dim). This 5756-dim feature vector is then
fed into 1-layer final classification network trained with
dropout.

For baselines, we compare to: (1) VGG Baseline - feed
just fc7 into final classification net; (2) Detection Baseline
- feed fc7 and top COCO scores into final classification
net.

4 Results

4.1 Datasets
For our experiments, we wanted to test on a dataset that
represents the complex, noisy visual world with its many
different kinds of objects, where labels are potentially am-
biguous and overlapping, and categories fall into a long-
tail distribution [38]. Humans do well in this setting, but
vision algorithms still struggle with it. To this end, we
chose the Visual Genome dataset [15] v1.0.

5

Visual Genome contains over 100,000 natural images
from the Internet. Each image is labeled with objects, at-
tributes and relationships between objects entered by hu-
man annotators. Annotators could enter any object in the
image rather than from a predefined list, so as a result
there are thousands of object labels with some being more
common and most having many fewer examples. There
are on average 21 labeled objects in an image, so com-
pared to datasets such as ImageNet [30] or PASCAL [7],
the scenes we are considering are far more complex. Vi-
sual Genome is also labeled with object-object relation-
ships and object-attribute relationships which we use for
GSNN.

In our experiments, we create a subset from Visual
Genome which we call Visual Genome multi-label dataset
or VGML. In VGML, we take the 200 most common ob-
jects in the dataset and the 100 most common attributes
and also add any COCO categories not in those 300 for
a total of 316 visual concepts. Our task is then multi-
label classification: for each image predict which sub-
set of the 316 total categories appear in the scene. We
randomly split the images into a roughly 80-20 train/test
split. Since we used pre-trained detectors from COCO,
we ensure none of our test images overlap with our detec-
tor’s training images.

We also evaluate out method on the more standard
COCO dataset [19] to show that our approach is useful
on multiple datasets and that our method does not rely on
graphs built specifically for our datasets. We train and test
in the multi-label setting [25], and evaluate on the minival
set [29].

4.2 Building the Knowledge Graph
We also use Visual Genome as a source for our knowl-
edge graph. Using only the train split, we build a knowl-
edge graph connecting the concepts using the most com-
mon object-attribute and object-object relationships in
the dataset. Specifically, we counted how often an ob-
ject/object relationship or object/attribute pair occurred in
the training set, and pruned any edges that had fewer than
200 instances. This leaves us with a graph over all of
the images with each edge being a common relationship.
The idea is that we would get very common relationships
(such as grass is green or person wears clothes) but not
relationships that are rare and only occur in single images

(such as person rides zebra).
The Visual Genome graphs are useful for our problem

because they contain scene-level relationships between
objects, e.g. person wears pants or fire hydrant is red and
thus allow the graph network to reason about what is in a
scene. However, it does not contain useful semantic rela-
tionships. For instance, it might be helpful to know that
dog is an animal if our visual system sees a dog and one of
our labels is animal. To address this, we also create a ver-
sion of graph by fusing the Visual Genome Graphs with
WordNet [24]. Using the subset of WordNet from [10],
we first collect new nodes in WordNet not in our output
label by including those which directly connect to our out-
put labels and thus likely to be relevant and add them to a
combined graph. We then take all of the WordNet edges
between these nodes and add them to our combined graph.

4.3 Training details
We jointly train all parts of the pipeline (except for
the detectors). All models are trained with Stochastic
Gradient Descent, except GSNN which is trained using
ADAM [13]. We use an initial learning rate of 0.05, 0.005
for the VGG net before fc7, decreasing by a factor of 0.1
every 10 epochs, an L2 penalty of 1e−6 and a momentum
of 0.5. We set our GSNN hidden state size to 10, impor-
tance discount factor γ to 0.3, number of time steps T to
3, initial confidence threshold to 0.5 and our expand num-
ber P to 5. Our GSNN importance and output networks
are single layer networks with sigmoid activations. All
networks were trained for 20 epochs with a batch size of
16.

4.4 Quantitative Evaluation
Table 3 shows the result of our method on Visual Genome
multi-label classification. In this experiment, the com-
bined Visual Genome, WordNet graph outperforms the
Visual Genome graph. This suggests that including the
outside semantic knowledge from WordNet and perform-
ing explicit reasoning on a knowledge graph allows our
model to learn better representations compared to the
other models.

We also perform experiments to test the effect of lim-
iting the size of the training dataset has on performance.
Figure 4 shows the results of this experiment on Visual

6

Table 1: Mean Average Precision for multi-label classifi-
cation on COCO. Numbers for VGG baseline, VGG base-
line with detections, GSNN using Visual Genome graph
and GSNN using combined Visual Genome and WordNet
graph.

Method mAP

VGG 69.86
VGG+Det 73.93
GSNN-VG 77.57
GSNN-VG+WN 75.73

Table 2: Mean Average Precision for multi-label classifi-
cation on COCO, using only odd and even detectors.

Method even mAP odd mAP

VGG+Det 71.87 71.73
GSNN-VG 73 73.43
GSNN-VG+WN 73.59 73.97

Genome, varying the training set size from the entire
training set (approximately 80,000), all the way down to
500 examples. Choosing the subsets of examples for these
experiments is done randomly, but each training set is a
subset of the larger ones—e.g. all of the examples in the
1,000 set are also in the 2,000 set. We see that, until the
1,000 sample set, the GSNN-based methods all outper-
form baselines. At 1,000 and 500 examples, all of the
methods perform equally. Given the long-tail nature of
Visual Genome, it is likely that for fewer than 2,000 sam-
ples, many categories do not have enough examples for
any method to learn well. This experiment indicates that
our method is able to improve even in the low-data case
up to a point.

In Table 1, we show results on the COCO multi-
label dataset. We can see that the boost from using
graph knowledge is more significant than it was on Vi-
sual Genome. One possible explanation is that the Vi-
sual Genome knowledge graph provides significant in-
formation which helps improve the performance on the

Table 3: Mean Average Precision for multi-label classifi-
cation on Visual Genome Multi-Label dataset. Numbers
for VGG baseline, VGG baseline with detections, GSNN
using Visual Genome graph and GSNN using a combined
Visual Genome and WordNet graph.

Method mAP

VGG 30.57
VGG+Det 31.4
GSNN-VG 32.83
GSNN-VG+WN 33

COCO dataset itself. In the previous Visual Genome ex-
periment, much of the graph information is contained in
the labels and images themselves. One other interest-
ing result is that the Visual Genome graph outperforms
the combined graph for COCO, though both outperform
baselines. One possible reason is that the original VGML
graph is smaller, cleaner, and contains more relevant in-
formation than the combined graph. Furthermore, in the
VGML experiment, WordNet is new outside information
for the algorithm helping boost the performance.

One possible concern is the over dependence of the
graph reasoning on the set of 80 COCO detectors and ini-
tial detections. Therefore, we performed an ablation ex-
periment to see how sensitive our method is to having all
of the initial detections. We reran the COCO experiments
with both graphs using two different subsets of COCO de-
tectors. The first subset is just the even COCO categories
and the second subset is just the odd categories. We see
from Table 2 that GSNN methods again outperform the
baselines.

As one might suspect, our method does not perform
uniformly on all categories, but rather does better on some
categories and worse on others. Figure 5 shows the differ-
ences in average precision for each category between our
GSNN model with the combined graph and the detection
baseline for the VGML experiment. Figure 6 shows the
same for our COCO experiment. Performance on some
classes improves greatly, such as “fork” in our VGML ex-
periment and “scissors” in our COCO experiment. These
and other good results on “knife” and “toothbrush” seem
to indicate that the graph reasoning helps especially with

7

0

5

10

15

20

25

30

35

Full 40,000 20,000 10,000 5,000 2,000 1,000 500

m
A

P

Training Set Size

Visual Genome Low Data Experiment

Baseline Detect Graph VGonly Graph Combined

Figure 4: Mean Average Precision on Visual Genome in
the low data setting. Shows performance for all methods
for the full dataset, 40,000, 20,000, 10,000, 5,000, 2,000,
1,000, and 500 training examples.

small objects in the image. In the next section, we ana-
lyze our GSNN models on several examples to try to gain
a better intuition as to what the GSNN model is doing and
why it does well or poorly on certain examples.

4.5 Qualitative Evaluation

One way to analyse the GSNN is to look at the sensitiv-
ities of parameters in our model with respect to a partic-
ular output. Given a single image I , and a single label
of interest yi that appears in the image, we would like
to know how information travels through the GSNN and
what nodes and edges it uses. We examined the sensitivity
of the output to hidden states and detections by comput-
ing the partial derivatives ∂yi

∂h(1)

∂yi

∂h(2)

∂yi

∂xdet
with respect to

the category of interest. These values tell us how a small
change in the hidden state of a particular node affects a
particular output. We would expect to see, for instance,
that for labeling elephant, we see a high sensitivity for the
hidden states corresponding to grey and trunk.

In this section, we show the sensitivity analysis for the
GSNN combined graph model on the VGML experiment
and the Visual Genome graph on the COCO experiments.
In particular, we examine some classes that performed
well under GSNN compared to the detection baseline and
a few that performed poorly to try to get a better intuition
into why some categories improve more.

Figure 7 shows the graph sensitivity analysis for the ex-
periments with VGML on the left and COCO on the right,
showing four examples where GSNN does better and two

where it does worse. Each example shows the image, the
ground truth output we are analyzing and the sensitivities
of the concept of interest with respect to the hidden states
of the graph or detections. For convenience, we display
the names of the top detections or hidden states. We also
show part of the graph that was expanded, to see what
relationships GSNN was using.

For the VGML experiment, the top left of Figure 7
shows that using the detection for person, GSNN is able
to reason that jeans are more likely since jeans are usually
on people in images using the “wearing” edge. It is also
sensitive to skateboard and horse, and each of these has
a second order connection to jeans through person, so it
is likely able to capture the fact that people tend to wear
jeans while on horses and skateboards. Note that the sen-
sitivities are not the same as the actual detections, so it
is not contradictory that horse has high sensitivity. The
second row on the left shows a successful example for bi-
cycle, using detections from person and skateboard and
the fact that people tend to be “on” bicycles and skate-
boards. The last row shows a failure case for windshield.
It correctly correlates with bus, but because the knowl-
edge graph lacks a connection between bus and wind-
shield, the graph network is unable to do better than the
detection baseline. On the right, for the COCO experi-
ment, the top example shows that fork is highly correlated
with the detection for fork, which should not be surpris-
ing. However, it is able to reinforce this detection with the
connections between broccoli and dining table, which are
both two step connections to fork on the graph. Similarly,
the middle example shows that the graph connections for
pizza, bowl, and bottle being “on” dining table reinforce
the detection of dining table. The bottom right shows an-
other failure case. It is able to get the connection between
the detection for toilet and hair dryer (both found in the
bathroom), but the lack of good connections in the graph
prevent the GSNN from improving over the baseline.

5 Conclusion
In this paper, we present the Graph Search Neural Net-
work (GSNN) as a way of efficiently using knowledge
graphs as extra information to improve image classifica-
tion. We provide analysis that examines the flow of infor-
mation through the GSNN and provides insights into why

8

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

st
ac

ke
d

w
in

d
sh

ie
ld

ti
le h
ill

gr
e

y

to
w

e
r

ea
r

le
g

ta
il

gr
e

en

co
at

d
ar

k

sk
iin

g

o
u

ts
id

e

w
h

ee
l

fl
o

o
r

d
is

ta
n

t

h
e

re

co
u

n
te

r

ro
ck

s

la
rg

e lit

ce
ili

n
g

o
n

to
p

w
al

l

d
o

o
r

w
at

er

to
w

e
l

w
o

o
d

en

sh
o

e
s

b
as

ke
t

w
h

ee
ls

h
e

ad
lig

h
t

p
an

ts

tr
e

es

cl
o

u
d

tr
ac

ks

si
lv

er

ca
lm

gr
az

in
g

si
n

k

b
o

at

ki
te

p
la

n
t

b
ir

d

w
in

e
 g

la
ss

p
iz

za

ce
ll

p
h

o
n

e

b
ac

kp
ac

k

b
ic

yc
le

fi
re

 h
yd

ra
n

t

m
ic

ro
w

av
eA
P

 I
m

p
ro

ve
m

en
t

Category

Figure 5: Difference in Average Precision for each of the 316 labels in VGML between our GSNN combined graph
model and detection baseline for the Visual Genome experiment. Top categories: scissors, donut, frisbee, microwave,
fork. Bottom categories: stacked, tiled, light brown, ocean, grassy.

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

h
ai

r
d

ri
e

r

b
e

ar

gi
ra

ff
e

su
rf

b
o

ar
d

ze
b

ra

b
e

d

p
e

rs
o

n

fi
re

 h
yd

ra
n

t

el
ep

h
an

t

sk
is

si
n

k

ai
rp

la
n

e

tr
u

ck

o
ra

n
ge

b
e

n
ch ti
e

la
p

to
p

st
o

p
 s

ig
n

ch
ai

r

b
o

o
k

re
fr

ig
er

at
o

r

h
o

t
d

o
g tv

su
it

ca
se

to
as

te
r

fr
is

b
ee

b
ro

cc
o

li

b
ac

kp
ac

k

m
o

u
se

p
o

tt
e

d
 p

la
n

t

b
ic

yc
le

ca
r

sh
ee

p

sp
o

o
n

te
d

d
y

b
ea

r

kn
if

e

b
o

tt
le

to
o

th
b

ru
sh

ap
p

le

d
o

n
u

tA
P

 Im
p

ro
ve

m
en

t

Category

Figure 6: Difference in Average Precision for each of the 80 labels in COCO between our GSNN VG graph model and
detection baseline for the COCO experiment. Top categories: fork, donut, cup, apple, microwave. Bottom categories:
hairdryer, parking meter, bear, kite, and giraffe.

our model improves performance. We hope that this work
provides a step towards bringing symbolic reasoning into
traditional feed-forward computer vision frameworks.

The GSNN and the framework we use for vision prob-
lems is completely general. Our next steps will be to ap-
ply the GSNN to other vision tasks, such as detection, Vi-
sual Question Answering, and image captioning. Another
interesting direction would be to combine the procedure
of this work with a system such as NEIL [4] to create a
system which builds knowledge graphs and then prunes
them to get a more accurate, useful graph for image tasks.

Acknowledgements: We would like to thank everyone who took time to
review this work and provide helpful comments. This research is based
upon work supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA). The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the

official policies, either expressed or implied of ODNI, IARPA, or the
US government. The US Government is authorized to reproduce and
distribute the reprints for governmental purposed notwithstanding any
copyright annotation therein. This material is based upon work sup-
ported by the National Science Foundation Graduate Research Fellow-
ship under Grant No. DGE-1252522 and ONR MURI N000141612007.

9

Motor
cycle

White

Skate
board

Person

Bus

Detection Hidden t=2 Hidden t=3

Street

Person

Horse

Detection Hidden t=2 Hidden t=3

Black Skate
board

Jeans

Cap

Old

Person

Bicycle

Black
Parked

Detection Hidden t=2 Hidden t=3

VGML

Top:
Parked
Old
Stop Sign
Black
Person

Top:
Bicycle
Skateboard
Horse
Umbrella
Frisbee

Top:
Bus
Skateboard
Motorcycle
Horse
Clock

Top:
Person
Black
Running
Old
Ocean

Top:
Horse
Skateboard
Person
Cap
Foot

Top:
Person
Skateboard
Horse
Bird
Bench

Top:
Parked
Bicycle
Skateboard
Horse
Shirt

Top:
Bus
White
Running
Person
Black

Top:
Street
Motorcycle
Horse
Clock
Shirt

Person

Surf
board

Baseball
Glove

Umbr
ella

Remote

Black

Detection Hidden t=2 Hidden t=3

Blue

Broccoli

PizzaFork

Detection Hidden t=2 Hidden t=3

Dining
Table

BookPlate

Green

Bottle
Bowl

Book

Pizza
Dining
Table

Round

Detection Hidden t=2 Hidden t=3

COCO

Top:
Book
Round
Large
Visible
Cooked

Top:
Dining Table
Pizza
Bowl
Cake
Bottle

Top:
Toilet
Remote
Person
Baseball Glove
Backpack

Top:
Pizza
Broccoli
Book
Green
Plate

Top:
Fork
Green
Pizza
Broccoli
Book

Top:
Fork
Broccoli
Dining Table
Zebra
Mouse

Top:
Dining Table
Pizza
Book
Bowl
Cake

Top:
Black
Baseball Glove
Umbrella
Surfboard
Person

Top:
Toilet
Black
Blue
Remote
Baseball Glove

Graph
Legend

Has Attribute
On

Has
Wearing

Holding

Foot

Skate
board

Figure 7: Sensitivity analysis of GSNN in VGML experiment (left) and COCO experiment (right) with the combined
graph and Visual Genome graphs respectively. Each example shows the image, part of the knowledge graph expanded
during the classification, and the sensitivity values of the initial detections, and the hidden states at time steps 2 and
3 with respect to the output class listed. The top detections and hidden state nodes are printed for convenience since
the x-axis is too large to list every class. The top and middle rows show the results for images and classes where
the GSNN significantly outperforms the detection baseline to get an intuition for when our method is working. The
bottom row shows images and classes where GSNN does worse than the detection baseline to get an idea of when our
method fails and why.

10

References
[1] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels

on graphs. ICDM, 2005.
[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013.

[3] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-
uschka, and T. M. Mitchell. Toward an architecture for
never-ending language learning. AAAI, 2010.

[4] X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting
visual knowledge from web data. CVPR, 2013.

[5] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Dis-
covering localized attributes for fine-grained recognition.
CVPR, 2012.

[6] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bom-
barell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Con-
volutional networks on graphs for learning molecular fin-
gerprints. NIPS, 2015.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[8] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describ-
ing objects by their attributes. CVPR, 2009.

[9] M. Gori, G. Monfardini, and F. Scarselli. A new model
for learning in graph domains. IEEE International Joint
Conference on Neural Networks, 2, 2005.

[10] K. Guu, J. Miller, and P. Liang. Traversing knowledge
graphs in vector space. In Empirical Methods in Natural
Language Processing (EMNLP), 2015.

[11] M. Henaff, J. Bruna, and Y. LeCun. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

[12] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. A. Shamma,
M. S. Bernstein, and L. Fei-Fei. Image retrieval using
scene graphs. CVPR, 2015.

[13] D. P. Kingma and J. L. Ba. Adam: A method for stochastic
optimization. ICLR, 2015.

[14] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs
and other discrete input spaces. ICML, 2, 2002.

[15] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata,
J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma,
M. Bernstein, and L. Fei-Fei. Visual genome: Connect-
ing language and vision using crowdsourced dense image
annotations. 2016.

[16] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-
based classification for zero-shot visual object categoriza-
tion. TPAMI, 2014.

[17] N. Lao, T. Mitchell, and W. W. Cohen. Random walk infer-
ence and learning in a large scale knowledge base. NIPS,
2011.

[18] Y. Li and R. Zemel. Gated graph sequence neural net-
works. ICLR, 2016.

[19] T. Lin, M. Maire, S. J. Belongie, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Mi-
crosoft COCO: common objects in context. ECCV, 2014.

[20] T. Malisiewicz and A. Efros. Beyond categories: The
visual memex model for reasoning about object relation-
ships. NIPS, 2009.

[21] K. Marino, R. Salakhutdinov, and A. Gupta. The more you
know: Using knowledge graphs for image classification.
CVPR, 2017.

[22] V. D. Massa, G. Monfardini, L. Sarti, F. Scarselli, M. Mag-
gini, and M. Gori. A comparison between recursive neural
networks and graph neural networks. IEEE International
Joint Conference on Neural Network Proceedings, 2006.

[23] A. Micheli. Neural network for graphs: A contextual con-
structive approach. IEEE Transactions on Neural Net-
works, 2009.

[24] G. A. Miller. Wordnet: A lexical database for english.
ACM, 38, 1995.

[25] I. Misra, C. L. Zitnick, M. Mitchell, and R. Girshick. See-
ing through the Human Reporting Bias: Visual Classifiers
from Noisy Human-Centric Labels. In CVPR, 2016.

[26] M. Niepert, M. Ahmed, and K. Kutzkov. Learning con-
volutional neural networks for graphs. arXiv preprint
arXiv:1605.05273, 2016.

[27] F. Orsini, P. Frasconi, and L. D. Raedt. Graph invariant
kernels. IJCAI, 2015.

[28] Pinar, Yanardag, and S. V. N. Vishwanathan. Deep graph
kernels. KDDM, 2015.

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. NIPS, 2015.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 115(3):211–252, 2015.

[31] F. Sadeghi, S. K. Divvala, and A. Farhadi. Viske: Vi-
sual knowledge extraction and question answering by vi-
sual verification of relation phrases. CVPR, 2015.

[32] F. Scarselli, M. Gori, A. C. Tsoi, and G. Monfardini. The
graph neural network model. IEEE Transactions on Neural
Networks, 2009.

[33] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen,
K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-lehman
graph kernels. JMLR, 2011.

11

[34] N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri,
K. Mehlhorn, and K. M. Borgwardt. Efficient graphlet ker-
nels for large graph comparison. AISTATS, 5, 2009.

[35] A. Shrivastava, S. Singh, and A. Gupta. Constrained semi-
supervised learning using attributes and comparative at-
tributes. ECCV, 2012.

[36] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[37] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt. Graph kernels. JMLR, 2010.

[38] X. Zhu, D. Anguelov, and D. Ramanan. Capturing long-
tail distributions of object subcategories. CVPR, 2014.

[39] Y. Zhu, A. Fathi, and L. Fei-Fei. Reasoning about Object
Affordances in a Knowledge Base Representation. In Eu-
ropean Conference on Computer Vision, 2014.

[40] Y. Zhu, C. Zhang, C. R, and L. Fei-Fei. Building a large-
scale multimodal knowledge base system for answering vi-
sual queries. arXiv preprint arXiv:1507.05670, 2015.

12

