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Abstract

Background. Many applications in 3D environments require the knowledge of an agent’s
position in that environment, including a wide range of important basic tasks such as environ-
ment navigation, mapping, and planning. One method to estimate position is visual odometry,
where the egomotion of a camera is estimated by processing the relative movement between
video frames recorded by the camera. Previous methods to do visual odometry relied on a mix-
ture of feature matching and hand-coded heuristics to estimate egomotion, while some newer
methods tried to learn it end-to-end using deep learning. Within the deep learning literature
on egomotion, only several sequence-based models have been tried such as LSTMs or convolu-
tional networks, but comparing between these models and other new ones (such as transformer
networks) hasn’t been done thoroughly.
Aim. The aim of this project is to evaluate the current effectiveness of several state-of-the-art
deep learning architectures on the task of visual odometry within the KITTI odometry dataset.
Data. The KITTI odometry dataset is a set of videos collected using a self-driving car sensor
platform for the purposes of estimating egomotion accurately from video. It consists of 21 se-
quences with sequence lengths of between 271 to 4981 RGB images, with around 41,000 images
in total. 11/21 of the sequences have public ground-truth egomotion available, collected using
a state-of-the-art localization system within the vehicle.
Methods. To prevent overfitting due to the low number of data samples (11 sequences total,
3 training sequences) we use pre-trained image motion featurization models which were trained
on external data and are fixed during training of the sequence models. After featurization, we
evaluate several sequenced-based models on the KITTI dataset: temporal convolutions, LSTM
recurrent networks and attention-based transformer networks.
Results. We evaluate the models using relative-frame RMSE and global-frame absolute trajec-
tory error (ATE). Relative Translational (Rotational) RMSE is proportional to the true training
loss used, and measures L2 error between the predicted position (quaternion) and the ground-
truth position (quaternion). ATE measures global error after aligning the estimated trajectory
with the ground-truth using a scaling, rotation and translation transformation.
Conclusions. In conclusion, we evaluated a variety of learning-based sequential models on the
task of visual odometry in KITTI and our results show that temporal residual networks obtain
slightly lower ATE than the other models tested, suggesting that most of the models are only
utilizing temporally local information and the benefits of long-temporal-horizon sequential mod-
els is not fully realized. The lack of a large visual odometry dataset thus presents a significant
challenge for learning-based models to reach state-of-the-art performance.
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1 Introduction

Determining one’s position in an environment relative to other objects such as fixed landmarks
is a universal component of many robotics applications, e.g. a roomba robotic vacuum cleaner
needs to know where it has already cleaned to avoid wasting power and cleaning as fast as possible.
There are several techniques to estimate an agent’s position and orientation, usually under the
name of odometry (and its variants) or the more complete Simultaneous Localization and Mapping
(SLAM) approaches. Odometry is mainly the estimation of egomotion (the agent’s relative motion
between inputs) using some sensor modality, whereas SLAM aims to map the entire environment
when starting in an unknown position within that environment. Visual odometry is odometry with
images as its sensor modality and is used to determine an agent’s position given camera data of its
trajectory through time. By observing how the objects in frame move, it can be possible to recover
the transformation the camera has underwent between two image frames.
Visual odometry is one method of estimating position, but it is prone to drift error where small
errors in the relative transformation between frames compound over time, resulting in a growing
absolute difference in position in the agent’s true position and its estimated one as time progresses.
This can be remedied by doing relocalization in a map of the environment. Unfortunately, this map
is often unavailable and its construction depends on an agent that can already accurately localize.
This problem of needing to simultaneously localize and map an environment is the problem of
SLAM, and often relies on odometry methods as a subprocess of the technique.
In this paper, we focus on evaluating deep learning sequence models on the task of visual odometry
in the KITTI benchmark. Our models are visual odometry techniques because we forego building
any explicit map or doing relocalization techniques. In the sequel, we present a review of related
work on SLAM and visual odometry. Then we describe the dataset, the KITTI visual odometry
dataset. Afterwards, we detail the image featurization models we use to preprocess the dataset
and describe the sequence models we evaluate on KITTI. Finally, we present results on the KITTI
dataset for all the models we evaluate.

2 Background and Related Work

Despite the method we test not necessarily being a SLAM technique, we present overview of pre-
vious SLAM methods as they are closely related. As previously stated, SLAM is a process in
which an agent needs to localize itself in an unknown environment and build a map of this envi-
ronment at the same time, with uncertainties in both its motions and observations. SLAM has
evolved from filter-based to graph-based (optimization-based) approaches. Some EKF-based sys-
tems have demonstrated state-of-the-art performance, such as the Multi-State Constraint Kalman
Filter (Mourikis & Roumeliotis, 2007), the VIN (Kottas et al., 2013), and the system of Hesch
et al. (Hesch et al., 2014). Those methods, even though efficient, heavily depend on linearization
and Gaussian assumptions, and thus underperform their optimization-based counterparts, such as
OK-VIS (Leutenegger et al., 2015), ORB-SLAM (Mur-Artal et al., 2015), and LSD-SLAM (Engel
et al., 2014).
Graph-based SLAM typically includes two main components: the front-end and the back-end. The
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front-end extracts relevant information (e.g. salient features) from the sensor data and associates
each measurement to a specific map feature, while the back-end performs graph optimization on a
graph of abstracted data produced by the front-end.
Graph-based SLAM can be categorized either as feature-based or direct methods depending on
the type of front-end. Feature-based methods rely on local features (e.g. SIFT, SURF, FAST,
ORB, etc.) for pose estimation. For example, ORB-SLAM (Mur-Artal et al., 2015) performs data
association and camera relocalization with ORB features and DBoW2 (Gálvez-López & Tardos,
2012). RANSAC (Fischler & Bolles, 1987) is commonly used for geometric verification and outlier
rejection, and there are also prioritized feature matching approaches (Sattler et al., 2016). How-
ever, hand-engineered feature detector and descriptors are not robust to motion blur, illumination
changes, or strong viewpoint changes, any of which can cause localization to fail.
To avoid some of the aforementioned drawbacks of feature-based approaches, direct methods, such
as LSD-SLAM (Engel et al., 2014), utilize extensive photometric information from the images
to determine the pose, by minimizing the photometric error between corresponding pixels. This
approach is in contrast to feature-based methods, which minimize the reprojection error. However,
such methods are usually not applicable to wide baseline settings (Cadena et al., 2016) during large
viewpoint changes. Recent work in (Forster et al., 2014) (Forster et al., 2017) combines feature
and direct methods by minimizing the photometric error of features lying on intensity corners and
edges. Some methods focus on dense recontruction of the scene, for instance (Whelan et al., 2016)
builds dense globally consistent surfel-based maps of room scale environments explored using an
RGB-D camera, without pose graph optimization, while KinectFusion (Newcombe et al., 2011)
obtains depth measurements directly using active sensors and fuses them over time to recover
high-quality surface maps. These approaches still suffer from strict calibration and synchronization
requirements, and the data association modules require extensive parameter tuning in order to
work correctly for a given scenario.
In light of the limitations of feature-based and direct approaches, deep networks are proposed to
learn suitable feature representations that are robust against motion blur, occlusions, dynamic
scenes, illumination, texture, and viewpoint changes. They have been successfully applied to sev-
eral related multiview vision problems, including learning optical flow (Dosovitskiy et al., 2015),
depth (Liu et al., 2015), homography between frame pairs (DeTone et al., 2016), and localiza-
tion (Chaplot et al., 2018) and re-localization problems.
Recent work includes re-formulating the localization problem as a classification task (Weyand et al.,
2016), a regression task (Kendall et al., 2015; Walch et al., 2016), end-to-end trainable filter-
ing (Haarnoja et al., 2016), and differentiable RANSAC (Brachmann et al., 2017). More specifi-
cally, PlaNet (Weyand et al., 2016) formulates localization as a classification problem, predicting
the corresponding tile from a set of tiles subdividing Earth surface for a given image, thus providing
the approximate position from which a photo was taken. PoseNet (Kendall et al., 2015) formu-
lates 6-DoF pose estimation as a regression problem. Similarly, (Melekhov et al., 2017) finetunes
a pretrained classification network to estimate the relative pose between two cameras. To improve
its performance, (Walch et al., 2016) added Long-Short Term Memory (LSTM) units to the fully-
connected layers output, to perform structured dimensionality reduction, choosing the most useful
feature correlations for the task of pose estimation. From a different angle, DSAC (Brachmann
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et al., 2017) proposes a differentiable RANSAC so that a matching function that optimizes pose
quality can be learned. These approaches are not robust to repeated structure or similar looking
scenes, as they ignore the sequential and graphical nature of the problem. Addressing this limi-
tation, work in (Clark et al., 2017) fused additional sequential inertial measurement with visual
odometry. The Neural Graph Optimizer (Parisotto et al., 2018) used a transformer + temporal
convolution hybrid model to do pose estimation in several simulated environments, drawing in-
spiration from graph SLAM methods which combine both with local estimation and global graph
optimization. SemanticFusion (McCormac et al., 2017) combines convolutional neural networks
(CNNs) and a dense ElasticFusion (Whelan et al., 2016). However, classic feature-based methods
still outperform CNN-based methods published to date in terms of accuracies.
One key ingredient for the success of graph-based SLAM is the back-end optimization. The back-
end builds the pose graph, in which two pose nodes share an edge if an odometry measurement is
available between them, while a landmark and a robot-pose node share an edge if the landmark
was observed from the corresponding robot pose. In pose graph optimization, the variables to
be estimated are poses sampled along the trajectory of the robot, and each factor imposes a
constraint on a pair of poses. Modern SLAM solvers exploit the sparse nature of the underlying
factor graph and apply iterative linearization and optimization methods (e.g. nonlinear least
squares via the Gauss-Newton or Levenberg-Marquardt algorithm). Several such solvers achieve
excellent performance, for example, g2o (Kümmerle et al., 2011), TSAM (Dellaert, 2012), Ceres,
iSAM (Kaess et al., 2012), SLAM++ (Salas-Moreno et al., 2013), and recently (Bowman et al.,
2017) for optimization with semantic data association. The SLAM back-end offers a natural defense
against data association and perceptual aliasing errors from the front-end, where similarly looking
scenes, corresponding to distinct locations in the environment, would deceive place recognition.
However, they depend heavily on linearization of the sensing and motion models, and require
good initial guesses. Current systems can be easily induced to fail when either the motion of
the robot or the environment are too challenging (e.g. fast robot dynamics or highly dynamic
environments) (Cadena et al., 2016).

3 Data

The experiments in this project will use the KITTI odometry dataset. KITTI is a collection of
datasets collected with a focus on applications that would be relevant to an autonomous driving
platform, such as depth estimation, odometry, object tracking, semantic segmentation and more.
There are several different datasets within KITTI for each of these applications, and in this project
report we will focus on the odometry dataset.
The odometry dataset is a collection of 22 sequences collected from an autonomous driving recording
platform with several advanced sensors to collect data streams such as RGB video, depth, LIDAR
and accurately estimate egomotion. The particular sensor used for egomotion was a state-of-the-
art OXTS RT 3003 localization system. This system combines GPS (Global Positioning System),
GLONASS (Global Navigation Satellite System), an IMU (inertial measurement unit) and RTK
(Real Time Kinematic) correction signals. The OXTS RT 3003 enables centimeter-level accuracy
(open sky localization errors < 5 cm) and provides the ground truth for visual odometry methods
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Figure 1: Ground-truth poses for all 11 labelled sequences from a bird’s eye view.

to aim for. These sensors are prohibitively expensive for widespread consumer applications (costing
on the same order of magnitude as a car itself) and this provides one reason why visual odometry
is still an active area of research despite the impressive accuracy of this sensor. The images used
in the dataset are collected from 4 PointGrey Flea2 video cameras (2 color cameras + 2 grayscale
cameras) which have 10Hz sampling rate, 1392x512 pixel resolution, and 90◦ × 35◦ field of view.
The camera system is composed of stereo mounted cameras (1 RGB/Grayscale camera on each
side) with 54 cm of distance between left/right camera, and 6 cm between RGB/Grayscale cameras
on the same side. The ground-truth produced by the localization system is projected into the
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coordinate system of the left camera.
The odometry dataset is comprised of 22 sequences of a car driving outdoors in a variety of scenarios,
including traversing cities, roads and highways. There are around 41,000 images collected in total,
measured over a distance travelled of around 39.2 km. There is only access to the ground-truth
labels of 11 of the 22 sequences, as the rest are used as testing data for a benchmark leaderboard
on this task. Top-down views of the ground-truths of the 11 sequences provided in the dataset are
shown in Figure 1. In this paper, we only do the comparison between the 11 sequences on which
ground-truth label data is publicly available. We do the train/test split of sequences [0, 2, 8, 9] for
training and sequences [01, 03, 04, 05, 06, 07, 10] for testing.
For the purposes of experiments in this paper, the data is stored as a set of monocular RGB images
(left camera) and ground-truth poses stored as the global transformation matrices that represent the
position and orientation that the camera was in when the frame was captured. We preprocess every
image into the resolution 1280× 384 before featurization. The dataset presents several challenges
for sequence-based deep learning models, namely the very low data count (11 sequences in total).
Owing to this data sparsity we utilize external datasets to pretrain our image featurization models,
the details of which are presented later in Section 5.

4 Methods

In this section, we will detail the high-level procedure we will use to estimate the camera poses. For
the internal representation in the code, we choose to represent the transformations by splitting them
up into a position+quaternion representation. The quaternion is a 4-dimensional structure that
can represent 3D rotations very efficiently. We choose this representation since it can be composed
with fewer issues than transformation matrices. It also provides an efficient parameterization of
the output space since it is more restricted than the set of all transformation matrices.
Once the ground-truth transformations are converted to position+quaternion parameterization,
we additionally transform them into relative frame. This means that each position+quaternion
transformation in the sequence represents the delta transformation from the previous frame, i.e.
the position value at time t is the movement since time t−1 and similarly for the rotation. Relative
frame allows more manageable outputs for the regression models since the scales won’t change much
from position to position (whereas in global frame, the scale is changing rapidly as you proceed
through the sequence). This aids the optimization especially for deep neural networks as they tend
to only learn a limited output range.
Similarly to previous work (Wang et al., 2017) (Clark et al., 2017), we treat the visual odometry
task as a regression task. That is, the network will take as input the image sequence and produce
for each time step a transformation that will represent the camera’s relative movement from the
previous time step. This egomotion estimate can then be integrated over time to produce the final
camera positions in global frame (with the initial pose set arbitrarily to the origin coordinates).
The performance of the deep networks was found to depend on the particular parameterization of
the output space. We detail several different parameterizations below, and reference work that has
previously used these parameterizations in localization and odometry applications.
Position+Quaternion: This parameterization is the one we previously described, where the
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camera’s transformation matrix is represented as a position vector plus a quaternion to represent
orientation. This parameterization is often simple to deal with but comes with a disadvantage that
the quaternion requires a normalization to reduce an extra degree of freedom. This normalization
comes with the cost that it can often cause optimization issues when used for regression.
Position+Log Quaternion: This is an alternative parameterization of the basic position+quaternion
where the quaternion is represented in a form where it does not have the normalization degree
of freedom. This enables the optimization to avoid the difficult normalization step and regress
estimated/ground-truth log quaternion values directly. In particular, a quaternion q = (u,v) can
be transformed to a log-quaternion using the following process:

log q =

{ v
‖v‖ cos−1(u), if‖v‖ 6= 0

0, else

The loq quaternion w = logq can be transformed back into quaternion form using:

expw =

(
cos ‖w‖, w

‖w‖
sin ‖w‖

)
The log-quaternion parameterization was found to perform better in a localization task (Brahmb-
hatt et al., 2017). In that paper, the quaternion was compared directly with the log-quaternion
and some significant improvement was observed.
Position+Euler Angles: This parameterization represents rotation using euler angles, which are
far simpler to visualize compared to quaternions since they are simply the angles of rotation from
the elementary axes. This parameterization comes at the cost of singularity once the angles cross a
certain point. But since we are only dealing with relative transformations and the angular velocies
observed in this dataset are relatively small, we can directly use euler angles as the output of our
model without needing extra code to handle the singularity. When we require the model’s estimate
in global frame, we simply convert the euler angles to quaternion form and then process it as we
would with the other parameterizations.
Once we have the output of our model and the ground-truth in the same form, we use an L1-based
regression loss to train the model. We chose L1 due to the fact that the differences between output
and label are often far smaller than 1 in magnitude.

5 Featurization Models

5.1 Image Featurization

As explained in the first section, KITTI presents several challenges for deep learning algorithms
beyond simply visual odometry, the most important of which is the data sparsity. In total, there is
a total of 11 labeled sequences, a very low amount of training data for any learning method which
trains on the entire visual sequence. To partially account for the data sparsity problem, we are
required to utilize external data sources to pretrain portions of our model. The main use of external
data will be within the featurization model, which will transform temporally-contiguous image pairs
into a feature which presents high-level information on the relative motion between frames. These
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featurization models will be pretrained using external data other than the one we use for visual
odometry. There are several models we experiment with to do this first-step featurization, and they
are detailed in the subsections below.

5.2 FlowNet2-KITTI

The first featurization model we consider is called FlowNet2-KITTI, which is a pretrained FlowNet2
model that was fine-tuned on KITTI specific data. The FlowNet2 architecture was mainly designed
to perform optical flow estimation, a highly related problem to visual odometry where movement
of pixels in a pair of images is estimated (Ilg et al., 2017). Traditional methods to do optical
flow relied on optimization procedures to solve the flow as data arrived, but this presented several
shortcomings such as extensive computational requirements and a difficulty to obtain accurate
results in real-time. The FlowNet architecture was one of the first to explore learning optical flow
using a deep convolutional network. The network was trained on the ground-truth optical flow of
several real and synthetic datasets.
FlowNet consists of a convolution phase and a deconvolution phase (Dosovitskiy et al., 2015).
The convolution phase decreased the size of the image while increasing the feature channels. The
deconvolution phase followed a refinement process. It started with the smallest feature map from
the convolution phase and used that to predict a coarse estimate of the flow. The flow features of the
highest layer were deconvolved so that the spatial dimensions grew, and stacked with an upsampled
version of the coarse estimate of the flow and a skip connection from the previous convolution layer
with the same size as the deconvolved features. Another coarse estimate of the flow was predicted
using this as input. The process was repeated until the deconvolutions reached the same size as
the original network image input, providing a now refined estimate of the flow for each pixel.
FlowNet itself had several architectural variants, with varying complexity of the internal layers. The
simpler version, FlowNetSimple, was a more typical deep convolutional network similar to AlexNet,
but the specific choices in layer kernel size and stride were chosen to be more suited for optical
flow estimation. The more complicated network, FlowNetCorr, included a novel multiplicative
layer which was inspired by the cross-correlation operator. This operation was similar to a normal
convolutional operator applied to the second image in the image pair, except the filter weights of
this operator were obtained using the first image in the pair. This multiplicative operator was
shown in the original FlowNet paper to improve results on some datasets, but was later shown
in the FlowNet2 paper to work significantly better than FlowNetSimple given a more thorough
hyperparameter search.
The FlowNet2 paper extended the work of FlowNet, mainly in the architectural design of the
network (Ilg et al., 2017). The main addition was the use of stacking, where several FlowNet
variants were stacked on top of each other in a recurrent-network-like architecture, except the
FlowNet variants did not share weights. The complete FlowNet2 archiecture had 4 subnetworks
and 1 fusion network which produced the final result. It also included 2 streams, one for processing
small displacements and one for large displacements.
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5.2.1 FlowNet2-KITTI Training Data and Procedure

The training of FlowNet2-KITTI used 3 datasets, the Chairs dataset, the Things3D dataset and
the KITTI2012+KITTI2015 optical flow dataset. The FlyingChairs (or Chairs) dataset contains
22,000 image pairs of chairs rendered on random realistic background images obtained from Flickr.
These chairs are randomly transformed from image to image, providing an easy way to get the
optical flow ground-truth. The Things3D dataset is similar but consists of 3D models from the
ShapeNet dataset rendered on top of random static 3D backgrounds. The rendering in this dataset
is more realistic and is therefore more challenging to learn. The KITTI2012 and KITTI2015 optical
flow dataset was obtained with the same sensor platform as the KITTI visual odometry dataset.
The ground-truth flow was obtained with a process of using the LIDAR sensor to detect background
and objects, and then for every object finding a 3D model that closely resembles the object and
then trying to fit the 3D rigid body motion, pose and scale of the 3D model to the object.
The FlowNet2-KITTI model weights were obtained from the pretrained models at https://github.
com/lmb-freiburg/flownet2. The FlowNet2-KITTI model was trained with a complicated cur-
riculum in order to maximize performance as shown in the original paper (Ilg et al., 2017). The
subnetworks are trained one-by-one, using a Chairs→Things3D curriculum where the model is first
trained on the simpler Chairs dataset and then fine-tuned on Things3D. Once the lower subnet-
works are trained, higher subnetworks on the stack are added and the process is repeated. Lower
subnetworks on the stack are held fixed while the higher subnetworks are optimized. The entire
network is fine-tuned to work better on small displacements on the ChairsSDHom, a modification
of Chairs where the displacements are much smaller. Finally, The entire network is fined-tuned on
the ground-truths provided by the optical flow portion of the KITTI dataset.

5.2.2 FlowNet2-KITTI Feature Extraction Procedure for KITTI

FlowNet2-KITTI motion features were extracted in the following way. First, an 1280x384 RGB
image pair was passed through the network to compute the optical flow. We then extracted the
highest level flow features from the convolutional pass of each of the 4 subnetworks. This produced
a 1024× 6× 20 feature map for each subnetwork, which was concatenated channel-wise to produce
the final 4096× 6× 20 image pair flow features. This featurization was then passed into our model
in a sequence to predict the relative motion between frames. To reduce the number of parameters
in our model further, we choose to preprocess the final feature map by using pooling. We test two
types of pooling, average pooling and max pooling, referred to as FlowNet2-KITTI Average
Pooling and FlowNet2-KITTI Max Pooling, respectively.

5.3 PoseNet

The second featurization model we considered is called PoseNet. PoseNet was a component of the
paper Zhou et al. (2017), where it was used as part of an unsupervised learning pipeline for depth
and egomotion estimation. Therefore this model was itself trained to do visual odometry, but it did
not require labels because of an unsupervised objective. The unsupervised objective is based on
the following intuition: given knowledge about a camera’s egomotion within a sequence of images
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and the depth of every pixel in those images, we can gain an unsupervised target by doing view
synthesis using this data. In more detail, let the “source” view be the image at time step T and
the “target” view be the image at time step T + 1. Let pt be the homogenous coordinate of a pixel
in the target view, D̂t(pt) be the estimated depth of the pixel pt, and K be the intrinsic matrix of
the camera. Then we can obtain the projection of pt onto the source view ps using:

ps ∼ KT̂t→sD̂t(pt)K
−1pt

As the pixels are continuous and don’t align to the grid exactly, bilinear filtering is used to continu-
ously interpolate between the discrete values (similarly to what was done in the Spatial Transformer
Network). The depth and pose estimation networks are then trained using the objective:

Lvs =
∑
s

∑
p

|It(p)− Îs(p)|,

where Îs(p) is the source view projected onto the target view where the pixel-wise equation was given
above. There was several additions on top of this base objective in order to improve performance,
such as multi-scale depth prediction and a smoothness loss, and an “explainability mask” network
which downweights the loss on portions of the images externally undergoing motion not explained
by the camera’s motion (e.g. a car moving in frame). Some regularization is done to prevent the
explainability mask from downweighting the entire image.
The PoseNet architecture is essentially a temporal convolution over images which processes a stack
of k images using a 2D deep convolutional network. The architecture we used used a temporal filter
size of k = 5. The PoseNet predicts a relative transformation from the center image (the image
at the center position of the temporal convolution) to every other image (so in our case, there are
4 output transformations). The PoseNet itself is a relatively standard deep convolutional network
and is a much simpler architecture than FlowNet. It is made up of 7 stride-2 convolutions+ReLU
followed by a 1x1 linear convolution with 6 ∗ (k − 1) output channels, with 6 being the number of
parameters to represent 3D position and euler angles for each transformation. This final feature
map is then averaged spatially to produce the final estimate of the 6∗(k−1) transformation values.

5.3.1 PoseNet Training Data and Procedure

The PoseNet was trained as part of the view synthesis pipeline along with the depth prediction
network on the “raw” KITTI dataset using the pytorch reimplementation https://github.com/

ClementPinard/SfmLearner-Pytorch. The raw KITTI dataset is obtained using the same sensor
platform as the visual odometry KITTI, but did not include an extensive amount of annotations
other than 3D bounding boxes and mostly contained the “raw” sensor data collected. Because the
pipeline is trained using unsupervised objectives, the labels are not required and so only the images
are used.

5.3.2 PoseNet Feature Extraction Procedure for KITTI

We extract the features from PoseNet by aggregating every 5 images in the sequence and passing it
to the pretrained PoseNet model. For boundaries, we pad the images by wrapping and so we clone
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the first or last image for the number of positions outside the range of the sequence. For extraction
from each KITTI sequence, we take the 5 images centered at time t, i.e. (t− 2, t− 1, t, t + 1, t + 2)
and pass it to the PoseNet to produce the features for time t. The features we extract are the
256× 3× 10-dimensional features just before the 1x1 linear convolution output of PoseNet.

6 Sequence Models

The image featurization step converted the high-dimensional sequences of 2000-4000 1280x360
RGB images into a low dimensional sequence of image and motion features obtained from the
higher layers of the featurization model. The next step after image featurization will be to learn
the model that will transform this sequence of features into camera poses for each time step of the
video. We explore a variety of sequence-based deep learning architectures, including a temporal
convolution model (and a ResNet variant), a LSTM-based recurrent model, and finally transformer-
based attention models. In the section below, we will give specific details on how the architectures
are structured.
For all models, we flatten the spatial dimensions of the image features before input to the sequence
model. After the sequence models process the image features, we predict from the feature at each
timestep the relative transformation from the previous frame using a linear layer.

6.1 Temporal Convolution

The temporal convolution model takes as input the sequence of image features, and then does
several passes of 1-dimensional convolutions on the temporal dimension of the input features. The
architecture we chose was 3 layers of stride-3, pad-1, convolutions with ReLU activations. Each
layer had 1024 dimensions. The effective temporal receptive field was 7 time steps, so the temporal
convolution is limited to using short-range information only.
ResNet Variant: We also tried a ResNet variant of the temporal convolution which added the
input to the output feature map. We first pass the features through a filter-size=1 linear temporal
convolution layer to transform each time step’s features into 1024 dimensions. We then do 3 layers
of stride-3, pad-1 ResNet layers with ReLU activations. Each layer again had 1024 dimensions.
The ResNet update for feature layer l+ 1 and temporal convolution h(f) was the following: fl+1 =
max(0, h(fl)) + fl. Similar to the standard temporal convolution model, the effective temporal
receptive field was 7 time steps.

6.2 Recurrent Networks

The recurrent network uses an LSTM to process the input sequence of features into LSTM hidden
representations. These LSTM representations could potentially have an unlimited temporal recep-
tive field compared to the temporal convolutions, which have a hard limit on the number of time
steps they take into consideration. The LSTM used here is a single layer of 1024 hidden units which
processes inputs in a past-to-future direction. We also experimented with a bidirectional LSTM,
which takes information from both the future and the past in predicting the features at each time
step.
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6.3 Transformer Networks

Transformer networks are relatively new deep models which rely almost exclusively on the soft-
attention operator in order to transmit information between feature positions. While not being
restricted to sequential inputs and being applicable even to general graph inputs, they have been
used very successfully recently in machine translation tasks (Vaswani et al., 2017). The basic idea
of the transformer network is that each feature position will do soft-attention over the other feature
positions by (1) computing a query vector, (2) computing the dot-product of the query vector
with the key vector of every other feature position, (3) normalizing the dot-products to produce a
probability distribution over feature positions and finally (4) averaging the value features of each
feature position using the dot-product probability distribution as the weights. To add more bias to
the temporal aspect of the inputs, a “positional encoding” is used. This encoding was the same as
in the machine translation paper (Vaswani et al., 2017), where 2 fixed feature vectors are appended
to the feature of every time step. The appended positional encoding features are equal to:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

Here pos is the time step, i is the index of the feature dimension and dmodel is the total dimension
of the feature. In this work, we set dmodel = 1024. The positional encoding allows an addressing
based on relative positions of features, with each feature dimension providing a different scale of
relative addressing.
We make a modification on the basic transformer network presented in Vaswani et al. (2017) where
instead of having “multi-headed attention” where several attention steps are done in parallel, we
do several attention passes in sequence and update the features of each time step using the output
of the attention operator. To do the feature update, we use an LSTM update which takes as input
the attention output + the feature from the previous time step + the previous LSTM cell state,
and produces a new hidden feature and LSTM cell state.

7 Experimental Results

In this section, we present the experimental results for the models tested. In particular, we report
Absolute Trajectory Error (ATE) (Sturm et al., 2012) as a test metric as well as RMSE of the
global positions since our method takes into account full sequence information. We used the code
at https://github.com/raulmur/evaluate_ate_scale to compute the ATE alignment. Here we
give a brief description of each metric:
Relative Translation/Rotation RMSE: This metric takes the output of the model, repa-
rameterizes it to position+quaternion format, and then takes the RMSE with the ground-truth
relative-frame position+quaternion. Therefore this metric is the error in the estimated relative
velocity/angular velocity between each image pair in the sequence. Since this metric only looks at
relative transformations, it does not account for accumulating drift errors.
Global Translation/Rotation RMSE: This metric takes the output of the model, reparameter-
izes in position+quaternion format, but further integrates the relative transformations over time
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to produce the estimated global transformations of each pose. The RMSE between the estimated
global position (quaternion) and the ground-truth global-frame position (quaternion) is then taken
to produce the global translation (rotation) metric.
Absolute Trajectory Error (ATE): This is similar to the global RMSE metric, but it includes a
preprocessing step described in (Sturm et al., 2012) and https://github.com/raulmur/evaluate_

ate_scale. This “aligning” preprocessing step seeks to align the estimated sequence with the
ground-truth sequence by producing a scale, rotation and translation transformation that will be
applied to every pose in the sequence. The aligning is done using the method of Horn (closed-form)
which uses SVD to produce the transformation. After aligning, the RMSE is taken between the
aligned estimated global position and the ground-truth global-frame position.

7.1 Training Procedure and Hyperparameter Details

We train all models using the Adam optimizer, using a small hyperparameter sweep over learning
rates [0.0005, 0.001, 0.0025, 0.005] to coarsely determine a suitable learning rate. We found two
tricks to help learning signficantly. The first is to downscale the translation and rotation output
of the model by 100 (i.e. multiply the output vector by 0.01). This enabled the network to
approximately have the same scale as the ground-truth labels. Without this, the optimization
was often unstable and would oscillate around the ground-truth, never truly converging to a fixed
value. The second trick is to put more weight on the rotation loss so that rotation errors are more
heavily penalized. Even relatively small incorrect rotation estimates at corners could cause large
global errors due to the fact that it will unalign the entire sequence after that corner. Therefore
we upscale the rotation loss by 100 compared to the translation loss. On a preliminary test, we
determined that using euler angles gave the best results compared to quaternion and log-quaternion
parameterizations.

7.2 KITTI Results

FlowNet2-KITTI Average Pooling

Model
Absolute Trajectory Error

Seq01 Seq03 Seq04 Seq05 Seq06 Seq07 Seq10 Avg

TempConv 103 4.68 1.93 17.6 37.5 4.76 5.87 25.1
TempRes 118 7.16 1.35 21.3 45.6 3.55 6.49 29.1

LSTM 46.7 12.8 2.51 43.0 25.9 15.1 7.30 21.9
Transformer (k=1) 85.9 6.62 2.21 19.7 43.8 6.76 8.78 24.8
Transformer (k=2) 32.5 11.0 2.71 28.4 47.5 12.2 16.0 21.5
Transformer (k=5) 78.7 9.55 4.46 56.8 48.1 11.4 19.6 32.6

Table 1: Absolute Trajectory Error (ATE) of the deep learning sequence models on the 6 test se-
quences of the KITTI dataset [01,03,04,05,06,07,10] preprocessed by FlowNet2-KITTI and spatially
average pooled.
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FlowNet2-KITTI Max Pooling

Model
Absolute Trajectory Error

Seq01 Seq03 Seq04 Seq05 Seq06 Seq07 Seq10 Avg

TempConv 137 4.26 2.69 17.3 15.0 6.66 8.37 27.4
TempRes 199 3.49 3.31 42.2 55.5 11.8 15.2 47.2

LSTM 113 6.39 3.37 38.5 50.3 12.6 15.6 34.3
Transformer (k=1) 68.3 9.44 2.23 38.1 64.0 21.8 21.1 32.1
Transformer (k=2) 65.7 16.4 5.07 78.8 77.0 39.4 46.2 46.9
Transformer (k=5) 31.6 10.4 2.62 82.2 57.7 14.1 22.5 31.6

Table 2: Absolute Trajectory Error (ATE) of the deep learning sequence models on the 6 test se-
quences of the KITTI dataset [01,03,04,05,06,07,10] preprocessed by FlowNet2-KITTI and spatially
max pooled.

PoseNet

Model
Absolute Trajectory Error

Seq01 Seq03 Seq04 Seq05 Seq06 Seq07 Seq10 Avg

TempConv 45.9 6.18 1.23 46.2 32.1 19.9 11.6 23.3
TempRes 37.8 5.83 1.19 32.4 39.1 14.0 8.49 19.8

LSTM 45.8 6.36 2.30 60.8 27.4 25.2 17.2 26.4
Transformer (k=1) 21.4 5.81 1.87 31.4 55.0 20.9 22.9 22.7
Transformer (k=2) 52.6 4.64 1.24 55.3 54.2 12.8 13.4 27.7
Transformer (k=5) 125 4.75 1.14 60.5 55.5 12.1 27.0 40.8

Table 3: Absolute Trajectory Error (ATE) of the deep learning sequence models on the 6 test
sequences of the KITTI dataset [01,03,04,05,06,07,10] preprocessed by PoseNet.

7.3 KITTI Discussion

We present the KITTI ATE results in Tables 1 2 and 3 for the 3 types of image featurization
methods: FlowNet2-KITTI Average Pooling, FlowNet2-KITTI Max Pooling and PoseNet. From
the average ATE on all test sequences, we can see that the FlowNet2-KITTI max pooling performs
worse than either the FlowNet2-KITTI average pooling or PoseNet featurization methods. Inter-
estingly on certain sequences with the model fixed, we can observe that the ATE with FlowNet2-
KITTI features is sometimes much lower than with PoseNet features (e.g. Transformer (k=1) for
Seq07+Seq10) while with the same model on a different sequence sometimes FlowNet2-KITTI fea-
tures have much higher ATE than the model with PoseNet features (e.g. Transformer (k=1) for
Seq01). This might be due to FlowNet2-KITTI and PoseNet features working better in different
scales of egomotion and suggests that future results can potentially be improved by concatenating
these different features.
Over all models and featurizations, the best average ATE result was obtained with the temporal
residual network using the PoseNet featurization. In general, it seems that the temporal-convolution
networks (TempConv+TempRes) worked best with the PoseNet, obtaining sometimes significantly
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lower ATE (e.g. Seq01). The LSTM network often had results on par with the temporal convolution
models. The transformer network seems to have results on par or better than the LSTM network,
even though the transformer doesn’t have as strong a sequential bias as the recurrent network. It
also seemed like the transformer network with 1 or 2 iterations did better than having 5 iterations.
In more detail, we can observe from the ATE results that the sequences 01, 05 and 06 are far more
difficult than the other test sequences as all the models suffer from significantly higher ATE on
those sequences. In particular, most models had difficulty with Seq01 which is the test sequence
with the largest translational scale (as can be observed from Fig. 1). On Seq01, the transformer
networks for at least one setting of k seem to beat the other models. Interestingly, by far the lowest
ATE on this sequence was the transformer network (k=1) with PoseNet featurization.
We additionally report the Relative RMSE results in Tables 4 5and 6 for the 3 types of image featur-
ization methods: FlowNet2-KITTI Average Pooling, FlowNet2-KITTI Max Pooling and PoseNet,
respectively. We can see that the temporal convolution and residual networks consistently get lower
average RMSE over all test sequences than other models despite often doing worse than other mod-
els at ATE. This suggests that the training loss we use isn’t representative of the final metric we
wish to improve. Preliminary experiments using global loss (ATE without aligning) showed signif-
icant difficulty at optimization due to the widely varying scales of the output and loss, and so only
results involving relative-loss-trained networks are reported here.

8 Conclusion

In this report we tested and compared the effectiveness of several sequence-based deep learning
methods. These models included temporal convolution and residual networks, LSTM recurrent
networks, attention-based transformer networks. To deal with the very low amount of data we
have available (3 training sequences total), we used image featurization models including FlowNet2-
KITTI and PoseNet. Our results indicate that most models achieve similar average global ATE
on the test sequences, with temporal residual networks doing slightly better. In conclusion, the
results indicate that on KITTI deep learning models are mostly using local information, with
models with hard upper limits on the temporal receptive field (TempConv/TempRes) doing just
as well or better than models which can communicate over unlimited time horizons (given enough
capacity). The current lack of a large dataset for visual odometry presents a significant challenge for
learning-based visual odometry models, and better results could potentially be obtained with more
data by enabling the end-to-end training of the featurization and sequence models, and providing
more examples for the model to learn how to utilize temporally-distant information (e.g. to do
loop-closure-like corrections).
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FlowNet2-KITTI Average Pooling

Model
Relative RMSE

(
Translate

Rotate

)
Seq01 Seq03 Seq04 Seq05 Seq06 Seq07 Seq10 Avg

TempConv
7.06e-1
2.35e-3

3.75e-2
2.50e-3

1.26e-1
1.51e-3

3.94e-2
2.26e-3

5.39e-2
2.47e-3

5.01e-2
2.39e-3

6.96e-2
3.12e-3

1.55e-1
2.37e-3

TempRes
5.45e-1
2.57e-3

2.85e-2
2.60e-3

6.23e-2
1.48e-3

3.06e-2
2.27e-3

3.60e-2
3.10e-3

3.18e-2
2.71e-3

5.15e-2
3.38e-3

1.12e-1
2.59e-3

LSTM
6.09e-1
2.67e-3

3.57e-2
2.94e-3

1.07e-1
1.73e-3

4.27e-2
2.48e-3

6.67e-2
2.64e-3

4.98e-2
2.81e-3

7.82e-2
3.30e-3

1.41e-1
2.65e-3

Transformer (k=1)
6.41e-1
3.16e-3

6.60e-2
2.82e-3

1.02e-1
1.79e-3

6.65e-2
2.59e-3

6.38e-2
2.62e-3

1.09e-1
2.82e-3

1.08e-1
3.50e-3

1.65e-1
2.76e-3

Transformer (k=2)
8.29e-1
2.46e-3

1.56e-1
2.65e-3

3.06e-1
1.48e-3

1.42e-1
2.27e-3

1.87e-1
3.32e-3

2.06e-1
2.42e-3

1.91e-1
3.32e-3

2.88e-1
2.56e-3

Transformer (k=5)
7.34e-1
3.24e-3

9.52e-2
3.02e-3

2.00e-1
2.26e-3

1.32e-1
2.75e-3

1.27e-1
3.89e-3

1.34e-1
3.16e-3

1.39e-1
3.67e-3

2.23e-1
3.14e-3

Table 4: Evaluation of the deep learning sequence models on the 6 test sequences of the KITTI
dataset [01,03,04,05,06,07,10].

FlowNet2-KITTI Max Pooling

Model
Relative RMSE

(
Translate

Rotate

)
Seq01 Seq03 Seq04 Seq05 Seq06 Seq07 Seq10 Avg

TempConv
6.39e-1
2.97e-3

3.81e-2
2.71e-3

1.24e-1
1.66e-3

4.76e-2
2.54e-3

5.34e-2
2.82e-3

6.68e-2
2.82e-3

7.24e-2
3.23e-3

1.49e-1
2.68e-3

TempRes
6.08e-1
3.74e-3

3.93e-2
2.75e-3

1.10e-1
2.12e-3

4.40e-2
2.69e-3

5.25e-2
4.21e-3

5.32e-2
3.35e-3

7.58e-2
3.63e-3

1.40e-1
3.21e-3

LSTM
7.25e-1
3.66e-3

1.15e-1
3.27e-3

1.76e-1
1.96e-3

1.03e-1
3.20e-3

1.04e-1
4.07e-3

1.53e-1
4.24e-3

1.47e-1
3.89e-3

2.18e-1
3.47e-3

Transformer (k=1)
6.97e-1
3.27e-3

1.95e-1
3.45e-3

1.64e-1
1.51e-3

1.57e-1
3.45e-3

1.51e-1
5.39e-3

2.20e-1
4.21e-3

2.24e-1
4.11e-3

2.58e-1
3.63e-3

Transformer (k=2)
8.61e-1
4.29e-3

1.51e-1
4.75e-3

3.65e-1
2.13e-3

1.67e-1
6.11e-3

2.35e-1
9.71e-3

2.16e-1
8.67e-3

1.95e-1
6.56e-3

3.13e-1
6.03e-3

Transformer (k=5)
7.21e-1
3.15e-3

2.40e-1
3.22e-3

2.03e-1
1.64e-3

1.62e-1
3.76e-3

1.47e-1
4.99e-3

2.35e-1
4.09e-3

2.25e-1
4.02e-3

2.76e-1
3.55e-3

Table 5: Evaluation of the deep learning sequence models on the 6 test sequences of the KITTI
dataset [01,03,04,05,06,07,10].
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PoseNet

Model
Relative RMSE

(
Translate

Rotate

)
Seq01 Seq03 Seq04 Seq05 Seq06 Seq07 Seq10 Avg

TempConv
8.17e-1
3.06e-3

7.24e-2
2.49e-3

1.93e-1
1.43e-3

6.92e-2
2.22e-3

1.10e-1
2.28e-3

8.39e-2
2.79e-3

9.58e-2
3.38e-3

2.06e-1
2.52e-3

TempRes
8.19e-1
3.82e-3

7.67e-2
2.83e-3

2.01e-1
1.58e-3

7.74e-2
2.65e-3

1.09e-1
2.87e-3

1.01e-1
3.28e-3

1.11e-1
3.66e-3

2.14e-1
2.96e-3

LSTM
8.17e-1
4.01e-3

1.12e-1
2.67e-3

1.69e-1
1.63e-3

1.16e-1
2.68e-3

1.05e-1
2.79e-3

1.59e-1
3.17e-3

1.59e-1
4.30e-3

2.34e-1
3.04e-3

Transformer (k=1)
6.83e-1
3.57e-3

1.94e-1
2.66e-3

1.49e-1
1.53e-3

1.50e-1
2.58e-3

1.24e-1
3.54e-3

1.91e-1
3.08e-3

2.11e-1
4.03e-3

2.43e-1
3.00e-3

Transformer (k=2)
8.14e-1
4.09e-3

7.40e-2
2.78e-3

2.00e-1
1.76e-3

7.95e-2
2.67e-3

1.20e-1
3.52e-3

8.50e-2
3.08e-3

9.91e-2
4.05e-3

2.10e-1
3.14e-3

Transformer (k=5)
7.70e-1
4.39e-3

9.82e-2
3.01e-3

1.35e-1
1.81e-3

8.92e-2
2.87e-3

1.01e-1
3.78e-3

1.31e-1
3.40e-3

1.45e-1
4.10e-3

2.10e-1
3.34e-3

Table 6: Evaluation of the deep learning sequence models on the 6 test sequences of the KITTI
dataset [01,03,04,05,06,07,10].
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